3D Geometry 3 Question 39

39. Perpendicular are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$. The feet of perpendiculars lie on the line

(a) $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$

(c) $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$

(b) $\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$

(d) $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$

(2013 Adv.)

Show Answer

Answer:

Correct Answer: 39. (a)

Solution:

  1. Key Idea To find the foot of perpendiculars and find its locus. Formula used

Footof perpendicular from $\left(x _1, y _1, z _1\right)$ to

$a x+b y+c z+d=0$ be $\left(x _2, y _2, z _2\right)$, then

$ \frac{x _2-x _1}{a}=\frac{y _2-y _1}{b}=\frac{z _2-z _1}{c}=\frac{-\left(a x _1+b y _1+c z _1+d\right)}{a^{2}+b^{2}+c^{2}} $

Any point on $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}=\lambda$

$ \Rightarrow \quad x=2 \lambda-2, y=-\lambda-1, z=3 \lambda $

Let foot of perpendicular from $(2 \lambda-2,-\lambda-1,3 \lambda)$

to $x+y+z=3$ be $\left(x _2, y _2, z _2\right)$

$ \begin{aligned} \therefore \quad \frac{x _2-(2 \lambda-2)}{1} & =\frac{y _2-(-\lambda-1)}{1}=\frac{z _2-(3 \lambda)}{1} \\ & =-\frac{(2 \lambda-2-\lambda-1+3 \lambda-3)}{1+1+1} \end{aligned} $

$ \begin{array}{rlrl} \Rightarrow & x _2-2 \lambda+2 =y _2+\lambda+1=z _2-3 \lambda=2-\frac{4 \lambda}{3} \\ \therefore & x _2 =\frac{2 \lambda}{3}, y _2=1-\frac{7 \lambda}{3}, z _2=2+\frac{5 \lambda}{3} \\ \Rightarrow & \lambda =\frac{x _2-0}{2 / 3}=\frac{y _2-1}{-7 / 3}=\frac{z _2-2}{5 / 3} \end{array} $

Hence, foot of perpendicular lie on

$ \frac{x}{2 / 3}=\frac{y-1}{-7 / 3}=\frac{z-2}{5 / 3} \Rightarrow \frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक