Question: Q. 3. (i) State Bohr’s quantization condition for defining stationary orbits. How does de-Broglie hypothesis explain the stationary orbits?

(ii) Find the relation between the three wavelengths $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ from the energy level diagram shown below.

R [Delhi I, II, III 2016]

Show Answer

Solution:

Ans. (i) $L=\frac{n h}{2 \pi}$ i.e., angular momentum of orbiting electron is quantised.]

According to de-Broglie hypothesis

$1 / 2$

Linear momentum

$$ p=\frac{h}{\lambda} $$

And for circular orbit, $L=r_{n} p$ where ’ $r_{n}$ ’ is the radius of $n^{\text {th }}$ orbit

$$ =\frac{r_{n} h}{\lambda} $$

Also

$$ \mathrm{L}=\frac{n h}{2 \pi} $$

$\therefore \quad \frac{r_{n}}{\lambda}=\frac{n h}{2 \pi}$

$\Rightarrow$ $2 \pi r=n \lambda$ $1 / 2$

$\therefore$ Circumference of permitted orbits are integral multiples of the wave-length $\lambda$.

(ii)

$$ \begin{align*} & E_{C}-E_{B}=\frac{h c}{\lambda_{1}} \tag{i}\ & E_{B}-E_{A}=\frac{h c}{\lambda_{2}} \tag{ii}\ & E_{C}-E_{A}=\frac{h c}{\lambda_{3}} \tag{iii} \end{align*} $$

Adding (i) & (ii)

$$ \begin{equation*} E_{C}-E_{A}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \tag{iv} \end{equation*} $$

Using equation (iii) and (iv)

$$ \begin{aligned} \frac{h c}{\lambda_{3}} & =\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \ \Rightarrow \quad \frac{1}{\lambda_{3}} & =\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \end{aligned} $$

[CBSE Marking Scheme 2016]

Commonly Made Error

  • Many students couldn’t understand how to start. They had written the formulae of ‘Balmer, Lyman & Paschen Series.


विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक