Gravitation

We have learnt about the motion of objects and force as the cause of motion. We have learnt that a force is needed to change the speed or the direction of motion of an object. We always observe that an object dropped from a height falls towards the earth. We know that all the planets go around the Sun. The moon goes around the earth. In all these cases, there must be some force acting on the objects, the planets and on the moon. Isaac Newton could grasp that the same force is responsible for all these. This force is called the gravitational force.

In this chapter we shall learn about gravitation and the universal law of gravitation. We shall discuss the motion of objects under the influence of gravitational force on the earth. We shall study how the weight of a body varies from place to place. We shall also discuss the conditions for objects to float in liquids.

9.1 Gravitation

We know that the moon goes around the earth. An object when thrown upwards, reaches a certain height and then falls downwards. It is said that when Newton was sitting under a tree, an apple fell on him. The fall of the apple made Newton start thinking. He thought that: if the earth can attract an apple, can it not attract the moon? Is the force the same in both cases? He conjectured that the same type of force is responsible in both the cases. He argued that at each point of its orbit, the moon falls towards the earth, instead of going off in a straight line. So, it must be attracted by the earth. But we do not really see the moon falling towards the earth.

Let us try to understand the motion of the moon by recalling activity 7.11.

Activity 9.1

  • Take a piece of thread.

  • Tie a small stone at one end. Hold the other end of the thread and whirl it round, as shown in Fig. 9.1.

  • Note the motion of the stone.

  • Release the thread.

  • Again, note the direction of motion of the stone.

Fig. 9.1: A stone describing a circular path with a velocity of constant magnitude.

Before the thread is released, the stone moves in a circular path with a certain speed and changes direction at every point. The change in direction involves change in velocity or acceleration. The force that causes this acceleration and keeps the body moving along the circular path is acting towards the centre. This force is called the centripetal (meaning ‘centre-seeking’) force.

In the absence of this force, the stone flies off along a straight line. This straight line will be a tangent to the circular path.

A straight line that meets the circle at one and only one point is called a tangent to the circle. Straight line $ABC$ is a tangent to the circle at point B.

The motion of the moon around the earth is due to the centripetal force. The centripetal force is provided by the force of attraction of the earth. If there were no such force, the moon would pursue a uniform straight line motion.

It is seen that a falling apple is attracted towards the earth. Does the apple attract the earth? If so, we do not see the earth moving towards an apple. Why?

According to the third law of motion, the apple does attract the earth. But according to the second law of motion, for a given force, acceleration is inversely proportional to the mass of an object [Eq. (8.4)]. The mass of an apple is negligibly small compared to that of the earth. So, we do not see the earth moving towards the apple. Extend the same argument for why the earth does not move towards the moon.

In our solar system, all the planets go around the Sun. By arguing the same way, we can say that there exists a force between the Sun and the planets. From the above facts Newton concluded that not only does the earth attract an apple and the moon, but all objects in the universe attract each other. This force of attraction between objects is called the gravitational force.

9.1.1 UNIVERSAL LAW OF GRAVITATION

Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them. The force is along the line joining the centres of two objects.

Fig. 9.2: The gravitational force between two uniform objects is directed along the line joining their centres.

Let two objects A and B of masses $M$ and $m$ lie at a distance $d$ from each other as shown in Fig. 9.2. Let the force of attraction between two objects be $F$. According to the universal law of gravitation, the force between two objects is directly proportional to the product of their masses. That is,

$$F \propto M \times m \tag{9.1}$$

And the force between two objects is inversely proportional to the square of the distance between them, that is,

$$ F \propto \frac{1}{d^{2}} \tag{9.2} $$

Combining Eqs. (10.1) and (10.2), we get

$$ F \propto \frac{M \times m}{d^{2}} \tag{9.3} $$

or, $$F=G \frac{M \times m}{d^{2}} \tag{9.4}$$

where $G$ is the constant of proportionality and is called the universal gravitation constant. By multiplying crosswise, Eq. (9.4) gives

$ F \times d^{2}=G M \times m $

$ \text{ or } \quad G=\frac{F d^{2}}{M \times m} $

The SI unit of $G$ can be obtained by substituting the units of force, distance and mass in Eq. (9.5) as $N m^{2} kg^{-2}$.

The value of $G$ was found out by Henry Cavendish (1731 - 1810) by using a sensitive balance. The accepted value of $G$ is $6.673 \times 10^{-11} N m^{2} kg^{-2}$.

We know that there exists a force of attraction between any two objects. Compute the value of this force between you and your friend sitting closeby. Conclude how you do not experience this force!


The law is universal in the sense that it is applicable to all bodies, whether the bodies are big or small, whether they are celestial or terrestrial.

Inverse-square

Saying that $F$ is inversely proportional to the square of $d$ means, for example, that if $d$ gets bigger by a factor of $6, F$ becomes

$\frac{1}{36}$ times smaller.


Example 9.1 The mass of the earth is $6 \times 10^{24} kg$ and that of the moon is $7.4 \quad 10^{22} kg$. If the distance between the earth and the moon is $3.8410^{5} km$, calculate the force exerted by the earth on the moon. (Take $G=6.7 \quad 10^{-11} N m^{2} kg^{-2}$ )

Solution:

The mass of the earth, $M=6 \quad 10^{24} kg$ The mass of the moon,

$ m=7.4 \quad 10^{22} kg $

The distance between the earth and the moon,

$$ \begin{aligned} d & =3.84 \quad 10^{5} km \\ & =3.84 \quad 10^{5} \quad 1000 m \\ & =3.84 \quad 10^{8} m \\ G & =6.7 \quad 10^{-11} N m^{2} kg^{-2} \end{aligned} $$

From Eq. (9.4), the force exerted by the earth on the moon is

$F=G \frac{M \times m}{d^{2}}$

$=\frac{6.7 \times 10^{-11} N m^{2} kg^{-2} \times 6 \times 10^{24} kg \times 7.4 \times 10^{22} kg}{(3.84 \times 10^{8} m)^{2}}$

$=2.02 \times 10^{20} N$.

Thus, the force exerted by the earth on the moon is $2.02 \times 10^{20} N$.

Questions

1. State the universal law of gravitation.

Show Answer

Answer

The universal law of gravitation states that every object in the universe attracts every other object with a force called the gravitational force. The force acting between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

2. Write the formula to find the magnitude of the gravitational force between the earth and an object on the surface of the earth.

Show Answer

Answer

Let F be the force of attraction between earth and an object on its surface. Again assume that $M_e$ be the mass of earth and $m$ be the mass of object on the surface of earth. Formula for the magnitude of the gravitational force between the earth and an object on the surface of the earth is given by using Universal Law of Gravitation. So required formula is

$F = G\frac{Mm}{r^2}$

9.1.2 IMPORTANCE OF THE UNIVERSAL LAW OF GRAVITATION

The universal law of gravitation successfully explained several phenomena which were believed to be unconnected:

(i) the force that binds us to the earth;

(ii) the motion of the moon around the earth;

(iii) the motion of planets around the Sun; and

(iv) the tides due to the moon and the Sun.

9.2 Free Fall

Let us try to understand the meaning of free fall by performing this activity.

Activity 9.2

  • Take a stone.

  • Throw it upwards.

  • It reaches a certain height and then it starts falling down.

We have learnt that the earth attracts objects towards it. This is due to the gravitational force. Whenever objects fall towards the earth under this force alone, we say that the objects are in free fall. Is there any change in the velocity of falling objects? While falling, there is no change in the direction of motion of the objects. But due to the earth’s attraction, there will be a change in the magnitude of the velocity. Any change in velocity involves acceleration. Whenever an object falls towards the earth, an acceleration is involved. This acceleration is due to the earth’s gravitational force. Therefore, this acceleration is called the acceleration due to the gravitational force of the earth (or acceleration due to gravity). It is denoted by $g$. The unit of $g$ is the same as that of acceleration, that is, $m s^{-2}$.

We know from the second law of motion that force is the product of mass and acceleration. Let the mass of the stone in activity 9.2 be $m$. We already know that there is acceleration involved in falling objects due to the gravitational force and is denoted by $g$. Therefore the magnitude of the gravitational force $F$ will be equal to the product of mass and acceleration due to the gravitational force, that is,

$ F=m g $

From Eqs. (9.4) and (9.6) we have

$$ \begin{aligned} & m g=G \frac{M \times m}{d^{2}} \\ & \text{ or } g=G \frac{M}{d^{2}} \end{aligned} $$

where $M$ is the mass of the earth, and $d$ is the distance between the object and the earth.

Let an object be on or near the surface of the earth. The distance $d$ in Eq. (9.7) will be equal to $R$, the radius of the earth. Thus, for objects on or near the surface of the earth,

$$ \begin{aligned} m g & =G \frac{M \times m}{R^{2}} \\ g & =G \frac{M}{R^{2}} \end{aligned} $$

The earth is not a perfect sphere. As the radius of the earth increases from the poles to the equator, the value of $g$ becomes greater at the poles than at the equator. For most calculations, we can take $g$ to be more or less constant on or near the earth. But for objects far from the earth, the acceleration due to gravitational force of earth is given by Eq. (9.7).

9.2.1 TO CALCULATE THE VALUE OF $g$

To calculate the value of $g$, we should put the values of G, $M$ and $R$ in Eq. (9.9), namely, universal gravitational constant, $G=6.7 \times 10^{-}$ ${ }^{11} N m^{2} kg^{-2}$, mass of the earth, $M=6 \times 10^{24} kg$, and radius of the earth, $R=6.4 \times 10^{6} m$.

$$ \begin{aligned} g & =G \frac{M}{R^{2}} \\ & =\frac{6.7 \times 10^{-11} N m^{2} kg^{-2} \times 6 \times 10^{24} kg}{(6.4 \times 10^{6} m)^{2}} \\ & =9.8 m s^{-2} . \end{aligned} $$

Thus, the value of acceleration due to gravity of the earth, $g=9.8 m s^{-2}$.

9.2.2 MOTION OF OBJECTS UNDER THE INFLUENCE OF GRAVITATIONAL FORCE OF THE EARTH

Let us do an activity to understand whether all objects hollow or solid, big or small, will fall from a height at the same rate.

Activity 9.3

  • ake a sheet of paper and a stone. Drop them simultaneously from the first floor of a building. Observe whether both of them reach the ground simultaneously.

  • We see that paper reaches the ground little later than the stone. This happens because of air resistance. The air offers resistance due to friction to the motion of the falling objects. The resistance offered by air to the paper is more than the resistance offered to the stone. If we do the experiment in a glass jar from which air has been sucked out, the paper and the stone would fall at the same rate.

We know that an object experiences acceleration during free fall. From Eq. (9.9), this acceleration experienced by an object is independent of its mass. This means that all objects hollow or solid, big or small, should fall at the same rate. According to a story, Galileo dropped different objects from the top of the Leaning Tower of Pisa in Italy to prove the same.

As $g$ is constant near the earth, all the equations for the uniformly accelerated motion of objects become valid with acceleration a replaced by $g$. The equations are:

$$ \begin{aligned} & v=u+a t \\ & s=u t+\frac{1}{2} a t^{2} \\ & v^{2}=u^{2}+2 a s \end{aligned} $$

where $u$ and $v$ are the initial and final velocities and $s$ is the distance covered in time, $t$.

In applying these equations, we will take acceleration, a to be positive when it is in the direction of the velocity, that is, in the direction of motion. The acceleration, a will be taken as negative when it opposes the motion.

Example 9.2 A car falls off a ledge and drops to the ground in $0.5 s$. Let $g=10 m s^{-2}$ (for simplifying the calculations).

(i) What is its speed on striking the ground?

(ii) What is its average speed during the $0.5 s$ ?

(iii) How high is the ledge from the ground?

Solution:

Time, $t=1 / 2$ second

Initial velocity, $u=0 m s^{-1}$

Acceleration due to gravity, $g=10 m s^{-2}$

Acceleration of the car, $a=+10 m s^{-2}$

(downward)

(i) speed

$$ \begin{aligned} V & =a t \\ V & =10 m s^{-2} \times 0.5 s \\ & =5 m s^{-1} \end{aligned} $$

(ii) average speed $=\frac{u+v}{2}$

$$ \begin{aligned} & =(0 m s^{-1}+5 m s^{-1}) / 2 \\ & =2.5 m s^{-1} \end{aligned} $$

(iii) distance travelled, $s=1 / 2 a t^{2}$

$$ \begin{aligned} & =1 / 2 \times 10 m s^{-2} \times(0.5 s)^{2} \\ & =1 / 2 \times 10 m s^{-2} \times 0.25 s^{2} \\ & =1.25 m \end{aligned} $$

Thus,

(i) its speed on striking the ground

$ =5 m s^{-1} $

(ii) its average speed during the $0.5 s$

$ =2.5 m s^{-1} $

(iii) height of the ledge from the ground $=1.25 m$.

Example 9.3 An object is thrown vertically upwards and rises to a height of $10 m$. Calculate (i) the velocity with which the object was thrown upwards and (ii) the time taken by the object to reach the highest point.

Solution:

Distance travelled, $s=10 m$

Final velocity, $v=0 m s^{-1}$

Acceleration due to gravity, $g=9.8 m s^{-2}$

Acceleration of the object, $a=-9.8 m s^{-2}$

(upward motion)

(i) $v^{2}=u^{2}+2 a s$

$$ \begin{aligned} & 0=u^{2}+2 \times(-9.8 m s^{-2}) \times 10 m \\ & -u^{2}=-2 \times 9.8 \times 10 m^{2} s^{-2} \\ & u=\sqrt{196} m s^{-1} \\ & u=14 m s^{-1} \\ & v=u+a t \\ & 0=14 m s^{-1}-9.8 m s^{-2} \times t \\ & t=1.43 s \end{aligned} $$

(ii) $\quad v=u+a t$

Thus,

(i) Initial velocity, $u=14 m s^{-1}$, and

(ii) Time taken, $t=1.43 s$.

Questions

1. What do you mean by free fall?

Show Answer

Answer

Gravity of earth attracts every object towards its center. When an object is dropped from a certain height, it begins to fall towards Earth’s surface under the influence of gravitational force. Such a motion of object is called free fall.

2. What do you mean by acceleration due to gravity?

Show Answer

Answer

When an object falls freely towards the surface of earth from a certain height, then its velocity changes. This change in velocity produces acceleration in the object which is known as acceleration due to gravity denoted by letter $g$. The value of acceleration due to gravity is $g=9.8 m / s^{2}$.

9.3 Mass

We have learnt in the previous chapter that the mass of an object is the measure of its inertia . We have also learnt that greater the mass, the greater is the inertia. It remains the same whether the object is on the earth, the moon or even in outer space. Thus, the mass of an object is constant and does not change from place to place.

9.4 Weight

We know that the earth attracts every object with a certain force and this force depends on the mass $(m)$ of the object and the acceleration due to the gravity $(g)$. The weight of an object is the force with which it is attracted towards the earth.

We know that

$ F=m \times a, $

that is

$ F=m \times g . $

The force of attraction of the earth on an object is known as the weight of the object. It is denoted by $W$. Substituting the same in Eq. (9.14), we have

$ W=m \times g $

As the weight of an object is the force with which it is attracted towards the earth, the SI unit of weight is the same as that of force, that is, newton (N). The weight is a force acting vertically downwards; it has both magnitude and direction.

We have learnt that the value of $g$ is constant at a given place. Therefore at a given place, the weight of an object is directly proportional to the mass, say $m$, of the object, that is, $W \propto m$. It is due to this reason that at a given place, we can use the weight of an object as a measure of its mass. The mass of an object remains the same everywhere, that is, on the earth and on any planet whereas its weight depends on its location because $g$ depends on location.

9.4.1 WEIGHT OF AN OBJECT ON THE MOON

We have learnt that the weight of an object on the earth is the force with which the earth attracts the object. In the same way, the weight of an object on the moon is the force with which the moon attracts that object. The mass of the moon is less than that of the earth. Due to this the moon exerts lesser force of attraction on objects.

Let the mass of an object be $m$. Let its weight on the moon be $W_m$. Let the mass of the moon be $M_m$ and its radius be $R_m$.

By applying the universal law of gravitation, the weight of the object on the moon will be

$ W_m=G \frac{M_m \times m}{R_m^{2}} $

Let the weight of the same object on the earth be $W_e$. The mass of the earth is $M$ and its radius is $R$.

Table 9.1

Celestial Mass(kg) Radius(m)
Earth $ 5.98 \times 10^{24}$ $6.37 \times 10^6$
Moon $7.36 \times 10^{22}$ $1.74 \times 10^6$

From Eqs. (9.9) and (9.15) we have,

$ W_e=G \frac{M \times m}{R^{2}} $

Substituting the values from Table 10.1 in Eqs. (9.16) and (9.17), we get

$$ \begin{gathered} W_m=G \frac{7.36 \times 10^{22} kg \times m}{(1.74 \times 10^{6} m)^{2}} \\ W_m=2.431 \times 10^{10} G \times m \end{gathered} $$

and $W_e=1.474 \times 10^{11} G \times m$

Dividing Eq. (9.18a) by Eq. (9.18b), we get

$$ \begin{aligned} \frac{W_m}{W_e} & =\frac{2.431 \times 10^{10}}{1.474 \times 10^{11}} \\ \text{ or } \frac{W_m}{W_e} & =0.165 \approx \frac{1}{6} \end{aligned} $$

$$ \frac{\text{ Weight of the object on the moon }}{\text{ Weight of the object on the earth }}=\frac{1}{6} $$

Weight of the object on the moon

$$ =(1 / 6) \times \text{ its weight on the earth. } $$

Example 9.4 Mass of an object is $10 kg$. What is its weight on the earth?

Solution:

Mass, $m=10 kg$

Acceleration due to gravity, $g=9.8 m s^{-2}$

$$ \begin{aligned} & W=m \times g \\ & W=10 kg \times 9.8 m s^{-2}=98 N \end{aligned} $$

Thus, the weight of the object is $98 N$.

Example 9.5 An object weighs $10 N$ when measured on the surface of the earth. What would be its weight when measured on the surface of the moon?

Solution:

We know,

Weight of object on the moon

$ =(1 / 6) \times \text{ its weight on the earth. } $

That is,

$$ \begin{aligned} W_m & =\frac{W_e}{6}=\frac{10}{6} N . \\ & =1.67 N . \end{aligned} $$

Thus, the weight of object on the surface of the moon would be $1.67 N$.

Questions

1. What are the differences between the mass of an object and its weight?

Show Answer

Answer

Mass Weight
Mass is the quantity of matter contained in the body Weigh is the gravitational force acting on the body
It is the measure of inertia of the body It is the measure of gravity
It is a constant quantity for any object. Weight of an object is not a constant quantity it is different at different laces.
It is a scalar quantity and only only has magnitude It is a vector quantity as it has both magnitude and direction.
SI unit of mass is $Kg$ Its SI unit is N (newton) same as the SI unit of force.

2. Why is the weight of an object on the moon $\frac{1}{6}$ th its weight on the earth?

Show Answer

Answer

Gravity is directly related to mass. The more mass an object has, the more gravitational pull it has.

Now, the moon is significantly smaller than the earth (in fact, it is about the size of the earth’s core). Gravity is dependent on the size of the object. Your weight on the moon is $1 / 6$ of that on earth because the moon has $1 / 6$ the mass of the earth.

9.5 Thrust and Pressure

Have you ever wondered why a camel can run in a desert easily? Why an army tank weighing more than a thousand tonne rests upon a continuous chain? Why a truck or a motorbus has much wider tyres? Why cutting tools have sharp edges? In order to address these questions and understand the phenomena involved, it helps to introduce the concepts of the net force in a particular direction (thrust) and the force per unit area (pressure) acting on the object concerned.

Let us try to understand the meanings of thrust and pressure by considering the following situations:

Situation 1: You wish to fix a poster on a bulletin board, as shown in Fig 9.3. To do this task you will have to press drawing pins with your thumb. You apply a force on the surface area of the head of the pin. This force is directed perpendicular to the surface area of the board. This force acts on a smaller area at the tip of the pin.

Fig. 9.3: To fix a poster, drawing pins are pressed with the thumb perpendicular to the board.

Situation 2: You stand on loose sand. Your feet go deep into the sand. Now, lie down on the sand. You will find that your body will not go that deep in the sand. In both cases the force exerted on the sand is the weight of your body.

You have learnt that weight is the force acting vertically downwards. Here the force is acting perpendicular to the surface of the sand. The force acting on an object perpendicular to the surface is called thrust.

When you stand on loose sand, the force, that is, the weight of your body is acting on an area equal to area of your feet. When you lie down, the same force acts on an area equal to the contact area of your whole body, which is larger than the area of your feet. Thus, the effects of forces of the same magnitude on different areas are different. In the above cases, thrust is the same. But effects are different. Therefore the effect of thrust depends on the area on which it acts.

The effect of thrust on sand is larger while standing than while lying. The thrust on unit area is called pressure. Thus,

$ \text{ Pressure }=\frac{\text{ thrust }}{\text{ area }} $

Substituting the SI unit of thrust and area in Eq. (9.20), we get the SI unit of pressure as N/ $m^{2}$ or $N m^{-2}$.

In honour of scientist Blaise Pascal, the SI unit of pressure is called pascal, denoted as $Pa$.

Let us consider a numerical example to understand the effects of thrust acting on different areas.

Example 9.6 A block of wood is kept on a tabletop. The mass of wooden block is 5 $kg$ and its dimensions are $40 cm \times 20$ $cm \times 10 cm$. Find the pressure exerted by the wooden block on the table top if it is made to lie on the table top with its sides of dimensions (a) $20 cm \times 10 cm$ and (b) $40 cm \times 20 cm$.

Fig. 9.4

Solution:

The mass of the wooden block $=5 kg$ The dimensions

$ =40 cm \times 20 cm \times 10 cm $

Here, the weight of the wooden block applies a thrust on the table top.

That is,

$$ \begin{aligned} \text{ Thrust }=F & =m \times g \\ & =5 kg \times 9.8 m s^{-2} \\ & =49 N \end{aligned} $$

Area of a side $=$ length $\times$ breadth

$$ \begin{aligned} & =20 cm \times 10 cm \\ & =200 cm^{2}=0.02 m^{2} \end{aligned} $$

From Eq. (9.20),

$$ \begin{aligned} \text{ Pressure } & =\frac{49 N}{0.02 m^{2}} \\ & =2450 N m^{-2} . \end{aligned} $$

When the block lies on its side of dimensions $40 cm \times 20 cm$, it exerts the same thrust.

Area $=$ length $\times$ breadth

$$ \begin{aligned} & =40 cm \times 20 cm \\ & =800 cm^{2}=0.08 m^{2} \end{aligned} $$

From Eq. (9.20),

$$ \begin{aligned} \text{ Pressure } & =\frac{49 N}{0.08 m^{2}} \\ & =612.5 N m^{-2} \end{aligned} $$

The pressure exerted by the side $20 cm$ $\times 10 cm^{2} 2450 N m^{-2}$ and by the side $40 cm \times 20 cm$ is $612.5 N m^{-2}$.

Thus, the same force acting on a smaller area exerts a larger pressure, and a smaller pressure on a larger area. This is the reason why a nail has a pointed tip, knives have sharp edges and buildings have wide foundations.

9.5.1 PRESSURE IN FLUIDS

All liquids and gases are fluids. A solid exerts pressure on a surface due to its weight. Similarly, fluids have weight, and they also exert pressure on the base and walls of the container in which they are enclosed. Pressure exerted in any confined mass of fluid is transmitted undiminished in all directions.

9.5.2 BUOYANCY

Have you ever had a swim in a pool and felt lighter? Have you ever drawn water from a well and felt that the bucket of water is heavier when it is out of the water? Have you ever wondered why a ship made of iron and steel does not sink in sea water, but while the same amount of iron and steel in the form of a sheet would sink? These questions can be answered by taking buoyancy in consideration. Let us understand the meaning of buoyancy by doing an activity.

Activity 9.4

  • Take an empty plastic bottle. Close the mouth of the bottle with an airtight stopper. Put it in a bucket filled with water. You see that the bottle floats.

  • Push the bottle into the water. You feel an upward push. Try to push it further down. You will find it difficult to push deeper and deeper. This indicates that water exerts a force on the bottle in the upward direction. The upward force exerted by the water goes on as the bottle is pushed deeper till it is completely immersed.

  • Now, release the bottle. It bounces back to the surface.

  • Does the force due to the gravitational attraction of the earth act on this bottle? If so, why doesn’t the bottle stay immersed in water after it is released? How can you immerse the bottle in water?

The force due to the gravitational attraction of the earth acts on the bottle in the downward direction. So the bottle is pulled downwards. But the water exerts an upward force on the bottle. Thus, the bottle is pushed upwards. We have learnt that weight of an object is the force due to gravitational attraction of the earth. When the bottle is immersed, the upward force exerted by the water on the bottle is greater than its weight. Therefore it rises up when released.

To keep the bottle completely immersed, the upward force on the bottle due to water must be balanced. This can be achieved by an externally applied force acting downwards. This force must at least be equal to the difference between the upward force and the weight of the bottle.

The upward force exerted by the water on the bottle is known as upthrust or buoyant force. In fact, all objects experience a force of buoyancy when they are immersed in a fluid. The magnitude of this buoyant force depends on the density of the fluid.

9.5.3 WHY OBJECTS FLOAT OR SINK WHEN PLACED ON THE SURFACE OF WATER?

Let us do the following activities to arrive at an answer for the above question.

Activity 9.5

  • Take a beaker filled with water.

  • Take an iron nail and place it on the surface of the water.

  • Observe what happens.

The nail sinks. The force due to the gravitational attraction of the earth on the iron nail pulls it downwards. There is an upthrust of water on the nail, which pushes it upwards. But the downward force acting on the nail is greater than the upthrust of water on the nail. So it sinks (Fig. 9.5).

Fig. 9.5: An iron nail sinks and a cork floats when placed on the surface of water.

Activity 9.6

  • Take a beaker filled with water. Take a piece of cork and an iron nail of equal mass.

  • Place them on the surface of water.

  • Observe what happens.

The cork floats while the nail sinks. This happens because of the difference in their densities. The density of a substance is defined as the mass per unit volume. The density of cork is less than the density of water. This means that the upthrust of water on the cork is greater than the weight of the cork. So it floats (Fig. 9.5).

The density of an iron nail is more than the density of water. This means that the upthrust of water on the iron nail is less than the weight of the nail. So it sinks.

Therefore objects of density less than that of a liquid float on the liquid. The objects of density greater than that of a liquid sink in the liquid.

Questions

1. Why is it difficult to hold a school bag having a strap made of a thin and strong string?

Show Answer

Answer

It is difficult to hold a school bag having a thin strap because the pressure on the shoulders is quite large. This is because the pressure is inversely proportional to the surface area on which the force acts. The smaller is the surface area the larger wold be the pressure on the surface. In the case of a thin strap, the contact surface area is very small. Hence pressure exerted on the shoulder is very large.

2. What do you mean by buoyancy?

Show Answer

Answer

The upward force exerted by a liquid on an object that is immersed in it is known as buoyancy.

3. Why does an object float or sink when placed on the surface of water?

Show Answer

Answer

If the density of an object is more then the density of the liquid then the object would sink this happens because in this case buoyant force that is acting on the object due to liquid is less than the force of gravity acting on the object. If the density of object is less than the density of the liquid, then it floats on the surface of the liquid, this happens because the buoyant force acting on the object is greater than the force of gravity.

9.6 Archimedes’ Principle

Activity 9.7

  • Take a piece of stone and tie it to one end of a rubber string or a spring balance.

  • Suspend the stone by holding the balance or the string as shown in Fig. 9.6 (a).

  • Note the elongation of the string or the reading on the spring balance due to the weight of the stone.

  • Now, slowly dip the stone in the water in a container as shown in Fig. 9.6 (b).

Fig. 9.6: (a) Observe the elongation of the rubber string due to the weight of a piece of stone suspended from it in air. (b) The elongation decreases as the stone is immersed in water.

  • Observe what happens to elongation of the string or the reading on the balance.

You will find that the elongation of the string or the reading of the balance decreases as the stone is gradually lowered in the water. However, no further change is observed once the stone gets fully immersed in the water. What do you infer from the decrease in the extension of the string or the reading of the spring balance?

We know that the elongation produced in the string or the spring balance is due to the weight of the stone. Since the extension decreases once the stone is lowered in water, it means that some force acts on the stone in upward direction. As a result, the net force on the string decreases and hence the elongation also decreases. As discussed earlier, this upward force exerted by water is known as the force of buoyancy.

What is the magnitude of the buoyant force experienced by a body? Is it the same in all fluids for a given body? Do all bodies in a given fluid experience the same buoyant force? The answer to these questions is contained in Archimedes’ principle, stated as follows:

When a body is immersed fully or partially in a fluid, it experiences an upward force that is equal to the weight of the fluid displaced by it.

Now, can you explain why a further decrease in the elongation of the string was not observed in activity 9.7, as the stone was fully immersed in water?


Archimedes was a Greek scientist. He discovered the principle, subsequently named

after him, after noticing that the water in a bathtub overflowed when he stepped into it. He ran through the streets shouting “Eureka!”, which means “I have got it”. This knowledge helped him to determine the purity of the Archimedes gold in the crown made for the king.

His work in the field of Geometry and Mechanics made him famous. His understanding of levers, pulleys, wheelsand-axle helped the Greek army in its war with Roman army.


What you have learnt

  • The law of gravitation states that the force of attraction between any two objects is proportional to the product of their masses and inversely proportional to the square of the distance between them. The law applies to objects anywhere in the universe. Such a law is said to be universal.

  • Gravitation is a weak force unless large masses are involved. The force of gravity decreases with altitude. It also varies on the surface of the earth, decreasing from poles to the equator.

  • The weight of a body is the force with which the earth attracts it.

  • The weight is equal to the product of mass and acceleration due to gravity.

  • The weight may vary from place to place but the mass stays constant. Archimedes’ principle has many applications. It is used in designing ships and submarines. Lactometers, which are used to determine the purity of a sample of milk and hydrometers used for determining density of liquids, are based on this principle.

  • All objects experience a force of buoyancy when they are immersed in a fluid.

  • Objects having density less than that of the liquid in which they are immersed, float on the surface of the liquid. If the density of the object is more than the density of the liquid in which it is immersed then it sinks in the liquid.

Questions

1. You find your mass to be $42 kg$ on a weighing machine. Is your mass more or less than $42 kg$ ?

Show Answer

Answer

On a weighing machine mass is measured by comparing the weights. So when you weigh your body an upward force (buoyant force) acts on it which causes machine to show your weight less than the actual weight.

2. You have a bag of cotton and an iron bar, each indicating a mass of $100 kg$ when measured on a weighing machine. In reality, one is heavier than other. Can you say which one is heavier and why?

Show Answer

Answer

Actual weight of any object is equal to the sum of its measured weight and the buoyant force. The bag of cotton is heavier since it is larger than iron bar, so the buoyant force is larger in case of cotton henceactual weight of cotton bag is more and it is heavier.

Exercises

1. How does the force of gravitation between two objects change when the distance between them is reduced to half?

Show Answer

Answer

Consider the Universal law of gravitation,

According to that law, the force of attraction between two bodies is

$\mathrm{F} =\frac{(\mathrm{Gm_1m_2})}{r^2}$

Where,

$\mathrm{m_1}$ and $\mathrm{m2}$ are the masses of the two bodies.

$\mathrm{G}$ is the gravitational constant.

$\mathrm{r}$ is the distance between the two bodies.

Given that the distance is reduced to half then,

$\mathrm{r}= 1/2 ~r$

$\mathrm{F} =\frac{(\mathrm{Gm_1m_2})}{r^2}$

$\mathrm{F} =\frac{(\mathrm{Gm_1m_2})}{(\frac{r}{2})^2}$

$\mathrm{F} =\frac{4(\mathrm{Gm_1m_2})}{r^2}$

$\mathrm{F} = 4\mathrm{F}$

Therefore once the space between the objects is reduced to half, then the force of gravitation will increase by fourfold the first force.

2. Gravitational force acts on all objects in proportion to their masses. Why then, a heavy object does not fall faster than a light object?

Show Answer

Answer

All objects fall from the top with a constant acceleration called acceleration due to gravity (g). This is constant on earth and therefore the value of ‘g’ doesn’t depend on the mass of an object. Hence, heavier objects don’t fall quicker than light-weight objects provided there’s no air resistance.

3. What is the magnitude of the gravitational force between the earth and a $1 kg$ object on its surface? (Mass of the earth is $6 \times 10^{24} kg$ and radius of the earth is $6.4 \times 10^{6} m$.)

Show Answer

Answer

From Newton’s law of gravitation, we know that the force of attraction between the bodies is given by

$$ F=\frac{\left(G m_1 m_2\right)}{r^2} $$

Here

$ \begin{aligned} & m_1=\text { mass of Earth }=6.0 \times 10^{24} \mathrm{~kg} \\ & m_2=\text { mass of the body }=1 \mathrm{~kg} \end{aligned} $

$r=$ distance between the two bodies

Radius of Earth $=6.4 \times 10^6 \mathrm{~m}$

$\mathrm{G}=$ Universal gravitational constant $=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}$

By substituting all the values in the equation

$$ \begin{aligned} & F=\frac{\left(G m_1 m_2\right)}{r^2} \\ & F=\frac{6.67 \times 10^{-11}\left(6.0 \times 10^{24} \times 1\right)}{\left(6.4 \times 10^6\right)^2} \\ & \mathrm{~F}=9.8 \mathrm{~N} \\ \end{aligned} $$

This shows that Earth exerts a force of $9.8 \mathrm{~N}$ on a body of mass $1 \mathrm{~kg}$. The body will exert an equal force of attraction of $9.8 \mathrm{~N}$ on the Earth.

4. The earth and the moon are attracted to each other by gravitational force. Does the earth attract the moon with a force that is greater or smaller or the same as the force with which the moon attracts the earth? Why?

Show Answer

Answer

The earth attracts the moon with a force same as the force with which the moon attracts the earth. However, these forces are in opposite directions. By universal law of gravitation, the force between moon and also the sun can be

$$ F=\frac{\left(G m_1 m_2\right)}{d^2} $$

Where,

$\mathrm{d}=$ distance between the earth and moon.

$\mathrm{m}_1$ and $\mathrm{m}_2=$ masses of earth and moon respectively.

5. If the moon attracts the earth, why does the earth not move towards the moon?

Show Answer

Answer

According to the universal law of gravitation and Newton’s third law, we all know that the force of attraction between two objects is the same, however in the opposite directions. So the earth attracts the moon with a force same as the moon attracts the earth but in opposite directions. Since earth is larger in mass compared to that of the moon, it accelerates at a rate lesser than the acceleration rate of the moon towards the Earth. Therefore, for this reason the earth does not move towards the moon.

6. What happens to the force between two objects, if

(i) the mass of one object is doubled?

(ii) the distance between the objects is doubled and tripled?

(iii) the masses of both objects are doubled?

Show Answer

Answer

(i)

According to universal law of gravitation, the force between 2 objects $\left(\mathrm{m}_1\right.$ and $\left.\mathrm{m}_2\right)$ is proportional to their plenty and reciprocally proportional to the sq. of the distance(R) between them.

$$ F=\frac{\left(G 2 m_1 m_2\right)}{R^2} $$

If the mass is doubled for one object.

$\mathrm{F}=2 \mathrm{~F}$, so the force is also doubled.

(ii)

If the distance between the objects is doubled and tripled

If it’s doubled

Hence,

$ \begin{aligned} & \mathrm{F}=\left(\mathrm{Gm}_1 \mathrm{~m}_2\right) /(2 \mathrm{R})^2 \\ & \mathrm{~F}=1 / 4\left(\mathrm{Gm}_1 \mathrm{~m}_2\right) / \mathrm{R}^2 \\ & \mathrm{~F}=\mathrm{F} / 4 \end{aligned} $

Force thus becomes one-fourth of its initial force.

Now, if it’s tripled

Hence,

$ \begin{aligned} & \mathrm{F}=\left(\mathrm{Gm}_1 \mathrm{~m}_2\right) /(3 \mathrm{R})^2 \\ & \mathrm{~F}=1 / 9\left(\mathrm{Gm}_1 \mathrm{~m}_2\right) / \mathrm{R}^2 \\ & \mathrm{~F}=\mathrm{F} / 9 \end{aligned} $

Force thus becomes one-ninth of its initial force.

(iii)

If masses of both the objects are doubled, then

$ F=\frac{\left(G 2 m_1 2 m_2\right)}{R^2} $

$F=4 F$, Force will therefore be four times greater than its actual value.

7. What is the importance of universal law of gravitation?

Show Answer

Answer

The universal law of gravitation explains many phenomena that were believed to be unconnected:

(i) The motion of the moon round the earth

(ii) The responsibility of gravity on the weight of the body which keeps us on the ground

(iii) The tides because of the moon and therefore the Sun

(iv) The motion of planets round the Sun

8. What is the acceleration of free fall?

Show Answer

Answer

Acceleration due to gravity is the acceleration gained by an object due to gravitational force. On Earth, all bodies experience a downward force of gravity which Earth’s mass exerts on them. The Earth’s gravity is measured by the acceleration of the freely falling objects. At Earth’s surface, the acceleration of gravity is $9.8 \mathrm{~ms}^{-2}$ and it is denoted by ’ $\mathrm{g}$ ‘. Thus, for every second an object is in free fall, its speed increases by about 9.8 metres per second.

9. What do we call the gravitational force between the earth and an object?

Show Answer

Answer

The gravitation force between the earth and an object is called weight. Weight is equal to the product of acceleration due to the gravity and mass of the object.

10. Amit buys few grams of gold at the poles as per the instruction of one of his friends. He hands over the same when he meets him at the equator. Will the friend agree with the weight of gold bought? If not, why? [Hint: The value of $g$ is greater at the poles than at the equator.]

Show Answer

Answer

The weight of a body on the earth’s surface;

W = mg (where m = mass of the body and g = acceleration due to gravity)

The value of g is larger at poles when compared to the equator. So gold can weigh less at the equator as compared to the poles.

Therefore, Amit’s friend won’t believe the load of the gold bought.

11. Why will a sheet of paper fall slower than one that is crumpled into a ball?

Show Answer

Answer

A sheet of paper has a larger surface area when compared to a crumpled paper ball. A sheet of paper will face a lot of air resistance. Thus, a sheet of paper falls slower than the crumpled ball.

12. Gravitational force on the surface of the moon is only $\frac{1}{6}$ as strong as gravitational force on the earth. What is the weight in newtons of a $10 kg$ object on the moon and on the earth?

Show Answer

Answer

Given data:

Acceleration due to earth’s gravity $=\mathrm{g}_{\mathrm{c}}$ or $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^2$

Object’s mass, $\mathrm{m}=10 \mathrm{~kg}$

Acceleration due to moon gravity $=\mathrm{g}_{\mathrm{m}}$

Weight on the earth $=\mathrm{W}_{\mathrm{c}}$

Weight on the moon $=\mathrm{W}_{\mathrm{m}}$

Weight $=$ mass $\times$ gravity

$\mathrm{g_m}=(1 / 6) \mathrm{g_c}$ (given)

So $\mathrm{W_m}=\mathrm{mg_m}=\mathrm{mx}(1 / 6) \mathrm{g_c}$

$\mathrm{W}_{\mathrm{m}}=10 \times(1 / 6) \times 9.8=16.34 \mathrm{~N}$

$\mathrm{W_c}=\mathrm{m} \mathrm{x} \mathrm{g_c}=10 \times 9.8$

$\mathrm{W}_{\mathrm{e}}=98 \mathrm{~N}$

13. A ball is thrown vertically upwards with a velocity of $49 m / s$. Calculate

(i) the maximum height to which it rises,

(ii) the total time it takes to return to the surface of the earth.

Show Answer

Answer

Given data:

Initial velocity $\mathrm{u}=49 \mathrm{~m} / \mathrm{s}$

Final speed $\mathrm{v}$ at maximum height $=0$

Acceleration due to earth gravity $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^2$ (thus negative as ball is thrown up).

By third equation of motion,

$ \begin{aligned} & 2 \mathrm{gH}=\mathrm{v}^2-\mathrm{u}^2 \\ & 2 \times(-9.8) \times \mathrm{H}=0-(49)^2 \\ & -19.6 \mathrm{H}=-2401 \\ & \mathrm{H}=122.5 \mathrm{~m} \end{aligned} $

Total time $\mathrm{T}=$ Time to ascend $\left(\mathrm{T_a}\right)+$ Time to descend $\left(\mathrm{T_d} \right)$

$ \begin{aligned} & \mathrm{v}=\mathrm{u}+\mathrm{gt} \\ & 0=49+(-9.8) \times \mathrm{T}_{\mathrm{a}} \\ & \mathrm{Ta}=(49 / 9.8)=5 \mathrm{~s} \end{aligned} $

Also, $\mathrm{T}_{\mathrm{d}}=5 \mathrm{~s}$

Therefore $\mathrm{T}=\mathrm{T_a} +\mathrm{T_d}$

$ \begin{aligned} & \mathrm{T}=5+5 \\ & \mathrm{~T}=10 \mathrm{~s} \end{aligned} $

14. A stone is released from the top of a tower of height $19.6 m$. Calculate its final velocity just before touching the ground.

Show Answer

Answer

Given data:

Initial velocity

$ \mathrm{u}=0 $

Tower height $=$ total distance $=19.6 \mathrm{~m}$

$ \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^2 $

Consider third equation of motion

$ \begin{aligned} & \mathrm{v}^2=\mathrm{u}^2+2 \mathrm{gs} \\ & \mathrm{v}^2=0+2 \times 9.8 \times 19.6 \\ & \mathrm{v}^2=384.16 \\ & \mathrm{v}=\sqrt{ }(384.16) \\ & \mathrm{v}=19.6 \mathrm{~m} / \mathrm{s} \end{aligned} $

15. A stone is thrown vertically upward with an initial velocity of $40 m / s$. Taking $g=10 m / s^{2}$, find the maximum height reached by the stone. What is the net displacement and the total distance covered by the stone?

Show Answer

Answer

Given data:

Initial velocity $u=40 \mathrm{~m} / \mathrm{s}$

$ \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2 $

Max height final velocity $=0$

Consider third equation of motion

$\mathrm{v}^2=\mathrm{u}^2-2 \mathrm{gs}$ [negative as the object goes up]

$ \begin{aligned} & 0=(40)^2-2 \times 10 \times s \\ & \mathrm{~s}=(40 \times 40) / 20 \end{aligned} $

Maximum height $\mathrm{s}=80 \mathrm{~m}$

Total Distance $=\mathrm{s}+\mathrm{s}=80+80$

Total Distance $=160 \mathrm{~m}$

Total displacement $=0$ (The first point is the same as the last point)

16. Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth $=6 \times 10^{24} kg$ and of the Sun $=2 \times 10^{30} kg$. The average distance between the two is $1.5 \times 10^{11} m$.

Show Answer

Answer

Given data:

Mass of the sun $\mathrm{m}_{\mathrm{s}}=2 \times 10^{30} \mathrm{~kg}$

Mass of the earth $\mathrm{m}_{\mathrm{c}}=6 \times 10^{24} \mathrm{~kg}$

Gravitation constant $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^2 / \mathrm{kg}^2$

Average distance $\mathrm{r}=1.5 \times 10^{11} \mathrm{~m}$

Consider Universal law of Gravitation

$ \begin{aligned} & F=\frac{\left(G m_1 m_2\right)}{d^2} \\ & F=\frac{\left(6.67 \times 10^{-11} \times 6 \times 10^{24} \times 2 \times 10^{30}\right)}{\left(1.5 \times 10^{11}\right)^2} \\ & \mathrm{~F}=3.56 \times 10^{22} \mathrm{~N} \end{aligned} $

17. A stone is allowed to fall from the top of a tower $100 m$ high and at the same time another stone is projected vertically upwards from the ground with a velocity of $25 m / s$. Calculate when and where the two stones will meet.

Show Answer

Answer

Given data:

(i) When the stone from the top of the tower is thrown, Initial velocity $u^{\prime}=0$

Distance travelled $=\mathrm{x}$

Time taken $=\mathrm{t}$

Therefore,

$ \begin{aligned} & s=u t+\frac{1}{2} g t^2 \\ & x=0+(1 / 2) g^2 \\ & x=5 t^2—–(a) \end{aligned} $

(ii) When the stone is thrown upwards,

Initial velocity $u=25 \mathrm{~m} / \mathrm{s}$

Distance travelled $=(100-\mathrm{x})$

Time taken $=\mathrm{t}$

$ \begin{aligned} & s=u t-\frac{1}{2} g t^2 \\ & (100-\mathrm{x})=25 \mathrm{t}-(1 / 2) \times 10 \mathrm{xt}^2 \\ & \mathrm{x}=100-25 \mathrm{t}+5 \mathrm{t}^2—– \text { (b) } \end{aligned} $

From equations (a) and (b)

$ \begin{aligned} & 5 \mathrm{t}^2=100-25 \mathrm{t}+5 \mathrm{t}^2 \\ & \mathrm{t}=(100 / 25)=4 \mathrm{sec} . \end{aligned} $

After 4sec, two stones will meet

From (a)

$ \mathrm{x}=5 \mathrm{t}^2=5 \mathrm{x} 4 \times 4=80 \mathrm{~m} . $

Putting the value of $x$ in (100-x)

$ =(100-80)=20 \mathrm{~m} \text {. } $

This means that after $4 \mathrm{sec}, 2$ stones meet a distance of $20 \mathrm{~m}$ from the ground.

18. A ball thrown up vertically returns to the thrower after $6 s$. Find

(a) the velocity with which it was thrown up,

(b) the maximum height it reaches, and

(c) its position after $4 s$.

Show Answer

Answer

Given data:

$ \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2 $

Total time $\mathrm{T}=6 \mathrm{sec}$

$ \mathrm{T_a}=\mathrm{T_d}=3 \mathrm{sec} $ (a) Final velocity at maximum height $\mathrm{v}=0$

From first equation of motion:-

$ \begin{aligned} & \mathrm{v}=\mathrm{u}-\mathrm{gt_a} \\ & \mathrm{u}=\mathrm{v}+\mathrm{gt_a} \\ & =0+10 \times 3 \\ & =30 \mathrm{~m} / \mathrm{s} \end{aligned} $

The velocity with which stone was thrown up is $30 \mathrm{~m} / \mathrm{s}$.

(b) From second equation of motion

$ \begin{aligned} & s=u t_a-\frac{1}{2} g\left(t_a\right)^2 \\ & =30 \times 3-(1 / 2) \times 10 \times(3)^2 \\ & =90-45=45 \mathrm{~m} \end{aligned} $

The maximum height stone reaches is $45 \mathrm{~m}$.

(c) In $3 \mathrm{sec}$, it reaches the maximum height.

Distance travelled in another $1 \mathrm{sec}=\mathrm{s}$,

$ \begin{aligned} & s=u t_a-\frac{1}{2} g\left(t_a\right)^2 \\ & \mathrm{~s}=0+10 \times 1 \times 1 \\ & \mathrm{~s}=5 \mathrm{~m} . \end{aligned} $

The distance travelled in another $1 \mathrm{sec}=5 \mathrm{~m}$.

Therefore in $4 \mathrm{sec}$, the position of point $\mathrm{p}(45-5)$ $=40 \mathrm{~m}$ from the ground.

19. In what direction does the buoyant force on an object immersed in a liquid act?

Show Answer

Answer

The buoyant force on an object that is immersed in a liquid will be in a vertically upward direction.

20. Why does a block of plastic released under water come up to the surface of water?

Show Answer

Answer

The density of plastic is lesser than that of water. Therefore, the force of buoyancy on plastic block will be greater than the weight of plastic block. Hence, the acceleration of plastic block is going to be in the upward direction. So, the plastic block comes up to the surface of water.

21. The volume of $50 g$ of a substance is $20 cm^{3}$. If the density of water is $1 g cm^{-3}$, will the substance float or sink?

Show Answer

Answer

To find the Density of the substance the formula is

Density $=($ Mass/Volume $)$

Density $=(50 / 20)=2.5 \mathrm{~g} / \mathrm{cm}^3$

Density of water $=1 \mathrm{~g} / \mathrm{cm}^3$

Density of the substance is greater than density of water. So the substance will sink.

22. The volume of a $500 g$ sealed packet is $350 cm^{3}$. Will the packet float or sink in water if the density of water is $1 g$ $cm^{-3}$ ? What will be the mass of the water displaced by this packet?

Show Answer

Answer

Density of sealed packet $=500 / 350=1.42 \mathrm{~g} / \mathrm{cm}^3$

Density of sealed packet is greater than density of water

Therefore the packet will sink.

Considering Archimedes Principle,

Displaced water volume $=$ Force exerted on the sealed packet.

Volume of water displaced $=350 \mathrm{~cm}^3$

Therefore displaced water mass $=\rho \times \mathrm{V}$

$ =1 \times 350 $

Mass of displaced water $=350 \mathrm{~g}$.

अध्याय 7 तथा 8 में हमने वस्तुओं की गति के बारे में तथा बल को गति के कारक के रूप में अध्ययन किया है। हमने सीखा है कि किसी वस्तु की चाल या गति की दिशा बदलने के लिए बल की आवश्यकता होती है। हम सदैव देखते हैं कि जब किसी वस्तु को ऊँचाई से गिराया जाता है तो वह पृथ्वी की ओर ही गिरती है। हम जानते हैं कि सभी ग्रह सूर्य के चारों ओर चक्कर लगाते हैं। चंद्रमा पृथ्वी की परिक्रमा करता है। इन सभी अवस्थाओं में, वस्तुओं पर, ग्रहों पर तथा चंद्रमा पर लगने वाला कोई बल अवश्य होना चाहिए। आइजक न्यूटन इस तथ्य को समझ गए थे कि इन सभी के लिए एक ही बल उत्तरदायी है। इस बल को गुरुत्वाकर्षण बल कहते हैं।

इस अध्याय में हम गुरुत्वाकर्षण तथा गुरुत्वाकर्षण के सार्वत्रिक नियम के बारे में अध्ययन करेंगे। हम पृथ्वी पर गुरुत्वाकर्षण बल के प्रभाव के अंतर्गत वस्तुओं की गति पर विचार करेंगे। हम अध्ययन करेंगे कि किसी वस्तु का भार एक स्थान से दूसरे स्थान पर किस प्रकार परिवर्तित होता है। द्रवों में वस्तुओं के प्लवन की शर्तों के बारे में भी हम विचार-विमर्श करेंगे।

9.1 गुरुत्वाकर्षण

हम जानते हैं कि चंद्रमा पृथ्वी का चक्कर लगाता है। किसी वस्तु को जब ऊपर की ओर फेंकते हैं, तो वह कुछ ऊँचाई तक ऊपर पहुँचती है और फिर नीचे की ओर गिरने लगती है। कहते हैं कि जब न्यूटन एक पेड़ के नीचे बैठे थे तो एक सेब उन पर गिरा। सेब के गिरने की क्रिया ने न्यूटन को सोचने के लिए प्रेरित किया। उन्होंने सोचा कि यदि पृथ्वी सेब को अपनी ओर आकर्षित कर सकती है तो क्या यह चंद्रमा को आकर्षित नहीं कर सकती? क्या दोनों स्थितियों में वही बल लग रहा है? उन्होंने अनुमान लगाया कि दोनों अवस्थाओं में एक ही प्रकार का बल उत्तरदायी है। उन्होंने तर्क दिया कि अपनी कक्षा के प्रत्येक बिंदु पर चंद्रमा किसी सरल रेखीय पथ पर गति नहीं करता वरन् पृथ्वी की ओर गिरता रहता है। अतः वह अवश्य ही पृथ्वी द्वारा आकर्षित होता है। लेकिन हम वास्तव में चंद्रमा को पृथ्वी की ओर गिरते हुए नहीं देखते। आइए चंद्रमा की गति को समझने के लिए क्रियाकलाप 7.11 पर पुन: विचार करें।

क्रियाकलाप 9.1

  • धागे का एक टुकड़ा लीजिए। इसके एक सिरे पर एक छोटा पत्थर बाँधिए।
  • धागे के दूसरे सिरे को पकड़िए और पत्थर को वृत्ताकार पथ में घुमाइए जैसा कि चित्र 9.1 में दिखाया गया है।

चित्र 9.1: पत्थर द्वारा नियत परिमाण के वेग से वृत्ताकार पथ में गति

  • पत्थर की गति की दिशा को देखिए।

  • अब धागे को छोड़िए।

  • फिर से पत्थर की गति की दिशा को देखिए।

धागे को छोड़ने से पहले पत्थर एक निश्चित चाल से वृत्ताकार पथ में गति करता है तथा प्रत्येक बिंदु पर उसकी गति की दिशा बदलती है। दिशा के परिवर्तन में वेग-परिवर्तन या त्वरण सम्मिलित है। जिस बल के कारण यह त्वरण होता है तथा जो वस्तु को वृत्ताकार पथ में गतिशील रखता है, वह बल केंद्र की ओर लगता है। इस बल को अभिकेंद्र बल कहते हैं। इस बल की अनुपस्थिति में पत्थर एक सरल रेखा में मुक्त रूप से गतिशील हो जाता है। यह सरल रेखा वृत्तीय पथ पर स्पर्श रेखा होगी।

इसे भी जानिया!

वृत्त पर स्पर्श रेखा

कोई सरल रेखा जो वृत्त से केवल एक ही बिंदु पर मिलती है, वृत्त पर स्पर्श रेखा कहलाती है। इस चित्र में सरल रेखा $\mathrm{ABC}$ वृत्त के बिंदु $\mathrm{B}$ पर स्पर्श रेखा है।

पृथ्वी के चारों ओर चंद्रमा की गति अभिकेंद्र बल के कारण है। अभिकेंद्र बल पृथ्वी के आकर्षण बल के कारण मिल पाता है। यदि ऐसा कोई बल न हो तो चंद्रमा एकसमान गति से सरल रेखीय पथ पर चलता रहेगा।

यह देखा गया है कि गिरता हुआ सेब पृथ्वी की ओर आकर्षित होता है। क्या सेब भी पृथ्वी को आकर्षित करता है? यदि ऐसा है, तो हम पृथ्वी को सेब की ओर गति करते क्यों नहीं देख पाते? गति के तीसरे नियम के अनुसार सेब भी पृथ्वी को आकर्षित करता है। लेकिन गति के दूसरे नियम के अनुसार, किसी दिए हुए बल के लिए त्वरण वस्तु के द्रव्यमान के व्युत्क्रमानुपाती होता है [समीकरण (8.4)]। पृथ्वी की अपेक्षा सेब का द्रव्यमान नगण्य है। इसीलिए हम पृथ्वी को सेब की ओर गति करते नहीं देखते। इसी तर्क का विस्तार यह जानने के लिए कीजिए कि पृथ्वी चंद्रमा की ओर गति क्यों नहीं करती।

हमारे सौर परिवार में, सभी ग्रह सूर्य की परिक्रमा करते हैं। पहले की भाँति तर्क करके हम कह सकते हैं कि सूर्य तथा ग्रहों के बीच एक बल विद्यमान है। उपरोक्त तथ्यों के आधार पर न्यूटन ने निष्कर्ष निकाला कि केवल पृथ्वी ही सेब और चंद्रमा को आकर्षित नहीं करती, बल्कि विश्व के सभी पिंड एक-दूसरे को आकर्षित करते हैं। वस्तुओं के बीच यह आकर्षण बल गुरुत्वाकर्षण बल कहलाता है।

9.1.1 गुरुत्वाकर्षण का सार्वत्रिक नियम

विश्व का प्रत्येक पिंड प्रत्येक अन्य पिंड को एक बल से आकर्षित करता है, जो दोनों पिंडों के द्रव्यमानों के गुणनफल के समानुपाती तथा उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है। यह बल दोनों पिंडों को मिलाने वाली रेखा की दिशा में लगता है।

चित्र 9.2: किन्हीं दो एकसमान पिंडों के बीच गुरुत्वाकर्षण बल उनके केंद्रों को मिलाने वाली रेखा की दिशा में निदेशित होता है

मान लीजिए $M$ तथा $m$ द्रव्यमान के दो पिंड $A$ तथा $\mathrm{B}$ एक-दूसरे से $d$ दूरी पर स्थित हैं (चित्र 9.2)। मान लीजिए दोनों पिंडों के बीच आकर्षण बल $F$ है। गुरुत्वाकर्षण के सार्वत्रिक नियम के अनुसार, दोनों पिंडों के बीच लगने वाला बल उनके द्रव्यमानों के गुणनफल के समानुपाती है। अर्थात्,

$$ \begin{equation*} F \propto M \times m \tag{9.1} \end{equation*} $$

तथा दोनों पिंडों के बीच लगने वाला बल उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती है, अर्थात्,

$$ \begin{equation*} F \propto \frac{1}{d^{2}} \tag{9.2} \end{equation*} $$

समीकरणों (9.1) तथा (9.2) से हमें प्राप्त होगा

$$ \begin{equation*} F \propto \frac{M \times m}{d^{2}} \tag{9.3} \end{equation*} $$

या, $F=\mathrm{G} \frac{M \times m}{d^{2}}$

जहाँ $\mathrm{G}$ एक आनुपातिकता स्थिरांक है और इसे सार्वत्रिक गुरुत्वीय स्थिरांक कहते हैं।

वज्र-गुणन करने पर, समीकरण (9.4) से प्राप्त होगा

$$ \begin{align*} & F \times d^{2}=\mathrm{G} M \times m \\ & \text { या } \mathrm{G}=\frac{F d^{2}}{M \times m} \tag{9.5} \end{align*} $$

समीकरण (9.5) में बल, दूरी तथा द्रव्यमान के मात्रक प्रतिस्थापित करने पर हमें $\mathrm{G}$ के SI मात्रक प्राप्त होंगे जो $\mathrm{N} \mathrm{m} \mathrm{m}^{2} \mathrm{~kg}^{-2}$ है।

हैनरी कैवेंडिस (1731-1810) ने एक सुग्राही तुला का उपयोग करके $\mathrm{G}$ का मान ज्ञात किया। $\mathrm{G}$ का वर्तमान मान्य मान $6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ है।

हम जानते हैं कि किन्हीं भी दो वस्तुओं के बीच आकर्षण बल विद्यमान होता है। आप अपने तथा समीप बैठे अपने मित्र के बीच लगने वाले इस बल के मान का अभिकलन कीजिए। निष्कर्ष निकालिए कि आप इस बल का अनुभव क्यों नहीं करते। यह नियम सार्वत्रिक इस अभिप्राय से है कि यह सभी वस्तुओं पर लागू होता है, चाहे ये वस्तुएँ बड़ी हों या छोटी, चाहे ये खगोलीय हों या पार्थिव।

व्युत्क्रम-वर्ग

$F, d$ के वर्ग के व्युत्क्रमानुपाती है इस कथन का अर्थ है कि यदि $d$ को 6 गुणा कर दिया जाए, तो $F$ का मान 36 वाँ भाग रह जाएगा।

उदाहरण 9.1 पृथ्वी का द्रव्यमान $6 \times 10^{24} \mathrm{~kg}$ है तथा चंद्रमा का द्रव्यमान $7.4 \times 10^{22} \mathrm{~kg}$ है। यदि पृथ्वी तथा चंद्रमा के बीच की दूरी $3.84 \times 10^{5} \mathrm{~km}$ है तो पृथ्वी द्वारा चंद्रमा पर लगाए गए बल का परिकलन कीजिए। $\left(\mathrm{G}=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\right)$

हल :

पृथ्वी का द्रव्यमान, $M=6 \times 10^{24} \mathrm{~kg}$

चंद्रमा का द्रव्यमान, $m=7.4 \times 10^{22} \mathrm{~kg}$

पृथ्वी तथा चंद्रमा के बीच की दूरी,

$$ \begin{aligned} d & =3.84 \times 10^{5} \mathrm{~km} \\ & =3.84 \times 10^{5} \times 1000 \mathrm{~m} \\ & =3.84 \times 10^{8} \mathrm{~m} \\ \mathrm{G} & =6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \end{aligned} $$

समीकरण (9.4) से, पृथ्वी द्वारा चंद्रमा पर लगाया गया बल,

$F=\mathrm{G} \frac{M \times m}{d^{2}}$

$$ =\frac{6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6 \times 10^{24} \mathrm{~kg} \times 7.4 \times 10^{22} \mathrm{~kg}}{\left(3.84 \times 10^{8} \mathrm{~m}\right)^{2}} $$

$=2.02 \times 10^{20} \mathrm{~N}$.

अतः पृथ्वी द्वारा चंद्रमा पर लगाया गया बल $2.02 \times 10^{20} \mathrm{~N}$ है।

प्रशन

1. गुरुत्वाकर्षण का सार्वात्रिक नियम बताइए।

2. पृथ्वी तथा उसकी सतह पर रखी किसी वस्तु के बीच लगने वाले गुरुत्वाकर्षण बल का परिमाण ज्ञात करने का सूत्र लिखिए।

9.1.2 गुरुत्वाकर्षण के सार्वत्रिक नियम का महत्व

गुरुत्वाकर्षण का सार्वत्रिक नियम अनेक ऐसी परिघटनाओं की सफलतापूर्वक व्याख्या करता है जो असंबद्ध मानी जाती थीं:

(i) हमें पृथ्वी से बाँधे रखने वाला बल;

(ii) पृथ्वी के चारों ओर चंद्रमा की गति;

(iii) सूर्य के चारों ओर ग्रहों की गति; तथा

(iv) चंद्रमा तथा सूर्य के कारण ज्वार-भाटा।

9.2 मुक्त पतन

मुक्त पतन का अर्थ जानने के लिए आइए एक क्रियाकलाप करें।

क्रियाकलाप 9.2

  • एक पत्थर लीजिए।

  • इसे ऊपर की ओर फेंकिए।

  • यह एक निश्चित ऊँचाई तक पहुँचता है और तब नीचे गिरने लगता है।

हम जानते हैं कि पृथ्वी वस्तुओं को अपनी ओर आकर्षित करती है। पृथ्वी के इस आकर्षण बल को गुरुत्वीय बल कहते हैं। अतः जब वस्तुएँ पृथ्वी की ओर केवल इसी बल के कारण गिरती हैं, हम कहते हैं कि वस्तुएँ मुक्त पतन में हैं। क्या गिरती हुई वस्तुओं के वेग में कोई परिवर्तन होता है? गिरते समय वस्तुओं की गति की दिशा में कोई परिवर्तन नहीं होता। लेकिन पृथ्वी के आकर्षण के कारण वेग के परिमाण में परिवर्तन होता है। वेग में कोई भी परिवर्तन त्वरण को उत्पन्न करता है। जब भी कोई वस्तु पृथ्वी की ओर गिरती है, त्वरण कार्य करता है। यह त्वरण पृथ्वी के गुरुत्वीय बल के कारण है। इसलिए इस त्वरण को पृथ्वी के गुरुत्वीय बल के कारण त्वरण या गुरुत्वीय त्वरण कहते हैं। इसे ’ $g$ ’ से निर्दिष्ट करते हैं। $g$ के मात्रक वही हैं जो त्वरण के हैं, अर्थात् $\mathrm{m} \mathrm{s}^{-2}$ |

गति के दूसरे नियम से हमें ज्ञात है कि बल द्रव्यमान तथा त्वरण का गुणनफल है। मान लीजिए क्रियाकलाप 9.2 में पत्थर का द्रव्यमान $m$ है। हम पहले से ही जानते हैं कि मुक्त रूप से गिरती वस्तुओं में गुरुत्वीय बल के कारण त्वरण लगता है और इसे $g$ से निर्दिष्ट करते हैं। इसलिए गुरुत्वीय बल का परिमाण $F$, द्रव्यमान तथा गुरुत्वीय त्वरण के गुणनफल के बराबर होगा, अर्थात्

$$ \begin{equation*} F=m g \tag{9.6} \end{equation*} $$

समीकरण (9.4) तथा (9.6) से हमें प्राप्त होता है

$$ m g=\mathrm{G} \frac{M \times m}{d^{2}} $$

या $g=\mathrm{G} \frac{M}{d^{2}}$

जहाँ पर $M$ पृथ्वी का द्रव्यमान है तथा $d$ वस्तु तथा पृथ्वी के बीच की दूरी है।

मान लीजिए एक वस्तु पृथ्वी पर या इसकी सतह के पास है। समीकरण (9.7) में दूरी $d$, पृथ्वी की त्रिज्या $R$ के बराबर होगी। इस प्रकार पृथ्वी की सतह पर या इसके समीप रखी वस्तुओं के लिए

$$ \begin{align*} m g & =\mathrm{G} \frac{M \times m}{R^{2}} \tag{9.8} \\ g & =\mathrm{G} \frac{M}{R^{2}} \tag{9.9} \end{align*} $$

पृथ्वी एक पूर्ण गोला नहीं है। पृथ्वी की त्रिज्या ध्रुवों से विषुवत वृत्त की ओर जाने पर बढ़ती है, इसलिए $g$ का मान ध्रुवों पर विषुवत वृत्त की अपेक्षा अधिक होता है। अधिकांश गणनाओं के लिए पृथ्वी की सतह पर या इसके पास $g$ के मान को लगभग

स्थिर मान सकते हैं लेकिन पृथ्वी से दूर की वस्तुओं के लिए पृथ्वी के गुरुत्वीय बल के कारण त्वरण समीकरण (9.7) से ज्ञात किया जा सकता है।

9.2.1 गुरुत्वीय त्वरण $g$ के मान का परिकलन

गुरुत्वीय त्वरण $g$ के मान का परिकलन करने के लिए हमें समीकरण (9.9) में G, $M$ तथा $R$ के मान रखने होंगे। जैसे,

सार्वत्रिक गुरुत्वीय नियतांक, $\mathrm{G}=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$, पृथ्वी का द्रव्यमान, $M=6 \times 10^{24} \mathrm{~kg}$, तथा पृथ्वी की त्रिज्या, $R=6.4 \times 10^{6} \mathrm{~m}$

$$ \begin{aligned} g & =\mathrm{G} \frac{M}{R^{2}} \\ & =\frac{6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6 \times 10^{24} \mathrm{~kg}}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}} \\ & =9.8 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned} $$

अतः पृथ्वी के गुरुत्वीय त्वरण का मान

$$ g=9.8 \mathrm{~m} \mathrm{~s}^{-2} $$

9.2.2 पृथ्वी के गुरुत्वीय बल के प्रभाव में वस्तुओं की गति

यह समझने के लिए कि क्या सभी वस्तुएँ खोखली या ठोस, बड़ी या छोटी, किसी ऊँचाई से समान दर से गिरेंगी, आइए एक क्रियाकलाप करें।

क्रियाकलाप 9.3

  • कागज़ की एक शीट तथा एक पत्थर लीजिए।

  • दोनों को किसी इमारत की पहली मंजिल से एक साथ गिराइए। देखिए, क्या दोनों धरती पर एक साथ पहुँचते हैं।

  • Aहम देखते हैं कि कागज़ धरती पर पत्थर की अपेक्षा कुछ देर से पहुँचता है। ऐसा वायु के प्रतिरोध के कारण होता है। गिरती हुई गतिशील वस्तुओं पर घर्षण के कारण वायु प्रतिरोध लगाती है। कागज़ पर लगने वाला वायु का प्रतिरोध पत्थर पर लगने वाले प्रतिरोध से अधिक होता है। इस प्रयोग को यदि हम काँच के ज़ार में करें जिसमें से हवा निकाल दी गई है तो कागज़ तथा पत्थर एक ही दर से नीचे गिरेंगे।

हम जानते हैं कि मुक्त पतन में वस्तु त्वरण का अनुभव करती है। समीकरण (9.9) से, वस्तु द्वारा अनुभव किया जाने वाला यह त्वरण इसके द्रव्यमान पर निर्भर नहीं करता। इसका अर्थ हुआ कि सभी वस्तुएँ खोखली या ठोस, बड़ी या छोटी, एक ही दर से नीचे गिरनी चाहिए। एक कहानी के अनुसार, इस विचार की पुष्टि के लिए गैलीलियो ने इटली में पीसा की झुकी हुई मीनार से विभिन्न वस्तुओं को गिराया। क्योंकि पृथ्वी के निकट $g$ का मान स्थिर है, अतः एकसमान त्वरित गति के सभी समीकरण, त्वरण $a$ के स्थान पर $g$ रखने पर भी मान्य रहेंगे (देखिए अनुभाग 7.5)। ये समीकरण हैं :

$$ \begin{align*} & v=u+a t \tag{9.10} \\ & s=u t+\frac{1}{2} a t^{2} \tag{9.11} \end{align*} $$

यहाँ $u$ एवं $v$ क्रमशः प्रारंभिक एवं अंतिम वेग तथा $S$ वस्तु द्वारा $t$ समय में चली गई दूरी है।

इन समीकरणों का उपयोग करते समय, यदि त्वरण (a) वेग की दिशा में अर्थात् गति की दिशा में लग रहा हो तो हम इसको धनात्मक लेंगे। त्वरण (a) को ऋणात्मक लेंगे जब यह गति की दिशा के विपरीत लगता है।

उदाहरण 9.2 एक कार किसी कगार से गिर कर $0.5 \mathrm{~s}$ में धरती पर आ गिरती है। परिकलन में सरलता के लिए $g$ का मान $10 \mathrm{~m} \mathrm{~s}^{-2}$ लीजिए।

(i) धरती पर टकराते समय कार की चाल क्या होगी?

(ii) $0.5 \mathrm{~s}$ के दौरान इसकी औसत चाल क्या होगी?

(iii) धरती से कगार कितनी ऊँचाई पर है?

हल :

समय, $t=0.5 \mathrm{~s}$

प्रारंभिक वेग, $u=0 \mathrm{~m} \mathrm{~s}^{-1}$

गुरुत्वीय त्वरण, $g=10 \mathrm{~m} \mathrm{~s}^{-2}$

कार का त्वरण, $a=+10 \mathrm{~m} \mathrm{~s}^{-2}$ (अधोमुखी)

(i) चाल $\quad v=a t$

$v=10 \mathrm{~m} \mathrm{~s}^{-2} \times 0.5 \mathrm{~s}$

$=5 \mathrm{~m} \mathrm{~s}^{-1}$

(ii) औसत चाल $=\frac{u+v}{2}$

$$ \begin{aligned} & =\left(0 \mathrm{~m} \mathrm{~s}^{-1}+5 \mathrm{~m} \mathrm{~s}^{-1}\right) / 2 \\ & =2.5 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

(iii) तय की गई दूरी, $S=1 / 2 a t^{2}$

$$ \begin{aligned} & =1 / 2 \times 10 \mathrm{~m} \mathrm{~s}^{-2} \times(0.5 \mathrm{~s})^{2} \\ & =1 / 2 \times 10 \mathrm{~m} \mathrm{~s}^{-2} \times 0.25 \mathrm{~s}^{2} \\ & =1.25 \mathrm{~m} \end{aligned} $$

अत:,

(i) धरती पर टकराते समय इसकी चाल

$$ =5 \mathrm{~m} \mathrm{~s}^{-1} $$

(ii) 0.5 सेकंड के दौरान इसकी औसत चाल $=2.5 \mathrm{~m} \mathrm{~s}^{-1}$

(iii) धरती से कगार की ऊँचाई

$$ =1.25 \mathrm{~m} $$

उदाहरण 9.3 एक वस्तु को ऊर्ध्वाधर दिशा में ऊपर की ओर फेंका जाता है और यह $10 \mathrm{~m}$ की ऊँचाई तक पहुँचती है। परिकलन कीजिए

(i) वस्तु कितने वेग से ऊपर फेंकी गई तथा

(ii) वस्तु द्वारा उच्चतम बिंदु तक पहुँचने में लिया गया समय।

हल :

तय की गई दूरी, $S=10 \mathrm{~m}$

अंतिम वेग, $\quad V=0 \mathrm{~m} \mathrm{~s}^{-1}$

गुरुत्वीय त्वरण, $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$

वस्तु का त्वरण, $a=-9.8 \mathrm{~m} \mathrm{~s}^{-2}$ (ऊर्ध्वमुखी)

(i) $v^{2}=u^{2}+2 a s$

$$ 0=u^{2}+2 \times\left(-9.8 \mathrm{~m} \mathrm{~s}^{-2}\right) \times 10 \mathrm{~m} $$

$$ \begin{aligned} -u^{2} & =-2 \times 9.8 \times 10 \mathrm{~m}^{2} \mathrm{~s}^{-2} \\ u & =\sqrt{196} \mathrm{~m} \mathrm{~s}^{-1} \\ u & =14 \mathrm{~m} \mathrm{~s}^{-1} \\ v & =u+a t \\ 0 & =14 \mathrm{~m} \mathrm{~s}^{-1}-9.8 \mathrm{~m} \mathrm{~s}^{-2} \times t \\ t & =1.43 \mathrm{~s} . \end{aligned} $$

$$ \text { (ii) } V=u+a t $$

अतः,

(i) प्रारंभिक वेग $u=14 \mathrm{~m} \mathrm{~s}^{-1}$ तथा

(ii) लिया गया समय $t=1.43 \mathrm{~s}$

प्रशन

**1.**मुक्त पतन से आप क्या समझते हैं?

**2.**गुरुत्वीय त्वरण से आप क्या समझते हैं?

9.3 द्रव्यमान

हमने पिछले अध्याय में पढ़ा है कि किसी वस्तु का द्रव्यमान उसके जड़त्व की माप होता है (अनुभाग 8.3)। हमने यह भी सीखा है कि जितना अधिक वस्तु का द्रव्यमान होगा, उतना ही अधिक उसका जड़त्व भी होगा। किसी वस्तु का द्रव्यमान उतना ही रहता है चाहे वस्तु पृथ्वी पर हो, चंद्रमा पर हो या फिर बाह्य अंतरिक्ष में हो। इस प्रकार वस्तु का द्रव्यमान स्थिर रहता है तथा एक स्थान से दूसरे स्थान पर नहीं बदलता।

9.4 भार

हम जानते हैं कि पृथ्वी प्रत्येक वस्तु को एक निश्चित बल से आकर्षित करती है और यह बल वस्तु के द्रव्यमान $(m)$ तथा पृथ्वी के गुरुत्वीय बल के कारण त्वरण $(g)$ पर निर्भर है। किसी वस्तु का भार वह बल है जिससे यह पृथ्वी की ओर आकर्षित होती है।

हमें ज्ञात है कि

$$ \begin{equation*} F=m \times a \tag{9.13} \end{equation*} $$

अर्थात्

$$ \begin{equation*} F=m \times g \tag{9.14} \end{equation*} $$

वस्तु पर पृथ्वी का आकर्षण बल वस्तु का भार कहलाता है। इसे $W$ से निर्दिष्ट करते हैं। इसे समीकरण (9.14) में प्रतिस्थापित करने पर

$$ W=m \times g $$

क्योंकि वस्तु का भार एक बल है जिससे यह पृथ्वी की ओर आकर्षित होता है, भार का SI मात्रक वही है जो बल का है, अर्थात् न्यूटन $(\mathrm{N})$ । भार एक बल है जो ऊर्ध्वाधर दिशा में नीचे की ओर लगता है, इसलिए इसमें परिमाण तथा दिशा दोनों होते हैं।

हम जानते हैं कि किसी दिए हुए स्थान पर $g$ का मान स्थिर रहता है। इसलिए किसी दिए हुए स्थान पर, वस्तु का भार वस्तु के द्रव्यमान $m$ के समानुपाती होता है। अर्थात् $W \propto m$ । यही कारण है कि किसी दिए हुए स्थान पर हम वस्तु के भार को उसके द्रव्यमान की माप के रूप में उपयोग कर सकते हैं। किसी वस्तु का द्रव्यमान प्रत्येक स्थान पर, चाहे पृथ्वी पर या किसी अन्य ग्रह पर, उतना ही रहता है जबकि वस्तु का भार इसके स्थान पर निर्भर करता है क्योंकि $g$ का मान स्थान पर निर्भर करता है।

9.4.1 किसी वस्तु का चंद्रमा पर भार

हमने सीखा है कि पृथ्वी पर किसी वस्तु का भार वह बल है जिससे पृथ्वी उस वस्तु को अपनी ओर आकर्षित करती है। इसी प्रकार, चंद्रमा पर किसी वस्तु का भार वह बल है जिससे चंद्रमा उस वस्तु को आकर्षित करता है। चंद्रमा का द्रव्यमान पृथ्वी की अपेक्षा कम है। इस कारण चंद्रमा वस्तुओं पर कम आकर्षण बल लगाता है।

मान लीजिए किसी वस्तु का द्रव्यमान $m$ है तथा चंद्रमा पर इसका भार $W _{m}$ है। मान लीजिए चंद्रमा का द्रव्यमान $M _{m}$ है तथा इसकी त्रिज्या $R _{m}$ है।

गुरुत्वाकर्षण का सार्वत्रिक नियम लगाने पर, चंद्रमा पर वस्तु का भार होगा

$$ \begin{equation*} W _{m}=\mathrm{G} \frac{M _{m} \times m}{R _{m}^{2}} \tag{9.16} \end{equation*} $$

मान लीजिए उसी वस्तु का पृथ्वी पर भार $W _{e}$ है।

खगोलीय
पिंड
द्रव्यमान (kg) त्रिज्या (m)
पृथ्वी $5.98 \quad 10^{24}$ $6.37 \quad 10^{6}$
चंद्रमा $7.36 \quad 10^{22}$ $1.74 \quad 10^{6}$

पृथ्वी का द्रव्यमान $M$ तथा इसकी त्रिज्या $R$ है।

समीकरणों (9.9) तथा (9.15) से हमें प्राप्त होता है,

$$ \begin{equation*} W _{e}=\mathrm{G} \frac{M \times m}{R^{2}} \tag{9.17} \end{equation*} $$

समीकरण (9.16) तथा (9.17) में सारणी 9.1 से उपयुक्त मान रखने पर

$$ W _{m}=\mathrm{G} \frac{7.36 \times 10^{22} \mathrm{~kg} \times \mathrm{m}}{\left(1.74 \times 10^{6} \mathrm{~m}\right)^{2}} $$

$$ \begin{equation*} W _{m}=2.431 \times 10^{10} \mathrm{G} \times m \tag{9.18a} \end{equation*} $$

तथा $W _{e}=1.474 \times 10^{11} \mathrm{G} \times m$ समीकरण (9.18a) को समीकरण (9.18b) से भाग देने पर हमें प्राप्त होता है

$$ \frac{W _{m}}{W _{e}}=\frac{2.431 \times 10^{10}}{1.474 \times 10^{11}} $$

या $\frac{W _{m}}{W _{e}}=0.165 \approx \frac{1}{6}$

$$ \frac{\text { वस्तु का चंद्रमा पर भार }}{\text { वस्तु का पृथ्वी पर भार }}=\frac{1}{6} $$

वस्तु का चंद्रमा पर भार

$$ =(1 / 6) \times \text { इसका पृथ्वी पर भार } $$

उदाहरण 9.4 एक वस्तु का द्रव्यमान $10 \mathrm{~kg}$ है। पृथ्वी पर इसका भार कितना होगा?

हल :

द्रव्यमान $m=10 \mathrm{~kg}$

गुरुत्वीय त्वरण $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$

$W=m \times g$

$\mathrm{W}=10 \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2}=98 \mathrm{~N}$

अतः वस्तु का भार $98 \mathrm{~N}$ है।

उदाहरण 9.5 एक वस्तु का भार पृथ्वी की सतह पर मापने पर $10 \mathrm{~N}$ आता है। इसका भार चंद्रमा की सतह पर मापने पर कितना होगा?

हल :

हमें ज्ञात है

चंद्रमा पर वस्तु का भार

$$ =(1 / 6) \times \text { पृथ्वी पर इसका भार } $$

अर्थात्,

$$ \begin{aligned} W _{m} & =\frac{W _{e}}{6}=\frac{10}{6} \mathrm{~N} \\ & =1.67 \mathrm{~N} \end{aligned} $$

अतः चंद्रमा की सतह पर वस्तु का भार 1.67 $\mathrm{N}$ होगा।

प्रशन

1. किसी वस्तु के द्रव्यमान तथा भार में क्या अंतर है?

2. किसी वस्तु का चंद्रमा पर भार पृथ्वी पर इसके भार का $\frac{1}{6}$ गुणा क्यों होता है?

9.5 प्रणोद तथा दाब

क्या कभी आपने सोचा है कि ऊँट रेगिस्तान में आसानी से क्यों दौड़ पाता है? सेना का टैंक जिसका भार एक हजार टन से भी अधिक होता है, एक सतत् चेन पर क्यों टिका होता है? किसी ट्रक या बस के टायर अधिक चौड़े क्यों होते हैं? काटने वाले औजारों की धार तेज़ क्यों होती है? इन प्रश्नों का उत्तर जानने के लिए तथा इनमें शामिल परिघटनाओं को समझने के लिए दी गई वस्तु पर एक विशेष दिशा में लगने वाले नेट बल (प्रणोद) तथा प्रति एकांक क्षेत्रफल पर लगने वाले बल (दाब) की धारणा से परिचय कराना सहायक होगा। प्रणोद तथा दाब का अर्थ समझने के लिए आइए निम्नलिखित स्थितियों पर विचार करें :

स्थिति 1 : किसी बुलेटिन बोर्ड पर आप एक चार्ट लगाना चाहते हैं जैसा कि चित्र 9.3 में दर्शाया गया है। यह कार्य करने के लिए आपको ड्राइंग पिनों को अपने अँगूठे से दबाना होगा। इस अवस्था में आप पिन के शीर्ष (चपटे भाग) के सतह के क्षेत्रफल पर बल लगाते हैं। यह बल बोर्ड की सतह (पृष्ठ) के लंबवत् लगता है। यह बल पिन की नोक पर अपेक्षाकृत छोटे क्षेत्रफल पर लगता है।

चित्र 9.3: चार्ट लगाने के लिए ड्राइंग पिनों को अँगूठे से बोर्ड के लंबवत् दबाया जाता है

स्थिति 2 : आप शिथिल (ढीले) रेत पर खड़े होते हैं। आपके पैर रेत में गहरे धँस जाते हैं। अब रेत पर लेटिए। आप देखेंगे कि आपका शरीर रेत में पहले जितना नहीं धँसता। दोनों अवस्थाओं में रेत पर लगने वाला बल आपके शरीर का भार है।

आप पढ़ चुके हैं कि भार ऊर्ध्वाधर दिशा में नीचे की ओर लगने वाला बल है। यहाँ बल रेत की सतह के लंबवत् लग रहा है। किसी वस्तु की सतह के लंबवत् लगने वाले बल को प्रणोद कहते हैं।

जब आप शिथिल रेत पर खड़े होते हैं तो बल अर्थात् आपके शरीर का भार, आपके पैरों के क्षेत्रफल के बराबर क्षेत्रफल पर लग रहा होता है। जब आप लेट जाते हैं तो वही बल आपके पूरे शरीर के संपर्क क्षेत्रफल के बराबर क्षेत्रफल पर लगता है जो कि आपके पैरों के क्षेत्रफल से अधिक है। इस प्रकार समान परिमाण के बलों का भिन्न-भिन्न क्षेत्रफलों पर भिन्न-भिन्न प्रभाव होता है। उपरोक्त स्थिति में प्रणोद समान है। लेकिन उसके प्रभाव अलग-अलग हैं। इसलिए प्रणोद का प्रभाव उस क्षेत्रफल पर निर्भर है जिस पर कि वह लगता है।

रेत पर प्रणोद का प्रभाव लेटे हुए की अपेक्षा खड़े होने की स्थिति में अधिक है। प्रति एकांक क्षेत्रफल पर लगने वाले प्रणोद को दाब कहते हैं। इस प्रकार

$$ \begin{equation*} \text { दाब }=\frac{\text { प्रणोद }}{\text { क्षेत्रफल }} \tag{9.20} \end{equation*} $$

समीकरण (9.20) में प्रणोद तथा क्षेत्रफल के SI मात्रक प्रतिस्थापित करने पर हमें दाब का SI मात्रक प्राप्त होता है। यह मात्रक $\mathrm{N} / \mathrm{m}^{2}$ या $\mathrm{N} \mathrm{m}^{-2}$ है।

वैज्ञानिक ब्लैस पास्कल के सम्मान में, दाब के $\mathrm{SI}$ मात्रक को पास्कल कहते हैं, जिसे $\mathrm{Pa}$ से व्यक्त किया जाता है।

विभिन्न क्षेत्रफलों पर लगने वाले प्रणोद के प्रभाव को समझने के लिए आइए एक संख्यात्मक उदाहरण पर विचार करें।

उदाहरण 9.6 एक लकड़ी का गुटका मेज पर रखा है। लकड़ी के गुटके का द्रव्यमान $5 \mathrm{~kg}$ है तथा इसकी विमाएँ $40 \mathrm{~cm} \times 20 \mathrm{~cm} \times 10 \mathrm{~cm}$ हैं। लकड़ी के टुकड़े द्वारा मेज पर लगने वाले दाब को ज्ञात कीजिए, यदि इसकी निम्नलिखित

(a)

(b) चित्र 9.4

विमाओं की सतह मेज पर रखी जाती है: (a) $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ तथा (b) $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ l

हल :

लकड़ी के गुटके का द्रव्यमान $=5 \mathrm{~kg}$ तथा इसकी विमाएँ $=40 \mathrm{~cm} \times 20 \mathrm{~cm} \times 10 \mathrm{~cm}$ यहाँ लकड़ी के गुटके का भार मेज की सतह पर प्रणोद लगाता है।

अर्थात्,

प्रणोद $=F=m \times g$

$$ \begin{aligned} & =5 \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & =49 \mathrm{~N} \end{aligned} $$

सतह का क्षेत्रफल $=$ लंबाई $\times$ चौड़ाई

$$ \begin{aligned} & =20 \mathrm{~cm} \times 10 \mathrm{~cm} \\ & =200 \mathrm{~cm}^{2}=0.02 \mathrm{~m}^{2} \end{aligned} $$

समीकरण (9.20) से,

$$ \begin{aligned} \text { दाब } & =\frac{49 \mathrm{~N}}{0.02 \mathrm{~m}^{2}} \\ & =2450 \mathrm{~N} \mathrm{~m}^{-2} . \end{aligned} $$

जब गुटके की $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ विमाओं की सतह मेज पर रखी जाती है, यह मेज की सतह पर पहले जितना ही प्रणोद लगाता है।

$$ \begin{aligned} \text { क्षेत्रफल } & =\text { लंबाई } \times \text { चौड़ाई } \\ & =40 \mathrm{~cm} \times 20 \mathrm{~cm} \\ & =800 \mathrm{~cm}^{2}=0.08 \mathrm{~m}^{2} \end{aligned} $$

समीकरण (9.20) से,

$$ \begin{aligned} \text { दाब } & =\frac{49 \mathrm{~N}}{0.08 \mathrm{~m}^{2}} \\ & =612.5 \mathrm{~N} \mathrm{~m}^{-2} \end{aligned} $$

सतह $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ द्वारा लगाया गया दाब $2450 \mathrm{~N} \mathrm{~m}^{-2}$ है तथा सतह $40 \mathrm{~cm} \times 20 \mathrm{~cm}$ द्वारा लगाया गया दाब $612.5 \mathrm{~N} \mathrm{~m}^{-2}$ है।

इस प्रकार वही बल जब छोटे क्षेत्रफल पर लगता है तो अधिक दाब तथा बड़े क्षेत्रफल पर कम दाब लगाता है। यही कारण है कि कीलों के सिरे नुकीले होते हैं, चाकू की तेज़ धार होती है तथा भवनों की नींव चौड़ी होती है।

9.5.1 तरलों में दाब

सभी द्रव या गैसें तरल हैं। ठोस अपने भार के कारण किसी सतह पर दाब लगाता है। इसी प्रकार, तरलों में भी भार होता है तथा वे जिस बर्तन में रखे जाते हैं उसके आधार तथा दीवारों पर दाब लगाते हैं। किसी परिरुद्ध द्रव्यमान के तरल पर लगने वाला दाब सभी दिशाओं में बिना घटे संचरित हो जाता है।

9.5.2 उत्प्लावकता

क्या आप कभी किसी तालाब में तैरे हैं और आपने स्वयं कुछ हलका अनुभव किया है? क्या कभी आपने किसी कुएँ से पानी खींचा है और अनुभव किया है कि जब पानी से भरी बाल्टी, कुएँ के पानी से बाहर आती है तो वह अधिक भारी लगती है? क्या कभी आपने सोचा है कि लोहे तथा स्टील से बना जलयान समुद्र के पानी में क्यों नहीं डूबता, लेकिन उतनी ही मात्रा का लोहा तथा स्टील यदि चादर के रूप में हो तो क्या वह डूब जाएगा? इन सभी प्रश्नों का उत्तर जानने के लिए उत्प्लावकता के बारे में जानना आवश्यक है। उत्प्लावकता का अर्थ समझने के लिए आइए एक क्रियाकलाप करें।

क्रियाकलाप 9.4

  • प्लास्टिक की एक खाली बोतल लीजिए। बोतल के मुँह को एक वायुरुद्ध डाट से बंद कर दीजिए। इसे एक पानी से भरी बाल्टी में रखिए। आप देखेंगे कि बोतल तैरती है।

  • बोतल को पानी में धकेलिए। आप ऊपर की ओर एक धक्का महसूस करते हैं। इसे और अधिक नीचे धकेलने का प्रयत्न कीजिए। आप इसे और अधिक गहराई में धकेलने में कठिनाई अनुभव करेंगे। यह दिखाता है कि पानी बोतल पर ऊपर की दिशा में एक बल लगाता है। जैसे-जैसे बोतल को पानी में धकेलते जाते हैं, पानी द्वारा ऊपर की ओर लगाया गया बल बढ़ता जाता है जब तक कि बोतल पानी में पूरी तरह न डूब जाए।

  • अब बोतल को छोड़ दीजिए। यह उछलकर सतह पर वापस आती है।

  • क्या पृथ्वी का गुरुत्वाकर्षण बल इस बोतल पर कार्यरत है? यदि ऐसा है तो बोतल छोड़ देने पर पानी में डूबी ही क्यों नहीं रहती? आप बोतल को पानी में कैसे डुबो सकते हैं?

पृथ्वी का गुरुत्वाकर्षण बल बोतल पर नीचे की दिशा में लगता है। इसके कारण बोतल नीचे की दिशा में खिंचती है। लेकिन पानी बोतल पर ऊपर की ओर बल लगाता है। अतः बोतल ऊपर की दिशा में धकेली जाती है। हम पढ़ चुके हैं कि वस्तु का भार पृथ्वी के गुरुत्वाकर्षण बल के बराबर है। जब बोतल डुबोई जाती है तो बोतल पर पानी द्वारा लगने वाला ऊपर की दिशा में बल इसके भार से अधिक है। इसीलिए छोड़ने पर यह ऊपर उठती है।

बोतल को पूरी तरह डुबोए रखने के लिए, पानी के द्वारा बोतल पर ऊपर की ओर लगने वाले बल को संतुलित करना पड़ेगा। इसे नीचे की दिशा में लगने वाले एक बाहरी बल को लगाकर प्राप्त किया जा सकता है। यह बल कम से कम ऊपर की ओर लगने वाले बल तथा बोतल के भार के अंतर के बराबर होना चाहिए।

बोतल पर पानी द्वारा ऊपर की ओर लगने वाला बल उत्प्लावन बल कहलाता है। वास्तव में किसी तरल में डुबोने पर, सभी वस्तुओं पर एक उत्प्लावन बल लगता है। उत्प्लावन बल का परिमाण तरल के घनत्व पर निर्भर है।

9.5.3 पानी की सतह पर रखने पर वस्तुएँ तैरती या डूबती क्यों हैं?

इस प्रश्न का उत्तर प्राप्त करने के लिए आइए निम्नलिखित क्रियाकलाप करें।

क्रियाकलाप 9.5

  • पानी से भरा एक बीकर लीजिए।
  • एक लोहे की कील लीजिए और इसे पानी की सतह पर रखिए।
  • देखिए क्या होता है?

कील डूब जाती है। कील पर लगने वाला पृथ्वी का गुरुत्वाकर्षण बल इसे नीचे की ओर खींचता है। पानी कील पर उत्प्लावन बल लगाता है जो इसे ऊपर की दिशा में धकेलता है। लेकिन कील पर नीचे की ओर लगने वाला बल, कील पर पानी द्वारा लगाए गए उत्प्लावन बल से अधिक है। इसलिए यह डूब जाती है (चित्र 9.5)।

चित्र 9.5: पानी की सतह पर रखने पर लोहे की कील डूब जाती है तथा कॉर्क तैरता है

क्रियाकलाप 9.6

  • पानी से भरा बीकर लीजिए।

  • एक कील तथा समान द्रव्यमान का एक कॉर्क का टुकड़ा लीजिए।

  • इन्हें पानी की सतह पर रखिए।

  • देखिए क्या होता है।

कॉर्क तैरता है जबकि कील डूब जाती है। ऐसा उनके घनत्वों में अंतर के कारण होता है। किसी पदार्थ का घनत्व, उसके एकांक आयतन के द्रव्यमान को कहते हैं। कॉर्क का घनत्व पानी के घनत्व से कम है। इसका अर्थ है कि कॉर्क पर पानी का उत्प्लावन बल, कॉर्क के भार से अधिक है। इसीलिए यह तैरता है (चित्र 9.5)।

लोहे की कील का घनत्व पानी के घनत्व से अधिक है। इसका अर्थ है कि लोहे की कील पर पानी का उत्प्लावन बल लोहे की कील के भार से कम है। इसीलिए यह डूब जाती है।

इस प्रकार द्रव के घनत्व से कम घनत्व की वस्तुएँ द्रव पर तैरती हैं। द्रव के घनत्व से अधिक घनत्व की वस्तुएँ द्रव में डूब जाती हैं।

प्रशन

**1.**एक पतली तथा मजबूत डोरी से बने पट्टे की सहायता से स्कूल बैग को उठाना कठिन होता है, क्यों?

**2.**उत्प्लावकता से आप क्या समझते हैं?

**3.**पानी की सतह पर रखने पर कोई वस्तु क्यों तैरती या डूबती है?

9.6 आर्किमीडीज़ का सिद्धांत

क्रियाकलाप 9.7

  • एक पत्थर का टुकड़ा लीजिए और इसे कमानीदार तुला या रबड़ की डोरी के एक सिरे से बाँधिए।

  • तुला या डोरी को पकड़ कर पत्थर को लटकाइए जैसा कि चित्र 9.6(a) में दिखाया गया है।

  • पत्थर के भार के कारण रबड़ की डोरी की लंबाई में वृद्धि या कमानीदार तुला का पाठ्यांक नोट कीजिए।

  • अब पत्थर को एक बर्तन में रखे पानी में धीरे से डुबोइए जैसा कि चित्र 9.6(b) में दिखाया गया है।

  • प्रेक्षण कीजिए कि डोरी की लंबाई में या तुला की माप में क्या परिवर्तन होता है।

(a)

(b) चित्र 9.6: (a) हवा में लटके पत्थर के टुकड़े के भार के कारण रबड़ की डोरी में प्रसार का प्रेक्षण कीजिए। (b) पत्थर को पानी में डुबोने पर डोरी के प्रसार में कमी आ जाती है

आप देखेंगे कि जैसे ही पत्थर को धीरे-धीरे पानी में नीचे ले जाते हैं, डोरी की लंबाई में या तुला के पाठ्यांक में भी कमी आती है। तथापि, जब पत्थर पानी में पूरी तरह डूब जाता है तो उसके बाद कोई परिवर्तन नहीं दिखाई देता। डोरी के प्रसार या तुला की माप में कमी से आप क्या निष्कर्ष निकालते हैं?

हम जानते हैं कि रबड़ की डोरी की लंबाई में परिवर्तन या तुला के पाठ्यांक में वृद्धि, पत्थर के भार के कारण होती है। क्योंकि पत्थर को पानी में डुबोने पर इन वृद्धियों में कमी आ जाती है, इसका अर्थ है कि पत्थर पर ऊपर की दिशा में कोई बल लगता है। इसके परिणामस्वरूप, रबड़ की डोरी पर लगने वाला नेट बल कम हो जाता है और इसीलिए लंबाई की वृद्धि में भी कमी आ जाती है। जैसी कि पहले ही चर्चा की जा चुकी है, पानी द्वारा ऊपर की ओर लगाया गया यह बल, उत्प्लावन बल कहलाता है।

किसी वस्तु पर लगने वाले उत्प्लावन बल का परिमाण कितना होता है? क्या किसी एक ही वस्तु के लिए यह सभी तरलों में समान होता है? क्या किसी दिए गए तरल में, सभी वस्तुएँ समान उत्प्लावन बल का अनुभव करती हैं? इन प्रश्नों का उत्तर आर्किमीडीज़ के सिद्धांत द्वारा प्राप्त होता है, जिसको निम्न प्रकार से व्यक्त किया जाता है:

जब किसी वस्तु को किसी तरल में पूर्ण या आंशिक रूप से डुबोया जाता है तो वह ऊपर की दिशा में एक बल का अनुभव करती है जो वस्तु द्वारा हटाए गए तरल के भार के बराबर होता है।

क्या अब आप स्पष्ट कर सकते हैं कि क्रियाकलाप 9.7 में पत्थर के पानी में पूरी तरह डूबने के बाद डोरी के प्रसार में और कमी क्यों नहीं हुई थी?

आर्किमीडीज़ एक ग्रीक वैज्ञानिक थे। उन्होंने एक सिद्धांत की खोज की जो उन्हीं के नाम से विख्यात है। यह सिद्धांत उन्होंने यह देखने के बाद खोजा कि नहाने के टब आर्किमिडीज में घुसने पर पानी बाहर बहने लगता है। वे सड़कों पर यूरेका (Eureka) यूरेका चिल्लाते हुए भागे, जिसका अर्थ है “मैंने पा लिया है।”

इस ज्ञान का उपयोग उन्होंने राजा के मुकुट में उपयोग हुए सोने की शुद्धता को मापने के लिए किया।

उनके यांत्रिकी तथा ज्यामिति में किए गए कार्यों ने उन्हें प्रसिद्ध कर दिया। उत्तोलक, घिरनी तथा पहिया और धुरी के विषय में उनके ज्ञान ने ग्रीक सेना को रोमन सेना के विरुद्ध लड़ाई में बहुत सहायता की। आर्किमीडीज़ के सिद्धांत के बहुत से अनुप्रयोग हैं। यह जलयानों तथा पनडुब्बियों के डिज़ाइन बनाने में काम आता है। दुगधमापी, जो दूध के किसी नमूने की शुद्धता की जाँच करने के लिए प्रयुक्त होते हैं तथा हाइड्रोमीटर, जो द्रवों के घनत्व मापने के लिए प्रयुक्त होते हैं, इसी सिद्धांत पर आधारित हैं।

प्रशन

**1.**एक तुला (weighing machine) पर आप अपना द्रव्यमान $42 \mathrm{~kg}$ नोट करते हैं। क्या आपका द्रव्यमान 42 $\mathrm{kg}$ से अधिक है या कम?

**2.आपवे पास एक रुई का बोरा तथा एक लोहे की छड़ है। तुला पर मापने पर दोनों $100 \mathrm{~kg}$ द्रव्यमान दर्शाते हैं। वास्तविकता में एक-दूसरे से भारी है। क्या आप बता सकते हैं कि कौन-सा भारी है और क्यों?

आपने क्या सीखा

  • गुरुत्वाकर्षण के नियम के अनुसार किन्हीं दो पिंडों के बीच आकर्षण बल उन दोनों के द्रव्यमानों के गुणनफल के समानुपाती तथा उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है। यह नियम सभी पिंडों पर लागू होता है चाहे वह विश्व में कहीं भी हों। इस प्रकार के नियम को सार्वत्रिक नियम कहते हैं।
  • गुरुत्वाकर्षण एक क्षीण बल है जब तक कि बहुत अधिक द्रव्यमान वाले पिंड संबद्ध न हों।
  • गुरुत्वीय बल पृथ्वी तल से ऊँचाई बढ़ने पर कम होता जाता है। यह पृथ्वी तल के विभिन्न स्थानों पर भी परिवर्तित होता है और इसका मान ध्रुवों से विषुवत वृत्त की ओर घटता जाता है। किसी वस्तु का भार, वह बल है जिससे पृथ्वी उसे अपनी ओर आकर्षित करती है।
  • किसी वस्तु का भार, द्रव्यमान तथा गुरुत्वीय त्वरण के गुणनफल के बराबर होता है।
  • किसी वस्तु का भार भिन्न-भिन्न स्थानों पर भिन्न-भिन्न हो सकता है, किंतु द्रव्यमान स्थिर रहता है।

अभ्यास

1. यदि दो वस्तुओं के बीच की दूरी को आधा कर दिया जाए तो उनके बीच गुरुत्वाकर्षण बल किस प्रकार बदलेगा?

2. सभी वस्तुओं पर लगने वाला गुरुत्वीय बल उनके द्रव्यमान के समानुपाती होता है। फिर एक भारी वस्तु हलकी वस्तु के मुकाबले तेज़ी से क्यों नहीं गिरती?

3. पृथ्वी तथा उसकी सतह पर रखी किसी $1 \mathrm{~kg}$ की वस्तु के बीच गुरुत्वीय बल का परिमाण क्या होगा? (पृथ्वी का द्रव्यमान $6 \times 10^{24} \mathrm{~kg}$ है तथा पृथ्वी की त्रिज्या $6.4 \times 10^{6} \mathrm{~m}$ है)।

4. पृथ्वी तथा चंद्रमा एक-दूसरे को गुरुत्वीय बल से आकर्षित करते हैं। क्या पृथ्वी जिस बल से चंद्रमा को आकर्षित करती है वह बल, उस बल से जिससे चन्द्रमा पृथ्वी को आकर्षित करता है बड़ा है या छोटा है या बराबर है? बताइए क्यों?

5. यदि चंद्रमा पृथ्वी को आकर्षित करता है, तो पृथ्वी चंद्रमा की ओर गति क्यों नहीं करती?

6. दो वस्तुओं के बीच लगने वाले गुरुत्वाकर्षण बल का क्या होगा, यदि

(i) एक वस्तु का द्रव्यमान दोगुना कर दिया जाए?

(ii) वस्तुओं के बीच की दूरी दोगुनी अथवा तीन गुनी कर दी जाए?

(iii) दोनों वस्तुओं के द्रव्यमान दोगुने कर दिए जाएँ?

7. गुरुत्वाकर्षण के सार्वत्रिक नियम के क्या महत्व हैं?

8. मुक्त पतन का त्वरण क्या है?

9. पृथ्वी तथा किसी वस्तु के बीच गुरुत्वीय बल को हम क्या कहेंगे?

10. एक व्यक्ति $\mathrm{A}$ अपने एक मित्र के निर्देश पर ध्रुवों पर कुछ ग्राम सोना खरीदता है। वह इस सोने को विषुवत वृत्त पर अपने मित्र को देता है। क्या उसका मित्र खरीदे हुए सोने के भार से संतुष्ट होगा? यदि नहीं, तो क्यों? (संकेतः ध्रुवों पर $g$ का मान विषुवत वृत्त की अपेक्षा अधिक है।)

11. एक कागज की शीट, उसी प्रकार की शीट को मरोड़ कर बनाई गई गेंद से धीमी क्यों गिरती है?

12. चंद्रमा की सतह पर गुरुत्वीय बल, पृथ्वी की सतह पर गुरुत्वीय बल की अपेक्षा $1 / 6$ गुणा है। एक $10 \mathrm{~kg}$ की वस्तु का चंद्रमा पर तथा पृथ्वी पर न्यूटन में भार क्या होगा?

13. एक गेंद ऊर्ध्वाधर दिशा में ऊपर की ओर $49 \mathrm{~m} / \mathrm{s}$ के वेग से फेंकी जाती है। परिकलन कीजिए

(i) अधिकतम ऊँचाई जहाँ तक कि गेंद पहुँचती है।

(ii) पृथ्वी की सतह पर वापस लौटने में लिया गया कुल समय।

14. $19.6 \mathrm{~m}$ ऊँची एक मीनार की चोटी से एक पत्थर छोड़ा जाता है। पृथ्वी पर पहुँचने से पहले इसका अंतिम वेग ज्ञात कीजिए।

15. कोई पत्थर ऊध्र्वाधर दिशा में ऊपर की ओर $40 \mathrm{~m} / \mathrm{s}$ के प्रारंभिक वेग से फेंका गया है। $g=10 \mathrm{~m} / \mathrm{s}^{2}$ लेते हुए ग्राफ की सहायता से पत्थर द्वारा पहुँची अधिकतम ऊँचाई ज्ञात कीजिए। नेट विस्थापन तथा पत्थर द्वारा चली गई कुल दूरी कितनी होगी?

16. पृथ्वी तथा सूर्य के बीच गुरुत्वाकर्षण बल का परिकलन कीजिए। दिया है, पृथ्वी का द्रव्यमान $=6 \times 10^{24} \mathrm{~kg}$ तथा सूर्य का द्रव्यमान $=2 \times 10^{30} \mathrm{~kg}$ । दोनों के बीच औसत दूरी $1.5 \times 10^{11} \mathrm{~m}$ है।

17. कोई पत्थर $100 \mathrm{~m}$ ऊँची किसी मीनार की चोटी से गिराया गया और उसी समय कोई दूसरा पत्थर $25 \mathrm{~m} / \mathrm{s}$ के वेग से ऊध्ध्वाधर दिशा में ऊपर की ओर फेंका गया। परिकलन कीजिए कि दोनों पत्थर कब और कहाँ मिलेंगे।

18. ऊर्ध्वाधर दिशा में ऊपर की ओर फेंकी गई एक गेंद $6 \mathrm{~s}$ पश्चात् फेंकने वाले के पास लौट आती है। ज्ञात कीजिए

(a) यह किस वेग से ऊपर फेंकी गई;

(b) गेंद द्वारा पहुँची गई अधिकतम ऊँचाई; तथा

(c) $4 \mathrm{~s}$ पश्चात् गेंद की स्थिति।

19. किसी द्रव में डुबोई गई वस्तु पर उत्प्लावन बल किस दिशा में कार्य करता है?

20. पानी के भीतर किसी प्लास्टिक के गुटके को छोड़ने पर यह पानी की सतह पर क्यों आ जाता है?

21. $50 \mathrm{~g}$ के किसी पदार्थ का आयतन $20 \mathrm{~cm}^{3}$ है। यदि पानी का घनत्व $1 \mathrm{~g} \mathrm{~cm}^{-3}$ हो, तो पदार्थ तैरेगा या डूबेगा?

22. $500 \mathrm{~g}$ के एक मोहरबंद पैकेट का आयतन $350 \mathrm{~cm}^{3}$ है। पैकेट $1 \mathrm{~g} \mathrm{~cm}^{-3}$ घनत्व वाले पानी में तैरेगा या डूबेगा? इस पैकेट द्वारा विस्थापित पानी का द्रव्यमान कितना होगा? $0965 \mathrm{CH} 11$



Table of Contents

Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane