Question: Q. 2. A loop, made of straight edges has six corners at A(0,0,0),B(L,0,0)C(L,L,0),D(0,L,0),E(0,L,L) and F(0,0,L). A magnetic field B=B0(i^+k^) Tesla is present in the region. The flux passing through the loop ABCDEFA (in that order) is (a) B0L2 Wb. (b) 2B0L2 Wb. (c) 2B0L2Wb. (d) 4B0L2 Wb.

[NCERT Exemplar]

Show Answer

Solution:

Ans. Correct option : (b)

Explanation: The loop can be considered in two planes :

(i) Plane of ABCDA is in XY plane. So its vector A is in Z-direction. Hence,

A1=|A|k^=L2k^

(ii) Plane of DEFAD is in Y-Z plane

$$ \begin{aligned} & \text { So } A_{2}=|A| \hat{i}=L^{2} \hat{i} \ & \therefore \quad A=A_{1}+A_{2}=L^{2}(\hat{i}+\hat{k}) \ & B=\mathrm{B}{0}(\hat{i}+\hat{k}) \ & \text { So, } Q=B . A \ & =\mathrm{B}{0}(\hat{i}+\hat{k}) \cdot L^{2}(\hat{i}+\hat{k}) \ & =B_{0} L^{2} \ & =B_{0} L^{2}[1+0+0+1] \ & =2 B_{0} L^{2} W b \end{aligned} $$



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक