Electrostatics Question 560

Question: In the following circuit, the resultant capacitance between $ A $ and $ B $ is 1mF. Then value of $ C $ is [IIT 1977]

Options:

A) $ \frac{32}{11}\mu F $

B) $ \frac{11}{32}\mu F $

C) $ \frac{23}{32}\mu F $

D) $ \frac{32}{23}\mu F $

Show Answer

Answer:

Correct Answer: D

Solution:

12 mF and 6mF are in series and again are in parallel with 4mF.

Therefore, resultant of these three will be $ =\frac{12\times 6}{12+6}+4=4+4=8\mu F $

This equivalent system is in series with 1 mF. Its equivalent capacitance $ =\frac{8\times 1}{8+1}=\frac{8}{9}\mu F $ ….(i)

Equivalent of 8mF, 2mF and 2mF $ =\frac{4\times 8}{4+8}=\frac{32}{12}=\frac{8}{3}\mu F $ …..(ii) (i) and (ii) are in parallel and are in series with C $ \frac{8}{9}+\frac{8}{3}=\frac{32}{9} $ and $ C _{eq}=1=\frac{\frac{32}{9}\times C}{\frac{32}{9}+C} $

therefore $ C=\frac{32}{23}\mu F $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक