Application of Derivatives 2 Question 26

26. Prove that $\sin x+2 x \geq \frac{3 x(x+1)}{\pi}, \forall x \in 0, \frac{\pi}{2}$ (Justify the inequality, if any used).

(2004, 4M)

Show Answer

Answer:

Correct Answer: 26. (b)

Solution:

  1. Let $f(x)=\sin x+2 x-\frac{3 x(x+1)}{\pi}$

On differentiating w.r.t. $x$, we get

$\Rightarrow \quad f^{\prime}(x)=\cos x+2-\frac{(6 x+3)}{\pi}$

$\Rightarrow \quad f^{\prime \prime}(x)=-\sin x-\frac{6}{\pi}<0, \forall x \in 0, \frac{\pi}{2}$

$\therefore \quad f^{\prime}(x)$ is decreasing for all $x \in 0, \frac{\pi}{2}$.

$$ \begin{array}{lll} \Rightarrow & f^{\prime}(x)>0 & {[\because x<\pi / 2]} \\ \Rightarrow & f^{\prime}(x)>f^{\prime}(\pi / 2) & \end{array} $$

$\therefore f(x)$ is increasing.

Thus, when $x \geq 0, f(x) \geq f(0)$

$$ \begin{aligned} & \Rightarrow \quad \sin x+2 x-\frac{3 x(x+1)}{\pi} \geq 0 \\ & \Rightarrow \quad \sin x+2 x \geq \frac{3 x(x+1)}{\pi} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक