Work Energy And Power Question 137

Question: A particle of mass $ m $ moves with a variable velocity $ v $ , which changes with distance covered $ x $ along a straight line as $ v=k\sqrt{x} $ , where A: is a positive constant. The work done by all the forces acting on the particle, during the first $ t $ seconds is

Options:

A) $ \frac{mk^{4}}{t^{2}} $

B) $ \frac{mk^{4}t^{2}}{4} $

C) $ \frac{mk^{4}t^{2}}{8} $

D) $ \frac{mk^{4}t^{2}}{16} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given $ v=k\sqrt{x} $ Or $ \frac{dx}{dt}=k\sqrt{x} $

or $ {x^{\frac{1}{2}}}dx=kdt $

Integrating both sides, we get $ \frac{{x^{\frac{1}{2}}}}{\frac{1}{2}}=kt+C; $

Assuming $ x(0)=0 $ Therefore, $ C=0 $

$ 2\sqrt{x}=kt\Rightarrow x=\frac{k^{2}t^{2}}{4} $

or $ v=\frac{k^{2}t}{2} $

Therefore, work done, $ \Delta W= $ Increase in KE $ =\frac{1}{2}mv^{2}-\frac{1}{2}m{{(0)}^{2}}=\frac{1}{2}m{{[ \frac{k^{2}t}{2} ]}^{2}}=\frac{1}{8}mk^{4}t^{2} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक