Application of Derivatives 4 Question 14

15. The least value of αR for which 4αx2+1x1, for all x>0, is

(a) 164

(b) 132

(c) 127

(d) 125

(2016 Adv.)

Show Answer

Answer:

Correct Answer: 15. (c)

Solution:

  1. Here, to find the least value of αR, for which 4αx2+1x1, for all x>0.

i.e. to find the minimum value of α when y=4αx2+1x;x>0 attains minimum value of α.

dydx=8αx1x2

Now,

d2ydx2=8α+2x3

When

At x=18α1/3,d2ydx2=8α+16α=24α, Thus, y attains minimum when x=18α1/3;α>0.

y attains minimum when x=18α1/3.

 i.e. 4α18α2/3+(8α)1/31α1/3+2α1/313α1/31α127

Hence, the least value of α is 127.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक