Physics And Measurement Question 27

Question: Number of particles is given by $ n=-D\frac{n _{2}-n _{1}}{x _{2}-x _{1}} $ crossing a unit area perpendicular to X-axis in unit time, where $ n _{1} $ and $ n _{2} $ are number of particles per unit volume for the value of $ x $ meant to $ x _{2} $ and $ x _{1} $ . Find dimensions of $ D $ called as diffusion constant

[CPMT 1979]

Options:

A) $ M^{0}LT^{2} $

B) $ M^{0}L^{2}{{T}^{-4}} $

C) $ M^{0}L{{T}^{-3}} $

D) $ M^{0}L^{2}{{T}^{-1}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[n] = Number of particles crossing a unit area in unit time = $ [{{L}^{-2}}{{T}^{-1}}] $

$ [ n _{2} ]=[ n _{1} ]= $ number of particles per unit volume = [L?3]

$ [x _{2}]=[x _{1}] $ = positions

$ D=\frac{[n]\ [ x _{2}-x _{1} ]}{[ n _{2}-n _{1} ]}=\frac{[ {{L}^{-2}}{{T}^{-1}} ]\times [L]}{[{{L}^{-3}}]} $ = $ [ L^{2}{{T}^{-1}} ] $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक