Electro Magnetic Induction And Alternating Currents Question 197

Question: An ac source of angular frequency co is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $ \omega /3 $ (but maintaining the same voltage), the current in the circuit is found to be halved. Then the ratio of reactance to resistance at the original frequency $ \omega $ is

Options:

A) $ \sqrt{3/5} $

B) $ \sqrt{5/3} $

C) $ \sqrt{2/3} $

D) $ \sqrt{3/2} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • According to given problem,

    $ I,=\frac{V}{Z},=\frac{V}{{{[R^{2}+{{(1/C\omega )}^{2}}]}^{1/2}}} $ …(i) and

    $ \frac{I}{2},=\frac{V}{{{[R^{2}+{{(3/C\omega )}^{2}}]}^{1/2}}} $ …(ii) Substituting the value of I from eq. (i) in (11),

    $ 4,( R^{2}+\frac{1}{C^{2}{{\omega }^{2}}} )=R^{2}+\frac{9}{C^{2},{{\omega }^{2}}} $ i.e.,

    $ \frac{1}{C^{2},{{\omega }^{2}}},=\frac{3}{5},R^{2} $ so that $ \frac{X}{R} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक