Solid State - Result Question 32

####32. The volume of this hep unit cell is

(a) $24 \sqrt{2} r^{3}$

(b) $16 \sqrt{2} r^{3}$

(c) $12 \sqrt{2} r^{3}$

(d) $\frac{64 r^{3}}{3 \sqrt{3}}$

Show Answer

Answer:

Correct Answer: 32. (a)

Solution:

  1. In close packed arrangement, side of the base $=2 r$

$$ \Rightarrow \quad R S=r $$

Also MNR is equilateral triangle, $\angle P R S=30^{\circ}$

In triangle $P R S, \cos 30^{\circ}=\frac{R S}{P R}=\frac{\sqrt{3}}{2}$

$$ \Rightarrow \quad P R=\frac{2}{\sqrt{3}} R S=\frac{2}{\sqrt{3}} r $$

In right angle triangle $P Q R: P Q=\sqrt{Q R^{2}-P R^{2}}=2 \sqrt{\frac{2}{3}} r$

$\Rightarrow$ Height of hexagon $=2 P Q=4 \sqrt{\frac{2}{3}} r$

$\Rightarrow$ Volume $=$ Area of base $\times$ height $=6 \frac{\sqrt{3}}{4}(2 r)^{2} \times 4 \sqrt{\frac{2}{3}} r$

$$ =24 \sqrt{2} r^{3} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक