Application of Derivatives 2 Question 32

32. Given $A=x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}$ and $f(x)=\cos x-x(1+x)$. Find $f(A)$.

$(1980,2 M)$

Show Answer

Answer:

Correct Answer: 32. (a, c)

Solution:

  1. Given, $A=x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}$

and $f(x)=\cos x-x-x^{2}$

$\Rightarrow \quad f^{\prime}(x)=-\sin x-1-2 x=-(\sin x+1+2 x)$

which is negative for $x \in \frac{\pi}{6}, \frac{\pi}{3}$

$\therefore \quad f^{\prime}(x)<0$

or $f(x)$ is decreasing.

Hence, $f(A)=f \frac{\pi}{3}, f \frac{\pi}{6}$

$$ =\frac{1}{2}-\frac{\pi}{3} \quad 1+\frac{\pi}{3}, \frac{\sqrt{3}}{2}-\frac{\pi}{6} \quad 1+\frac{\pi}{6} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक