Optics Question 817

Question: A luminous object and a screen are at a fixed distance D apart. A converging lens of focal length l is placed between the object and screen. A real image of the object in formed on the screen for two lens positions of they are separated by a distance d equal to

Options:

A) $ \sqrt{D( D+4f )} $

B) $ \sqrt{D( D-4f )} $

C) $ \sqrt{2D( D-4f )} $

D) $ \sqrt{D^{2}+4f} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the object distance be x. Then, the image distance is $ D-x $ .

From lens equation, $ \frac{1}{x}+\frac{1}{D-x}=\frac{1}{f} $

On algebraic rearrangement, we get $ x^{2}-Dx+Df=0 $

On solving for x, we get $ x _{1}=\frac{D-\sqrt{D( D-4f )}}{2}\text{ }x _{2}=\frac{D+\sqrt{D( D-4f )}}{2} $

The distance between the two object positions is $ d=x _{2}-x _{1}=\sqrt{D( D-4f )} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक