Kinematics Question 286

Question: The position vectors of points A, B, C and D are $ A=3\hat{i}+4\hat{j}+5\hat{k},B=4\hat{i}+5\hat{j}+6\hat{k},C=7\hat{i}+9\hat{j}+3\hat{k} $ and $ D=4\hat{i}+6\hat{j} $ then the displacement vectors AB and CD are

Options:

A) Perpendicular

B) Parallel

C) Antiparallel

D) Inclined at an angle of $ 60{}^\circ $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \overrightarrow{AB}=(4\hat{i}+5\hat{j}+6\hat{k})-(3\hat{i}+4\hat{j}+5\hat{k}) $ = $ \hat{i}+\hat{j}+\hat{k} $

$ \overrightarrow{CD}=(4\hat{i}+6\hat{j})-(7\hat{i}+9\hat{j}+3\hat{k}) $

$ =-3\hat{i}-3\hat{j}-3\hat{k} $

$ \overrightarrow{AB} $ and $ \overrightarrow{CD} $ are parallel, because it’s cross-products it’s 0.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक