3D Geometry 3 Question 56

56. The distance of the point $(1,1,1)$ from the plane passing through the point $(-1,-2,-1)$ and whose normal is perpendicular to both the lines $L _1$ and $L _2$, is

(a) $2 / \sqrt{75}$ unit

(b) $7 / \sqrt{75}$ unit

(c) $13 / \sqrt{75}$ units

(d) $23 / \sqrt{75}$ units

Show Answer

Answer:

Correct Answer: 56. (8)

Solution:

  1. The equation of the plane passing through the point $(-1,-2,-1)$ and whose normal is perpendicular to both the given lines $L _1$ and $L _2$ may be written as

$(x+1)+7(y+2)-5(z+1)=0 \Rightarrow x+7 y-5 z+10=0$

The distance of the point $(1,1,1)$ from the plane

$ =\left|\frac{1+7-5+10}{\sqrt{1+49+25}}\right|=\frac{13}{\sqrt{75}} \text { units } $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक