3D Geometry 3 Question 37

37. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$ is

(2015 Main)

(a) $2 \sqrt{14}$

(b) 8

(c) $3 \sqrt{21}$

(d) 13

Show Answer

Answer:

Correct Answer: 37. (c)

Solution:

  1. Given equation of line is

$ \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=\lambda $

and equation of plane is

$ x-y+z=16 $

Any point on the line (i) is, $(3 \lambda+2,4 \lambda-1,12 \lambda+2)$

Let this point of intersection of the line and plane.

$ \begin{array}{rlrl} \therefore & (3 \lambda+2)-(4 \lambda-1)+(12 \lambda+2) & =16 \\ \Rightarrow & 11 \lambda+5 =16 \\ \Rightarrow & 11 \lambda =11 \\ \Rightarrow & \lambda =1 \end{array} $

So, the point of intersection is $(5,3,14)$.

Now, distance between the points $(1,0,2)$ and $(5,3,14)$

$ \begin{aligned} & =\sqrt{(5-1)^{2}+(3-0)^{2}+(14-2)^{2}} \\ & =\sqrt{16+9+144}=\sqrt{169}=13 \end{aligned} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक