Work Energy And Power Question 170
Question: A neutron having mass of $ 1.67\times {10^{-27}}kg $ and moving at $ 10^{8}m/s $ collides with a deutron at rest and sticks to it. If the mass of the deutron is $ 3.34\times {10^{-27}}kg $ then the speed of the combination is [CBSE PMT 2000]
Options:
A) $ 2.56\times 10^{3}m/s $
B) $ 2.98\times 10^{5}m/s $
C) $ 3.33\times 10^{7}m/s $
D) $ 5.01\times 10^{9}m/s $
Show Answer
Answer:
Correct Answer: C
Solution:
According to law of conservation of momentum.
Momentum of neutron = Momentum of combination therefore $ 1.67\times {10^{-27}}\times 10^{8}=(1.67\times {10^{-27}}+3.34\times {10^{-27}})\ v $ \ $ v=3.33\times 10^{7}m/s $