Optics Question 800

Question: A plane mirror is held at a height h above the bottom of an empty beaker. The beaker is now filled with water up to depth d. The general expression for the distance from a scratch at the bottom of the beaker to its image in terms of h and the depth d of water in the beaker is\

Options:

A) $ 2h-d( \frac{\mu }{\mu -1} ) $

B) $ 2h-\frac{d}{2}( \frac{\mu -1}{\mu } ) $

C) $ 2h-d( \frac{\mu -1}{\mu } ) $

D) $ 2h-d( \frac{2\mu -1}{\mu } ) $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The distance of bottom of the beaker from mirror $ =h-d( 1-\frac{1}{\mu } ) $

So it will be at a distance $ =h-d( 1-\frac{1}{\mu } ) $ from mirror.

Now distance between bottom of beaker and image $ =h+h-d( 1-\frac{1}{\mu } )=2h-d( \frac{\mu -1}{\mu } ). $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक