Electrostatics Question 737

Question: A sphere of radius R carries charge density $ \rho $ proportional to the square of the distance from the center such that $ \rho =CR^{2} $ , where C is a positive constant. At a distance R/2 from the center, the magnitude of the electric field is

Options:

A) $ \frac{CR^{3}}{20{\in _{0}}} $

B) $ \frac{CR^{3}}{10{\in _{0}}} $

C) $ \frac{CR^{3}}{5{\in _{0}}} $

D) $ \frac{CR^{3}}{40{\in _{0}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] For, $ r=R/2 $ Using Gauss’s law, we have

$ \int _{\vec{E}.d\vec{A}=\frac{q _{in}}{{\varepsilon _{0}}}\text{ or }E\times 4\pi r^{2}=\int\limits _{0}^{R/2}{\frac{\rho 4\pi r^{2}dr}{\varepsilon { _{0}}}}} $

$ \text{or }E=\frac{Cr^{3}}{5{\in _{0}}}=\frac{CR^{3}}{40{\in _{0}}}. $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक