Question: Q. 25. The capacitors C1 and C2 having plates of area A each, are connected in series, as shown. Compare the capacitance of this combination with the capacitor C3, again having plates of area A each, but ‘made up’ as shown in the figure.

Show Answer

Solution:

Ans. We have

U] [CBSE SQP 2013]

 and C2=Aε0κ2d Ceq=C1C2C1+C2=Aε0d(κ1κ2κ1+κ2)1/2

Now, capacitor $\mathrm{C}{3}canbeconsideredasmadeupoftwocapacitorsC{1}andC_{2},eachofplateareaAandseparationd$, connected in series.

$$ \begin{aligned} & \text { We have } \quad C_{1}{ }^{\prime}=\frac{A \varepsilon_{0} \kappa_{1}}{d} \ & \text { and } \quad C_{2}{ }^{\prime}=\frac{A \varepsilon_{0} K_{2}}{d} \ & \Rightarrow \quad C_{3}=\frac{\mathrm{C}{1}{ }^{\prime} \mathrm{C}{2}^{\prime}}{\mathrm{C}{1}{ }^{\prime}+\mathrm{C}{2}{ }^{\prime}}=\frac{A \varepsilon_{0}}{d}\left(\frac{\kappa_{1} \kappa_{2}}{\kappa_{1}+\kappa_{2}}\right) \end{aligned} $$

C3Ceq=1

Hence, the net capacitance of the combination is equal to that of C3.



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक