Question: Q. 3. (i) Use Gauss’s theorem to find the electric field due to a uniformly charged infinitely large plane thin sheet with surface charge density

(ii) An infinitely large thin plane sheet has a uniform surface charge density $+\sigma$. Obtain an expression for the amount of work done in bringing a point charge $q$ from infinity to a point, distant $r$, in front of the charged plane sheet -

R] [OD II, 2017]

Show Answer

Solution:

Ans. (i) Similar to Q. 7, Short Answer Type II 3

(ii) Amount of work done:

$$ \begin{align*} & W=q \int_{\infty}^{r} \vec{E} \cdot d \vec{r} \ & W=q \int_{\infty}^{r}(-E . d r) \ & W=-q \int_{\infty}^{r}\left(\frac{\sigma}{2 \varepsilon_{0}}\right) d r \ & W=\frac{q \sigma}{2 \varepsilon_{0}}|\infty-r|=\infty \end{align*} $$

[CBSE Marking Scheme, 2017]



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक