3D Geometry 3 Question 59

59. Consider three planes $P _1: x-y+z=1$

$P _2: x+y-z=-1$
and $\quad$ $P _3: x-3 y+3 z=2$

Let $L _1, L _2, L _3$ be the lines of intersection of the planes $P _2$ and $P _3, P _3$ and $P _1, P _1$ and $P _2$, respectively.

Statement I Atleast two of the lines $L _1, L _2$ and $L _3$ are non-parallel.

Statement II The three planes do not have a common point.

(2008, 3M)

Show Answer

Answer:

Correct Answer: 59. (d)

Solution:

  1. Given three planes are

$ \begin{aligned} P _1: x-y+z & =1 \quad …..(1) \\ P _2: x+y-z & =-1 \quad …..(2) \\ \text { and } \quad P _3: x-3 y+3 z & =2 \quad …..(3) \end{aligned} $

On solving Eqs. (i) and (ii), we get

$ x=0, z=1+y $

which does not satisfy Eq. (iii).

As $\quad x-3 y+3 z=0-3 y+3(1+y)=3(\neq 2)$

So, Statement II is true.

Next, since we know that direction ratios of line of intersection of planes $a _1 x+b _1 y+c _1 z+d _1=0$

$ \text { and } \quad a _2 x+b _2 y+c _2 z+d _2=0 \text { is } $

$b _1 c _2-b _2 c _1, c _1 a _2-a _1 c _2, a _1 b _2-a _2 b _1$

Using above result,

Direction ratios of lines $L _1, L _2$ and $L _3$ are

$ 0,2,2 ; 0,-4,-4 ; 0,-2,-2 $

Since, all the three lines $L _1, L _2$ and $L _3$ are parallel pairwise.

Hence, Statement I is false.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक