Gravitation Question 219

Question: Wires $ [A] $ and $ [B] $ are connected with blocks $ [P] $ and $ [Q] $ , as shown. The ratio of lengths, radii and Young’s modulus of wires $ [A] $ and $ [B] $ are $ [r,,2r] $ and 3r respectively ($ [r] $ is a constant). Find the mass of block $ [P] $ if ratio of increase in their corresponding lengths is $ [\frac{1}{6r^{2}}] $ . The mass of the block $ [Q] $ is 3$ [M] $

Options:

A) $ [M] $

B) $ [3M] $

C) $ [6M] $

D) $ [9M] $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ [\Delta l=\frac{FL}{AY}] $ $ [\frac{\Delta l_{A}}{\Delta l_{B}}=\left( \frac{F_{A}}{F_{B}} \right)\left( \frac{L_{A}}{L_{B}} \right)\left( \frac{A_{B}}{A_{A}} \right)\left( \frac{Y_{B}}{Y_{A}} \right)] $ $ [=\left( \frac{KM}{3M} \right)(r){{\left( \frac{1}{2r} \right)}^{2}}\left( \frac{1}{3r} \right)=\frac{K}{36r^{2}}=\frac{1}{6r^{2}}] $ (given) K=6 Mass of block P=6M


जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक