Application of Derivatives 2 Question 12

12. Let $f(x)=\int e^{x}(x-1)(x-2) d x$. Then, $f$ decreases in the interval

(a) $(-\infty,-2)$

(b) $(-2,-1)$

(c) $(1,2)$

(d) $(2, \infty)$

(2000, 2M)

Show Answer

Solution:

  1. Let

$$ \begin{aligned} f(x) & =\int e^{x}(x-1)(x-2) d x \\ f^{\prime}(x) & =e^{x}(x-1)(x-2) \\ & +\quad-\quad+ \\ \hline & +\quad 2 \end{aligned} $$

$$ \Rightarrow \quad f^{\prime}(x)=e^{x}(x-1)(x-2) $$

$\therefore f^{\prime}(x)<0$ for $1<x<2$

$\Rightarrow f(x)$ is decreasing for $x \in(1,2)$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक