Electrostatics Question 573

Question: A condenser of capacity $ C _{1} $ is charged to a potential $ V _{0} $ . The electrostatic energy stored in it is $ U _{0} $ . It is connected to another uncharged condenser of capacity $ C _{2} $ in parallel. The energy dissipated in the process is [MP PMT 1994]

Options:

A) $ \frac{C _{2}}{C _{1}+C _{2}}U _{0} $

B) $ \frac{C _{1}}{C _{1}+C _{2}}U _{0} $

C) $ ( \frac{C _{1}-C _{2}}{C _{1}+C _{2}} )U _{0} $

D) $ \frac{C _{1}C _{2}}{2(C _{1}+C _{2})}U _{0} $

Show Answer

Answer:

Correct Answer: A

Solution:

Loss of energy during sharing =$ \frac{C _{1}C _{2}{{(V _{1}-V _{2})}^{2}}}{2(C _{1}+C _{2})} $ In the equation, put $ V _{2}=0,\ V _{1}=V _{0} $ Loss of energy $ =\frac{C _{1}C _{2}V _{0}^{2}}{2(C _{1}+C _{2})} $

$ =\frac{C _{2}U _{0}}{C _{1}+C _{2}} $

$ [ \because \ U _{0}=\frac{1}{2}C _{1}V _{0}^{2} ] $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक