Application of Derivatives 4 Question 12

13. If $20 m$ of wire is available for fencing off a flower-bed in the form of a circular sector, then the maximum area (in sq. m) of the flower-bed is

(2017 Main)

(a) 12.5

(b) 10

(c) 25

(d) 30

Show Answer

Answer:

Correct Answer: 13. (d)

Solution:

  1. Total length $=2 r+r \theta=20$

$$ \Rightarrow \quad \theta=\frac{20-2 r}{r} $$

Now, area of flower-bed,

$$ \begin{aligned} & A & =\frac{1}{2} r^{2} \theta \\ \Rightarrow \quad & A & =\frac{1}{2} r^{2} \frac{20-2 r}{r} \\ \Rightarrow \quad & A & =10 r-r^{2} \\ \therefore \quad & \frac{d A}{d r} & =10-2 r \end{aligned} $$

For maxima or minima, put $\frac{d A}{d r}=0$.

$$ \begin{aligned} \Rightarrow \quad 10-2 r & =0 \Rightarrow r=5 \\ \therefore \quad A _{\max } & =\frac{1}{2}(5)^{2} \frac{20-2(5)}{5} \\ & =\frac{1}{2} \times 25 \times 2=25 \text { sq. } m \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक