Equilibrium Question 286
Question: If the solubility product of $ AgBrO_3 $ and $ Ag_2SO_4 $ are $ 5.5\times {10^{-5}} $ and $ 2\times {10^{-5}} $ respectively, the relationship between the solubilities of these can be correctly represented as [EAMCET 1985]
Options:
A) $ {S_{AgBrO_3}}>{S_{Ag_2SO_4}} $
B) $ {S_{AgBrO_3}}<{S_{Ag_2SO_4}} $
C) $ {S_{AgBrO_3}}={S_{Ag_2SO_4}} $
D) $ {S_{AgBrO_3}}\approx {S_{Ag_2SO_4}} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ Ag_2SO_4 $ ⇌ $ \underset{4S^{2}}{\mathop{2A{g^{+}}}},+\underset{S}{\mathop{SO_4^{-,-}}}, $
$ K _{sp}=4S^{3};K _{sp}=2\times {10^{-5}} $
$ S=\sqrt[3]{\frac{2\times {10^{-5}}}{4}}=0.017,m/l $
$ =1.7\times {10^{-2}} $ Ag $ BrO_3 $ ⇌ $ \underset{S}{\mathop{A{g^{+}}}},+\underset{S}{\mathop{BrO_3^{-}}}, $
$ K _{sp}=S^{2};K _{sp}=5.5\times {10^{-5}} $
$ S=\sqrt{5.5\times {10^{-5}}}=7.4\times {10^{-3}},m/l. $