Application of Derivatives 2 Question 4

4. Let f:[0,2]R be a twice differentiable function such that f(x)>0, for all x(0,2). If φ(x)=f(x)+f(2x), then φ is

(2019 Main, 8 April I)

(a) increasing on (0,1) and decreasing on (1,2)

(b) decreasing on (0,2)

(c) decreasing on (0,1) and increasing on (1,2)

(d) increasing on (0,2)

Show Answer

Solution:

  1. Given, φ(x)=f(x)+f(2x),x(0,2)

φ(x)=f(x)f(2x)

Also, we have f(x)>0x(0,2)

f(x) is a strictly increasing function

x(0,2). Now, for φ(x) to be increasing,

φ(x)0f(x)f(2x)0 [using Eq. (i)] f(x)f(2x)x>2x[f is a strictly increasing function] 2x>2

Thus, φ(x) is increasing on (1,2).

Similarly, for φ(x) to be decreasing,

f(x)f(2x)0

[using Eq. (i)]

f(x)f(2x)
x<2x[f is a strictly increasing
function ]
2x<2
x<1


जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक