Question: Q. 15. For a plane electromagnetic wave, propagating along the $z$-axis, write the two (possible) pairs of expressions for its oscillating electric and magnetic fields. How are the peak values of these (oscillating) fields related to each other?

U] [Foreign 2016]

Show Answer

Solution:

Ans. For the EM wave, propagating along the $z$-axis, we have

$E=E_{0} \sin (k z \mp \omega t)$ and $B=B_{0} \sin (k z \mp \omega t) \quad 1 / 2$

The two possible forms are :

$E_{x}=E_{0} \sin (k z-\omega t)$ $1 / 2$
And $B_{y}=B_{0} \sin (k z-\omega t)$
We have, $E_{y}=E_{0} \sin (k z+\omega t)$ $1 / 2$
$B_{x}=B_{0} \sin (k z+\omega t)$
$E_{0}=c B_{0}$ $1 / 2$

[Do not deduct any mark if the student uses any of the two signs ( - or + ) in the two sets of expression.]

[CBSE Marking Scheme 2016]

Short Answer Type Questions-II

(3 marks each)



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक