Optics Question 875

Question: A certain region of a soap bubble reflects red light of wavelength $ \lambda =650nm $ . What is the minimum thickness that this region of the soap bubble could have? Take the index of reflection of the soap film to be 1.41.

Options:

A) $ 1.2\times {{10}^{-7}}m $

B) $ 650\times {{10}^{-9}}m $

C) $ 120\times 10^{7}m $

D) $ 650\times 10^{5}m $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] There is air on both sides of the soap film.

$ \therefore $ the reflections of the light produce a net $ 180{}^\circ $ phase shift.

The condition for bright fringes is $ 2t=(m+{\scriptstyle{}^{1}/{} _{2}}){\lambda _{film}} $

$ t=\frac{(m+{\scriptstyle{}^{1}/{} _{2}}){\lambda _{film}}}{2}=\frac{(m+{\scriptstyle{}^{1}/{} _{2}})\lambda }{2n} $

$ =\frac{({\scriptstyle{}^{1}/{} _{2}})(650\times {{10}^{-9}}m)}{2(1.41)}=1.2\times {{10}^{-7}}m $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक