Electro Magnetic Induction And Alternating Currents Question 448

Question: A rod PQ of length L moves with a uniform velocity v parallel to a long straight wire carrying a current i, the end P remaining at a distance r from the wire. The emf induced across the rod is

Options:

A) $ \frac{{\mu_{0}}iv^{2}}{2\pi }ln( \frac{r+L}{R} ) $

B) $ \vec{B} $

C) $ \frac{{\mu_{0}}iv}{2\pi }ln( \frac{r+L}{R} ) $

D) $ \frac{{\mu_{0}}iv}{2\pi }ln( \frac{r^{2}+L^{2}}{L^{2}} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Consider a small element of length dx of the rod at a distance x and (x+dx) from the wire. The emf induced across the element

$ de=Bvdx $ -.(i)

We know that magnetic field B at a distance x from a wire carrying a current; is given by

$ B=\frac{{\mu_{0}}}{2\pi }.\frac{i}{x} $ .. (ii)

From eqs. (i) and (ii),

$ de=\frac{{\mu_{0}}i}{2\pi x}vdx $ …(iii) The emf induced in the entire length of the rod PQ is given by

$ e=\int{de=\int_{P}^{Q}{\frac{{\mu_{0}}}{2\pi }\frac{i}{x}vdx}} $

$ =\int_{r}^{r+L}{\frac{{\mu_{0}}}{2\pi }\frac{i}{x}vdx=\frac{{\mu_{0}}}{2\pi }iv\int_{r}^{r+L}{\frac{dx}{x}}} $

$ =\frac{{\mu_{0}}iv}{2\pi }{\log_{e}}( \frac{r+L}{r} ) $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक