3D Geometry 3 Question 22

22. The plane which bisects the line segment joining the points $(-3,-3,4)$ and $(3,7,6)$ at right angles, passes through which one of the following points?

(2019 Main, 10 Jan II)

(a) $(4,-1,7)$

(b) $(2,1,3)$

(c) $(-2,3,5)$

(d) $(4,1,-2)$

Show Answer

Answer:

(d)

Solution:

  1. Let the given points be $A(-3,-3,4)$ and $B(3,76)$.

Then, mid-point of line joining $A, B$ is

$ P \frac{-3+3}{2}, \frac{-3+7}{2}, \frac{4+6}{2}=P(0,2,5) $

$\because$ The required plane is perpendicular

bisector of line joining $A, B$, so direction ratios of normal to the plane is proportional to the direction ratios of line joining $A, B$.

So, direction ratios of normal to the plane are $6,10,2$.

$[\because$ DR’s of $A B$ are $3+3,7+3,6-4$, i.e. $6,10,2]$

Now, equation of plane is given by

$ \begin{aligned} a\left(x-x _1\right)+b\left(y-y _1\right)+c\left(z-z _1\right) & =0 \\ 6(x-0)+10(y-2)+2(z-5) & =0 \end{aligned} $

$[\because P(0,2,5)$ line on the plane $]$

$ \Rightarrow \quad 3 x+5 y-10+z-5=0 $

$ \Rightarrow \quad 3 x+5 y+z=15 $

On checking all the options, the option $(4,1,-2)$ satisfy the equation of plane (i).



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक