Electro Magnetic Induction And Alternating Currents Question 477

Question: A straight conducting metal wire is bent in the given shape and the loop is closed. Dimensions are as . Now the assembly is heated at a constant rate $ ~dT/dt=l{}^\circ C/s $ . The assembly is kept in a uniform magnetic field B=1 T, perpendicular into the paper. Find the current in the loop at the moment, when the heating starts. Resistance of the loop is $ 10\Omega $ at any temperature. Coefficient of linear expansion $ \alpha ={{10}^{-6}}/{}^{o}C $ .

Options:

A) $ 1.5\times {{10}^{-6}},A $ anticlockwise

B) $ 1.5\times {{10}^{-6}},A $ clockwise

C) $ 0.75\times {{10}^{-6}},A $ anticlockwise

D) $ 0.75\times {{10}^{-6}},A $ clockwise

Show Answer

Answer:

Correct Answer: A

Solution:

  • Rate of change of area of the loop $ \frac{dA}{dt}=A $ ,

    $ \beta \frac{dT}{dt}=A.(2\alpha )\frac{dT}{dt}=\frac{3}{4}\times 2\times {{10}^{-6}}\times 1 $ $ =11.5\times {{10}^{-6}}m^{2}/s $

    $ emf=-\frac{d\phi }{dt}=-\frac{\beta .dA}{dt}=-1.5\times {{10}^{-6}}V $ current in the loop $ =1.5\times {{10}^{-6}}A $ The direction will be anticlockwise as the induced current will try to negate the increase in fluix due to increase in area.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक