Kinematics Question 15
Question: Let $ \overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B} $ then
Options:
A) $ |\overrightarrow{C|} $ is always greater then $ |\overrightarrow{A}| $
B) It’s possible to have $ |\overrightarrow{C}|<|\overrightarrow{A}| $ and $ |\overrightarrow{C}|<|\overrightarrow{B}| $
C) c is always equal to A + B
D) c is never equal to A + B
Correct Answer: B $ \vec{C}+\vec{A}=\vec{B} $ . The value of C lies between $ A-B $ and $ A+B $ \ $ |\vec{C}|\ <\ |\vec{A}|\ \ or\ \ |\vec{C}|\ <\ |\vec{B}| $Show Answer
Answer:
Solution: