Question: Q. 8. Half life of ${ }_{92}^{238} \mathrm{U}$ against $\alpha$-decay is $4.5 \times 10^{9}$ years.

Calculate the activity of 1 gram sample of ${ }_{92}^{238} \mathrm{U}$ ?

Given Avagadro’s number $=6 \times 10^{26}$ atoms/ kmol. U] [OD East 2016]

Show Answer

Solution:

Ans. Activity,

$$ \begin{align*} R & =\lambda N \ & =\frac{0.693}{\mathrm{~T}_{1 / 2}} N \ R & =\frac{0.693}{1.42 \times 10^{17}} \times N \tag{1} \end{align*} $$

Activity,

Number of nuclei present in 1 gram sample of ${ }_{92}^{238} \mathrm{U}=2503 \times 10^{20}$

$$ \begin{aligned} \Rightarrow \quad R & =\frac{0.693}{1.42 \times 10^{17}} \times \frac{6.0 \times 10^{26}}{238 \times 10^{3}} s^{-1} \ & =1.23 \times 10^{4} \mathrm{~s}^{-1} \end{aligned} $$

[CBSE Marking Scheme 2016]

Detailed Answer :

$238 \mathrm{~g}$ of Uranium $=1$ mole atoms

According to the question

$238 \times 10^{3} \mathrm{~g}$ of sample Uranium contain

$$ =6 \times 10^{26} \text { atoms } $$

$1 \mathrm{~g}$ of sample Uranium contain

$$ \begin{aligned} & =\frac{6 \times 10^{26}}{238 \times 10^{3}} \ & =2.52 \times 10^{21} \text { atoms } \end{aligned} $$

Activity, $\quad R=\lambda N$

where,

(half life time is converted into seconds)

Hence,

$$ \begin{align*} & R=\frac{0.693}{1.42 \times 10^{17}} \times 2.52 \times 10^{21} \ & R=1.23 \times 10^{4} \mathrm{~s}^{-1} \tag{1} \end{align*} $$



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक