Application of Derivatives 1 Question 8

8. The normal to the curve $y(x-2)(x-3)=x+6$ at the point, where the curve intersects the $Y$-axis passes through the point

(a) $-\frac{1}{2},-\frac{1}{2}$

(b) $\frac{1}{2}, \frac{1}{2}$

(c) $\frac{1}{2},-\frac{1}{3}$

(d) $\frac{1}{2}, \frac{1}{3}$

(2017 Main)

Show Answer

Answer:

Correct Answer: 8. (c)

Solution:

  1. Given curve is

$$ y(x-2)(x-3)=x+6 $$

Put $x=0$ in Eq. (i), we get

$$ y(-2)(-3)=6 \Rightarrow y=1 $$

So, point of intersection is $(0,1)$.

Now, $y=\frac{x+6}{(x-2)(x-3)}$

$\Rightarrow \quad \frac{d y}{d x}=\frac{1(x-2)(x-3)-(x+6)(x-3+x-2)}{(x-2)^{2}(x-3)^{2}}$

$\Rightarrow \quad \frac{d y}{d x}{ } _{(0,1)}=\frac{6+30}{4 \times 9}=\frac{36}{36}=1$

$\therefore$ Equation of normal at $(0,1)$ is given by

$$ \begin{aligned} y-1 & =\frac{-1}{1}(x-0) \\ \Rightarrow \quad x+y-1 & =0 \end{aligned} $$

which passes through the point $\frac{1}{2}, \frac{1}{2}$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक