Question: Q. 4. An alternating voltage given by $V=140$ sin

$314 t$ is connected across a pure resistor of $50 \Omega$. Find :

(i) the frequency of the source.

(ii) the rms current through the resistor.

A [O.D. I, II, III 2012]

Show Answer

Solution:

Ans. (i)

$$ \begin{aligned} 2 \pi f & =\omega \ 2 \pi f & =314 \mathrm{rad} \ f & =50 \mathrm{~Hz} \end{aligned} $$

$$ \Rightarrow \quad 2 \pi f=314 \mathrm{rad} \mathrm{s}^{-1} $$

(ii)

$$ \begin{aligned} & I_{r m s}=\frac{V_{r m s}}{R} \text { where, } V_{r m s}=\frac{V_{0}}{\sqrt{2}} \ & I_{r m s}=\frac{140}{\sqrt{2} \times 50}=1.98 \mathrm{~A} \approx 2 \mathrm{~A} \end{aligned} $$

[CBSE Marking Scheme 2012]

Short Answer Type Question-II



विषयसूची

जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक