Application of Derivatives 2 Question 6

6. Let f(x)=xa2+x2dxb2+(dx)2,xR, where a,b and d are non-zero real constants. Then,

(2019 Main, 11 Jan II)

(a) f is an increasing function of x

(b) f is not a continuous function of x

(c) f is a decreasing function of x

(d) f is neither increasing nor decreasing function of x

Show Answer

Solution:

  1. We have,

f(x)=x(a2+x2)1/2(dx)(b2+(dx)2)1/2

Differentiating above w.r.t. x, we get

f(x)=(a2+x2)1/2x122x(a2+x2)1/2(a2+x2)

(b2+(dx)2)1/2(1)(dx)2(dx)(1)2(b2+(dx)2)1/2(b2+(dx)2)

[by using quotient rule of derivative]

=a2+x2x2(a2+x2)3/2+b2+(dx)2(dx)2(b2+(dx)2)3/2=a2(a2+x2)3/2+b2(b2+(dx)2)3/2>0,xR

Hence, f(x) is an increasing function of x.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक