3D Geometry 2 Question 5

5. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, then $k$ can have

(a) any value

(b) exactly one value

(c) exactly two values

(d) exactly three values

(2012 Main)

Show Answer

Answer:

Correct Answer: 5. (c)

Solution:

  1. Condition for two lines are coplanar.

$ \left|\begin{array}{ccc} x _1-x _2 & y _1-y _2 & z _1-z _2 \\ l _1 & m _1 & n _1 \\ l _2 & m _2 & n _2 \end{array}\right|=0 $

where, $\left(x _1, y _1, z _1\right)$ and $\left(x _2, y _2, z _2\right)$ are the points lie on lines (i) and (ii) respectively and $<l _1, m _1, n _1>$ and $<l _2, m _2, n _2>$ are the direction cosines of the lines (i) and (ii), respectively.

$ \begin{aligned} & \therefore \quad\left|\begin{array}{ccc} 2-1 & 3-4 & 4-5 \\ 1 & 1 & -k \\ k & 2 & 1 \end{array}\right|=0 \\ & \Rightarrow \quad\left|\begin{array}{rrr} 1 & -1 & -1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{array}\right|=0 \\ & \Rightarrow \quad 1(1+2 k)+\left(1+k^{2}\right)-(2-k)=0 \\ & \Rightarrow \quad k^{2}+2 k+k=0 \\ & \Rightarrow \quad k^{2}+3 k=0 \\ & \Rightarrow \quad k=0,-3 \end{aligned} $

If 0 appears in the denominator, then the correct way of representing the equation of straight line is

$ \frac{x-2}{1}=\frac{y-3}{1} ; z=4 $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक