Electro Magnetic Induction And Alternating Currents Question 484

Question: A conducting square frame of side’ a’ and a long staight wire carrying current I are located in the same plane as . The frame moves to the right with a constant velocity ?V?. The emf induced in the frame will be proportional to

Options:

A) $ \frac{1}{{{(2x-a)}^{2}}} $

B) $ \frac{1}{{{(2x+a)}^{2}}} $

C) $ \frac{1}{(2x-a)(2x+a)} $

D) $ \frac{1}{x^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Emf induced in side 1 of frame $ e_{1}=B_{1}V\ell $

    $ B_{1}=\frac{{\mu_{0}}I}{2\pi (x-a/2)} $

    Emf induced in side 2 of frame $ e_{2}=B_{2}V\ell $

    $ B_{2}=\frac{{\mu_{0}}I}{2\pi (x+a/2)} $

    Emf induced in square frame $ e=B_{1}V\ell =B_{2}V\ell $

    $ =\frac{{\mu_{0}}I}{2\pi (x-a/2)}\ell v-\frac{{\mu_{0}}I}{2\pi (x+a/2)}\ell v $ or,

    $ e\propto \frac{1}{(2x-a)(2x+a)} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक