3D Geometry 2 Question 9

9. A line l passing through the origin is perpendicular to the lines

(2013 Adv.)

l1:(3+t)i^+(1+2t)j^+(4+2t)k^,<t<

l2:(3+2s)i^+(3+2s)j^+(2+s)k^,<s<

Then, the coordinate(s) of the point(s) on l2 at a distance of 17 from the point of intersection of l and l1 is (are)

(a) 73,73,53

(b) (1,1,0)

(c) (1,1,1)

(d) 79,79,89

Show Answer

Answer:

Correct Answer: 9. (b,d)

Solution:

  1. Key Idea Equation of straight line is /:xx1a=yy1b=zz1c

Since, I is perpendicular to I1 and I2.

So, its DR’s are cross-product of I1 and I2

Now, to find a point on I2 whose distance is given, assume a point and find its distance to obtain point.

Let l:x0a=y0b=z0c

which is perpendicular to

l1:(3i^j^+4k^)+t(i^+2j^+2k^)l2:(3i^+3j^+2k^)+s(2i^+2j^+k^) DR’s of l is |i^j^k^122221|=2i^+3j^2k^l:x2=y3=z2=k1,k2

Now, A(2k1,3k1,2k1) and B(2k2,3k2,2k2).

Since, A lies on l1.

(2k1)i^+(3k1)j^(2k1)k^=(3+t)i^+(1+2t)j^+(4+2t)k^3+t=2k1,1+2t=3k1,4+2t=2k1k1=1

A(2,3,2)

Let any point on l2(3+2s,3+2s,2+s)

(232s)2+(332s)2+(22s)2=179s2+28s+37=179s2+28s+20=09s2+18s+10s+20=0(9s+10)(s+2)=0ss=2,109.

Hence, (1,1,0) and 79,79,89 are required points.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक