Tissues

From the last chapter, we recall that all living organisms are made of cells. In unicellular organisms, a single cell performs all basic functions. For example, in Amoeba, a single cell carries out movement, intake of food, gaseous exchange and excretion. But in multicellular organisms there are millions of cells. Most of these cells are specialised to carry out specific functions. Each specialised function is taken up by a different group of cells. Since these cells carry out only a particular function, they do it very efficiently. In human beings, muscle cells contract and relax to cause movement, nerve cells carry messages, blood flows to transport oxygen, food, hormones and waste material and so on. In plants, vascular tissues conduct food and water from one part of the plant to other parts. So, multi-cellular organisms show division of labour. Cells specialising in one function are often grouped together in the body. This means that a particular function is carried out by a cluster of cells at a definite place in the body. This cluster of cells, called a tissue, is arranged and designed so as to give the highest possible efficiency of function. Blood, phloem and muscle are all examples of tissues.

A group of cells that are similar in structure and/or work together to achieve a particular function forms a tissue.

6.1 Are Plants and Animals Made of Same Types of Tissues?

Let us compare their structure and functions. Do plants and animals have the same structure? Do they both perform similar functions? There are noticeable differences between the two. Plants are stationary or fixed - they don’t move. Since they have to be upright, they have a large quantity of supportive tissue. The supportive tissue generally has dead cells.

Animals on the other hand move around in search of food, mates and shelter. They consume more energy as compared to plants. Most of the tissues they contain are living.

Another difference between animals and plants is in the pattern of growth. The growth in plants is limited to certain regions, while this is not so in animals. There are some tissues in plants that divide throughout their life. These tissues are localised in certain regions. Based on the dividing capacity of the tissues, various plant tissues can be classified as growing or meristematic tissue and permanent tissue. Cell growth in animals is more uniform. So, there is no such demarcation of dividing and nondividing regions in animals.

The structural organisation of organs and organ systems is far more specialised and localised in complex animals than even in very complex plants. This fundamental difference reflects the different modes of life pursued by these two major groups of organisms, particularly in their different feeding methods. Also, they are differently adapted for a sedentary existence on one hand (plants) and active locomotion on the other (animals), contributing to this difference in organ system design.

It is with reference to these complex animal and plant bodies that we will now talk about the concept of tissues in some detail.

Questions

1. What is a tissue?

Show Answer

Answer

Group of cells that are similar in structure and are organized together to achieve a particular function is called tissue.

2. What is the utility of tissues in multi-cellular organisms?

Show Answer

Answer

In multicellular organisms, the body system is based on the division of labour( like muscle cells form muscular tissue to which helps in movement ). It means the cells performing a specific function are grouped together to form a particular tissue. The different tissues are organized in a way to provide highest efficiency in functioning of the body.

6.2 Plant Tissues

6.2.1 MERISTEMATIC TISSUE

Fig. 6.1: Growth of roots in onion bulbs

Activity 6.1

  • Take two glass jars and fill them with water.

  • Now, take two onion bulbs and place one on each jar, as shown in Fig. 6.1.

  • Observe the growth of roots in both the bulbs for a few days.

  • Measure the length of roots on day 1, 2 and 3.

  • On day 4, cut the root tips of the onion bulb in jar 2 by about $1 cm$. After this, observe the growth of roots in both the jars and measure their lengths each day for five more days and record the observations in tables, like the table below:

Length Day 1 Day 2 Day 3 Day 4 Day 5
Jar 1
Jar 2
  • From the above observations, answer the following questions:

    1. Which of the two onions has longer roots? Why?

    2. Do the roots continue growing even after we have removed their tips?

    3. Why would the tips stop growing in jar 2 after we cut them?

The growth of plants occurs only in certain specific regions. This is because the dividing tissue, also known as meristematic tissue, is located only at these points. Depending on the region where they are present, meristematic tissues are classified as apical, lateral and intercalary (Fig. 6.2). New cells produced by meristem are initially like those of meristem itself, but as they grow and mature, their characteristics slowly change and they become differentiated as components of other tissues.

Fig. 6.2: Location of meristematic tissue in plant body

Apical meristem is present at the growing tips of stems and roots and increases the length of the stem and the root. The girth of the stem or root increases due to lateral meristem (cambium). Intercalary meristem seen in some plants is located near the node.

Cells of meristematic tissue are very active, they have dense cytoplasm, thin cellulose walls and prominent nuclei. They lack vacuoles. Can we think why they would lack vacuoles? (You might want to refer to the functions of vacuoles in the chapter on cells.)

6.2.2 Permanent tissue

What happens to the cells formed by meristematic tissue? They take up a specific role and lose the ability to divide. As a result, they form a permanent tissue. This process of taking up a permanent shape, size, and a function is called differentiation. Differentiation leads to the development of various types of permanent tissues.

Activity 6.2

  • Take a plant stem and with the help of your teacher cut into very thin slices or ections.

  • Now, stain the slices with safranin. Place one neatly cut section on a slide, and put a drop of glycerine.

  • Cover with a cover-slip and observe under a microscope. Observe the various types of cells and their arrangement. Compare it with Fig. 6.3.

  • Now, answer the following on the basis of your observation:

    1. Are all cells similar in structure?

    2. How many types of cells can be seen?

    3. Can we think of reasons why there would be so many types of cells?

  • We can also try to cut sections of plant roots. We can even try cutting sections of root and stem of different plants.

6.2.2 (i) SIMPLE PERMANENT TISSUE

A few layers of cells beneath the epidermis are generally simple permanent tissue. Parenchyma is the most common simple permanent tissue. It consists of relatively unspecialised cells with thin cell walls. They are living cells. They are usually loosely arranged, thus large spaces between cells (intercellular spaces) are found in this tissue (Fig. 6.4a). This tissue generally stores food.

In some situations, it contains chlorophyll and performs photosynthesis, and then it is called chlorenchyma. In aquatic plants, large air cavities are present in parenchyma to help them float. Such a parenchyma type is called aerenchyma.

The flexibility in plants is due to another permanent tissue, collenchyma. It allows bending of various parts of a plant like tendrils and stems of climbers without breaking. It also provides mechanical support. We can find this tissue in leaf stalks below the epidermis. The cells of this tissue are living, elongated and irregularly thickened at the corners. There is very little intercellular space (Fig. 6.4 b ).

Fig. 6.4: Various types of simple tissues: (a) Parenchyma (b) Collenchyma (c) Sclerenchyma (i) transverse section, (ii) longitudinal section.

Yet another type of permanent tissue is sclerenchyma. It is the tissue which makes the plant hard and stiff. We have seen the husk of a coconut. It is made of sclerenchymatous tissue. The cells of this tissue are dead. They are long and narrow as the walls are thickened due to lignin. Often these walls are so thick that there is no internal space inside the cell (Fig. $6.4 c$ ). This tissue is present in stems, around vascular bundles, in the veins of leaves and in the hard covering of seeds and nuts. It provides strength to the plant parts.

Activity 6.3

  • Take a freshly plucked leaf of Rhoeo.

  • Stretch and break it by applying pressure.

  • While breaking it, keep it stretched gently so that some peel or skin projects out from the cut.

  • Remove this peel and put it in a petri dish filled with water.

  • Add a few drops of safranin.

  • Wait for a couple of minutes and then transfer it onto a slide. Gently place a cover slip over it.

  • Observe under microscope.

What you observe is the outermost layer of cells, called epidermis. The epidermis is usually made of a single layer of cells. In some plants living in very dry habitats, the epidermis may be thicker since protection against water loss is critical. The entire surface of a plant has an outer covering epidermis. It protects all the parts of the plant. Epidermal cells on the aerial

Fig. 6.5: Guard cells and epidermal cells: (a) lateral view, (b) surface view

parts of the plant often secrete a waxy, waterresistant layer on their outer surface. This aids in protection against loss of water, mechanical injury and invasion by parasitic fungi. Since it has a protective role to play, cells of epidermal tissue form a continuous layer without intercellular spaces. Most epidermal cells are relatively flat. Often their outer and side walls are thicker than the inner wall.

We can observe small pores here and there in the epidermis of the leaf. These pores are called stomata (Fig. 6.5). Stomata are enclosed by two kidney-shaped cells called guard cells. They are necessary for exchanging gases with the atmosphere. Transpiration (loss of water in the form of water vapour) also takes place through stomata.

Recall which gas is required for photosynthesis.

Find out the role of transpiration in plants.

Epidermal cells of the roots, whose function is water absorption, commonly bear long hairlike parts that greatly increase the total absorptive surface area.

In some plants like desert plants, epidermis has a thick waxy coating of cutin (chemical substance with waterproof quality) on its outer surface. Can we think of a reason for this?

Is the outer layer of a branch of a tree different from the outer layer of a young stem?

As plants grow older, the outer protective tissue undergoes certain changes. A strip of secondary meristem located in the cortex forms layers of cells which constitute the cork. Cells of cork are dead and compactly arranged without intercellular spaces (Fig. 6.6). They also have a substance called suberin in their walls that makes them impervious to gases and water.

Fig. 6.6: Protective tissue

6.2.2 (ii) COMPLEX PERMANENT TISSUE

The different types of tissues we have discussed until now are all made of one type of cells, which look like each other. Such tissues are called simple permanent tissue. Yet another type of permanent tissue is complex tissue. Complex tissues are made of more than one type of cells. All these cells coordinate to perform a common function. Xylem and phloem are examples of such complex tissues. They are both conducting tissues and constitute a vascular bundle. Vascular tissue is a distinctive feature of the complex plants, one that has made possible their survival in the terrestrial environment. In Fig. 6.3 showing a section of stem, can you see different types of cells in the vascular bundle?

Xylem consists of tracheids, vessels, xylem parenchyma (Fig. 6.7 a,b,c) and xylem fibres. Tracheids and vessels have thick walls, and many are dead cells when mature. Tracheids and vessels are tubular structures. This allows them to transport water and minerals vertically. The parenchyma stores food. Xylem fibres are mainly supportive in function.

Phloem is made up of five types of cells: sieve cells, sieve tubes, companion cells, phloem fibres and the phloem parenchyma [Fig. 6.7 (d)]. Sieve tubes are tubular cells with perforated walls. Phloem transports food from leaves to other parts of the plant. Except phloem fibres, other phloem cells are living cells.

Fig. 6.7: Types of complex tissue

Questions

1. Name types of simple tissues.

Show Answer

Answer

The three main types of simple tissues are:

  1. Parenchyma

  2. Collenchyma

  3. Sclerenchyma

2. Where is apical meristem found?

Show Answer

Answer

Growing tips of stems and roots of plants are the main are where apical meristem is present. It helps in increasing the length of the stem and the root.

3. Which tissue makes up the husk of coconut?

Show Answer

Answer

The husk of coconut is made up of sclerenchymatous tissue.

4. What are the constituents of phloem?

Show Answer

Answer

The constituents of phloem tissue are:

  1. Sieve tubes (tubular living cells with perforated end walls)

  2. Companion cell (living cells)

  3. Phloem parenchyma (living cells)

  4. Phloem fibres (non-living and sclerenchyma cells)

6.3 Animal Tissues

When we breathe we can actually feel the movement of our chest. How do these body parts move? For this we have specialised cells called muscle cells (Fig. 6.8). The contraction and relaxation of these cells result in movement.

Fig. 6.8: Location of muscle fibres

During breathing we inhale oxygen. Where does this oxygen go? It is absorbed in the lungs and then is transported to all the body cells through blood. Why would cells need oxygen? The functions of mitochondria we studied earlier provide a clue to this question. Blood flows and carries various substances from one part of the body to the other. For example, it carries oxygen and food to all cells. It also collects wastes from all parts of the body and carries them to the liver and kidney for disposal.

Blood and muscles are both examples of tissues found in our body. On the basis of the functions they perform we can think of different types of animal tissues, such as epithelial tissue, connective tissue, muscular tissue and nervous tissue. Blood is a type of connective tissue, and muscle forms muscular tissue.

6.3.1 EPITHELIAL TISSUE

The covering or protective tissues in the animal body are epithelial tissues. Epithelium covers most organs and cavities within the body. It also forms a barrier to keep different body systems separate. The skin, the lining of the mouth, the lining of blood vessels, lung alveoli and kidney tubules are all made of epithelial tissue. Epithelial tissue cells are tightly packed and form a continuous sheet. They have only a small amount of cementing material between them and almost no intercellular spaces. Obviously, anything entering or leaving the body must cross at least one layer of epithelium. As a result, the permeability of the cells of various epithelia play an important role in regulating the exchange of materials between the body and the external environment and also between different parts of the body. Regardless of the type, all epithelium is usually separated from the underlying tissue by an extracellular fibrous basement membrane.

Different epithelia (Fig. 6.9) show differing structures that correlate with their unique functions. For example, in cells lining blood vessels or lung alveoli, where transportation of substances occurs through a selectively permeable surface, there is a simple flat kind of epithelium. This is called the simple squamous epithelium (squama means scale of skin). Simple squamous epithelial cells are extremely thin and flat and form a delicate lining. The oesophagus and the lining of the mouth are also covered with squamous epithelium. The skin, which protects the body, is also made of squamous epithelium. Skin epithelial cells are arranged in many layers to prevent wear and tear. Since they are arranged in a pattern of layers, the epithelium is called stratified squamous epithelium.

Fig. 6.9: Different types of epithelial tissues

Where absorption and secretion occur, as in the inner lining of the intestine, tall epithelial cells are present. This columnar (meaning ‘pillar-like’) epithelium facilitates movement across the epithelial barrier. In the respiratory tract, the columnar epithelial tissue also has cilia, which are hair-like projections on the outer surfaces of epithelial cells. These cilia can move, and their movement pushes the mucus forward to clear it. This type of epithelium is thus ciliated columnar epithelium.

Cuboidal epithelium (with cube-shaped cells) forms the lining of kidney tubules and ducts of salivary glands, where it provides mechanical support. Epithelial cells often acquire additional specialisation as gland cells, which can secrete substances at the epithelial surface. Sometimes a portion of the epithelial tissue folds inward, and a multicellular gland is formed. This is glandular epithelium.

6.3.2 CONNECTIVE TISSUE

Blood is a type of connective tissue. Why would it be called ‘connective’ tissue? A clue is provided in the introduction of this chapter! Now, let us look at this type of tissue in some more detail. The cells of connective tissue are loosely spaced and embedded in an intercellular matrix (Fig. 6.10). The matrix may be jelly like, fluid, dense or rigid. The nature of matrix differs in concordance with the function of the particular connective tissue.

Activity 6.4

  • Take a drop of blood on a slide and observe different cells present in it under a microscope.

Fig. 6.10: Types of connective tissues: (a) types of blood cells, (b) compact bone, (c) hyaline cartilage, (d) areolar tissue, (e) adipose tissue

Blood has a fluid (liquid) matrix called plasma, in which red blood corpuscles (RBCs), white blood corpuscles (WBCs) and platelets are suspended. The plasma contains proteins, salts and hormones. Blood flows and transports gases, digested food, hormones and waste materials to different parts of the body.

Bone is another example of a connective tissue. It forms the framework that supports the body. It also anchors the muscles and supports the main organs of the body. It is a strong and nonflexible tissue (what would be the advantage of these properties for bone functions?). Bone cells are embedded in a hard matrix that is composed of calcium and phosphorus compounds.

Two bones can be connected to each other by another type of connective tissue called the ligament. This tissue is very elastic. It has considerable strength. Ligaments contain very little matrix and connect bones with bones. Tendons connect muscles to bones and are another type of connective tissue. Tendons are fibrous tissue with great strength but limited flexibility.

Another type of connective tissue, cartilage, has widely spaced cells. The solid matrix is composed of proteins and sugars. Cartilage smoothens bone surfaces at joints and is also present in the nose, ear, trachea and larynx. We can fold the cartilage of the ears, but we cannot bend the bones in our arms. Think of how the two tissues are different!

Areolar connective tissue is found between the skin and muscles, around blood vessels and nerves and in the bone marrow. It fills the space inside the organs, supports internal organs and helps in repair of tissues.

Where are fats stored in our body? Fatstoring adipose tissue is found below the skin and between internal organs. The cells of this tissue are filled with fat globules. Storage of fats also lets it act as an insulator.

6.3.3 MUSCULAR TISSUE

Muscular tissue consists of elongated cells, also called muscle fibres. This tissue is responsible for movement in our body.

Muscles contain special proteins called contractile proteins, which contract and relax to cause movement.

Fig. 6.11: Types of muscles fibres: (a) striated muscle, (b) smooth muscle, (c) cardiac muscle

We can move some muscles by conscious will. Muscles present in our limbs move when we want them to, and stop when we so decide. Such muscles are called voluntary muscles [Fig. 6.11(a)]. These muscles are also called skeletal muscles as they are mostly attached to bones and help in body movement. Under the microscope, these muscles show alternate light and dark bands or striations when stained appropriately. As a result, they are also called striated muscles. The cells of this tissue are long, cylindrical, unbranched and multinucleate (having many nuclei).

The movement of food in the alimentary canal or the contraction and relaxation of blood vessels are involuntary movements. We cannot really start them or stop them simply by wanting to do so! Smooth muscles [Fig. $6.11(b)$] or involuntary muscles control such movements. They are also found in the iris of the eye, in ureters and in the bronchi of the lungs. The cells are long with pointed ends (spindle-shaped) and uninucleate (having a single nucleus). They are also called unstriated muscles - why would they be called that?

The muscles of the heart show rhythmic contraction and relaxation throughout life. These involuntary muscles are called cardiac muscles [Fig. 6.11(c)]. Heart muscle cells are cylindrical, branched and uninucleate.

Activity 6.5

  • Compare the structures of different types of muscular tissues. Note down their shape, number of nuclei and position of nuclei within the cell in the Table 6.1.

    Table 6.1:

    Features Straited Smooth Cardiac
    Shape
    Number of nuclei
    Position of nuclei

6.3.4 NERVOUS TISSUE

All cells possess the ability to respond to stimuli. However, cells of the nervous tissue are highly specialised for being stimulated and then transmitting the stimulus very rapidly from one place to another within the body. The brain, spinal cord and nerves are all composed of the nervous tissue. The cells of this tissue are called nerve cells or neurons. A neuron consists of a cell body with a nucleus and cytoplasm, from which long thin hair-like parts arise (Fig. 6.12). Usually each neuron has a single long part (process), called the axon, and many short, branched parts

Fig. 6.12: Neuron-unit of nervous tissue

(processes) called dendrites. An individual nerve cell may be up to a metre long. Many nerve fibres bound together by connective tissue make up a nerve.

The signal that passes along the nerve fibre is called a nerve impulse. Nerve impulses allow us to move our muscles when we want to. The functional combination of nerve and muscle tissue is fundamental to most animals. This combination enables animals to move rapidly in response to stimuli.

Questions

1. Name the tissue responsible for movement in our body.

Show Answer

Answer

Muscular tissue.

2. What does a neuron look like?

Show Answer

Answer

A neuron consists of a cell body with a nucleus and cytoplasm. It has two important extension name as axon and dendrites. Each neuron has a single long part, called the axon and many short, branched parts called dendrites. Many nerve fibres bound together by connective tissue to make up a nerve.

3. Give three features of cardiac muscles.

Show Answer

Answer

Below are features of cardiac muscles:

  1. These are involuntary, show rhythmic contraction and relaxation throughout life.

  2. The cells are cylindrical, branched, and uninucleate having faint cross striations.

  3. These muscles do not get fatigued under normal conditions.

4. What are the functions of areolar tissue?

Show Answer

Answer

Functions of areolar tissue:

  1. It fills the space inside the organs, thus acts as a packing tissue between the organs.

  2. It supports many delicate organs in the body.

  3. It plays role in repair of tissues.

What you have learnt

  • Tissue is a group of cells similar in structure and function.

  • Plant tissues are of two main types - meristematic and permanent.

  • Meristematic tissue is the dividing tissue present in the growing regions of the plant.

  • Permanent tissues are derived from meristematic tissue once they lose the ability to divide. They are classified as simple and complex tissues.

  • Parenchyma, collenchyma and sclerenchyma are three types of simple tissues. Xylem and phloem are types of complex tissues.

  • Animal tissues can be epithelial, connective, muscular and nervous tissue.

  • Depending on shape and function, epithelial tissue is classified as squamous, cuboidal, columnar, ciliated and glandular.

  • The different types of connective tissues in our body include areolar tissue, adipose tissue, bone, tendon, ligament, cartilage and blood.

  • Striated, unstriated and cardiac are three types of muscle tissues.

  • Nervous tissue is made of neurons that receive and conduct impulses.

Exercises

1. Define the term “tissue”.

Show Answer

Answer

Group of cells that are similar in structure and are organized together to achieve a particular function is called tissue.

2. How many types of elements together make up the xylem tissue? Name them.

Show Answer

Answer

The following four types of elements make up xylem tissue:

  1. Xylem tracheids.

  2. Xylem vessels.

  3. Xylem parenchyma.

  4. Xylem fibres.

3. How are simple tissues different from complex tissues in plants?

Show Answer

Answer

Simple Tissue

Made up of only one type of cells.

Mainly responsible for mechanical support and storage.

Examples : Parenchyma, collenchyma and sclerenchyma

Complex Tissue

Made up of more than one type of cells.

Mainly responsible for the transport of water, minerals, sugars and other metabolites.

Examples Xylem and phloem.

4. Differentiate between parenchyma, collenchyma and sclerenchyma on the basis of their cell wall.

Show Answer

Answer

Differences between parenchyma, collenchyma and sclerenchyma

Parenchyma Collenchyma Sclerenchyma
These are living cells with thin walls. These are living cells with slightly thick walls. These are dead cells with thick cell walls.
Cells are uniformly thin. Cells are elongated. Cells are long and narrow.
The cells are loosely packed with large intercellular spaces. The cells are irregularly thickened at the corners with very little intercellular spaces. The cells are thickened due to lignin. These are so thick that there is no internal space inside the cell.

5. What are the functions of the stomata?

Show Answer

Answer

Stomata are essential for gas exchange with the atmosphere and help in transpiration in the form of water vapour through leaves.

6. Diagrammatically show the difference between the three types of muscle fibres.

Show Answer

Answer

The three type of muscles fiber are:

  1. Streated muscle

  2. Smooth muscle

  3. Cardiac muscle

7. What is the specific function of the cardiac muscle?

Show Answer

Answer

The cardiac muscles are branched and cylindrical. They are uninucleated and are involuntary in nature. The cardiac muscles bring about a rhythmic contraction and relaxation throughout one’s lifetime.

8. Differentiate between striated, unstriated and cardiac muscles on the basis of their structure and site/location in the body.

Show Answer

Answer

The following are the differences between different types of muscles, based on their structure and location in the body.

Character Striated muscles Un-striated muscles Cardiac muscles
Shape/Structure Long, cylindrical, non - tapering. Long and tapering. Cylindrical and non - tapering.
Branching They are un-branched. They are un-branched. They are branched.
Location in body Hands, legs and skeletal muscles Wall of stomach, intestine, ureter and bronchi Heart
Dark and light Present Absent Present but less

9. Draw a labelled diagram of a neuron.

Show Answer

Answer

10. Name the following.

(a) Tissue that forms the inner lining of our mouth.

(b) Tissue that connects muscle to bone in humans.

(c) Tissue that transports food in plants.

(d) Tissue that stores fat in our body.

(e) Connective tissue with a fluid matrix.

(f) Tissue present in the brain.

Show Answer

Answer

(a) Tissue that forms the inner lining of our mouth – The epithelial tissue, Squamous epithelium.

(b) Tissue that connects muscle to bone in humans – Tendon

(c) Tissue that transports food in plants – Phloem

(d) Tissue that stores fat in our body – Adipose tissue

(e) Connective tissue with a fluid matrix – Blood, it is a fluid connective tissue

(f) Tissue present in the brain – Nervous tissue

11. Identify the type of tissue in the following: skin, bark of tree, bone, lining of kidney tubule, vascular bundle.

Show Answer

Answer

Skin: Stratified squamous epithelial tissue

Bark of tree: Protective tissue and cork

Bone: Connective tissue

Lining of kidney tubule: Cuboidal epithelial tissue

Vascular bundle: Conducting tissue (xylem and phloem), complex permanent tissue

12. Name the regions in which parenchyma tissue is present.

Show Answer

Answer

The parenchyma is found in:

  • The pith of stems and roots

  • When parenchyma contains chlorophyll it is called a chlorenchyma. It is found in green leaves

  • Parenchyma found in aquatic plants has large air cavities which enables them to float, and are hence called aerenchyma.

13. What is the role of epidermis in plants?

Show Answer

Answer

The epidermis in plants forms an uninterrupted and continuous layer that has no intercellular spaces. It provides protection

14. How does the cork act as a protective tissue?

Show Answer

Answer

Cork cells are dead. The arrangement of cells is so dense, that there is no intercellular space. Deposition of suberin is observed on the walls of the cells that make them impervious to water and gases.

15. Complete the following chart:

Show Answer

Answer

हमने पिछले अध्याय में पढ़ा कि सभी जीवित प्राणी या पौधे कोशिकाओं के बने होते हैं। एक कोशिक जीवों में, सभी मौलिक कार्य एक ही कोशिका द्वारा किए जाते हैं। उदाहरण के लिए, अमीबा में एक ही कोशिका द्वारा गति, भोजन लेने की क्रिया, गैसीय विनिमय और उत्सर्जन क्रिया संपन्न की जाती है। लेकिन बहुकोशिक जीवों में लाखों कोशिकाएँ होती हैं। इनमें से अधिकतर कोशिकाएँ कुछ विशिष्ट कार्यों को ही संपन्न करने में सक्षम होती हैं। प्रत्येक विशेष कार्य कोशिकाओं के विभिन्न समूहों द्वारा किया जाता है। कोशिकाओं के ये समूह एक विशिष्ट कार्य को ही अति दक्षता पूर्वक संपन्न करने के लिए सक्षम होते हैं। मनुष्यों में, पेशीय कोशिका फैलती और सिकुड़ती है, जिससे गति होती है, तंत्रिका कोशिकाएँ संदेशों की वाहक होती हैं; रक्त, ऑक्सीजन, भोजन, हॉर्मोन और अपशिष्ट पदार्थों का वहन करता है। मौधों में, वाहक नलियों से संबंधित कोशिकाएँ भोजन और पानी को एक जगह से दूसरी जगह ले जाती हैं। अतः बहुकोशिक जीवों में श्रम विभाजन होता है। शरीर के अंदर ऐसी कोशिकाएँ जो एक तरह के कार्य को संपन्न करने में दक्ष होती हैं, सदैव एक समूह में होती हैं। इससे ज्ञात होता है कि शरीर के अंदर एक निश्चित कार्य एक निश्चित स्थान पर कोशिकाओं के एक विशिष्ट समूह द्वारा संपन्न किया जाता है। कोशिकाओं का यह समूह ऊतक कहलाता है। ये ऊतक अधिकतम दक्षता के साथ कार्य कर सकने के लिए एक विशिष्ट क्रम में व्यवस्थित होते हैं। रक्त, फ़्लोएम तथा पेशी ऊतक के उदाहरण हैं। वे कोशिकाएँ जो आकृति में एक समान होती हैं तथा किसी कार्य को एक साथ संपन्न करती हैं, समूह में एक ऊतक का निर्माण करती हैं।

6.1 क्या पौधे और जंतु एक ही तरह के ऊतकों से बने होते हैं?

आइए हम विभिन्न ऊतकों की संरचनाओं तथा उनके कार्यों की तुलना करें। क्या पौधों और जंतुओं की संरचनाएँ समान होती हैं? क्या दोनों समरूप कार्य करते हैं?

दोनों में स्पष्ट अंतर होता है। पौधे स्थिर होते हैंवे गति नहीं करते हैं। चूंकि उन्हें सीधा खड़ा होना होता है अतः उनमें बड़ी मात्रा में सहारा प्रदान करने वाले ऊतक होते हैं। ये सहारा प्रदान करने वाले ऊतक प्रायः मृत कोशिकाओं के बने होते हैं।

दूसरी ओर, जंतु भोजन, साथी और आश्रय की खोज में इधर-उधर विचरण करते हैं। ये पौधों की अपेक्षा ऊर्जा का अधिक उपभोग करते हैं। जंतुओं के अधिकांश ऊतक जीवित होते हैं।

जंतु और पौधों के बीच उनकी वृद्धि के प्रतिरूप में एक और भिन्नता है। पौधों की वृद्धि कुछ क्षेत्रों में ही सीमित रहती है जबकि जंतुओं में ऐसा नहीं होता। पौधों के कुछ ऊतक जीवन भर विभाजित होते रहते हैं। ऐसे ऊतक कुछ क्षेत्रों में ही सीमित रहते हैं। ऊतकों की विभाजन-क्षमता के आधार पर ही पौधों के ऊतकों (पादप ऊतकों) का वर्गीकरण किया जाता है:

वृद्धि अथवा विभज्योतक तथा स्थायी ऊतक। जंतुओं में कोशिका वृद्धि अधिक एकरूप होती है। अतः जंतुओं में विभाज्य तथा अविभाज्य क्षेत्रों की कोई निश्चित सीमा नहीं होती।

अंगों और अंग-तंत्रों का संरचनात्मक संगठन जटिल पौधों की अपेक्षा जटिल जंतुओं में अति विशिष्ट तथा सीमित होता है। यह मूल अंतर जीवधारियों के दो महत्वपूर्ण समूहों के जीवनयापन के विभिन्न तरीकों को दर्शाता है, विशेषकर इनके भोजन करने की प्रक्रिया में। संरचनात्मक संगठन, एक ओर पौधों के गतिहीन अस्तित्व तथा दूसरी ओर जंतुओं के प्रचलन के लिए अंगतंत्रों के विकास हेतु विभिन्न प्रकार से अनुकूलित होते हैं।

जटिल जंतुओं तथा पौधों के संदर्भ में अब हम ऊतकों की अवधारणा के बारे में विस्तृत चर्चा करेंगे।

प्रशन

**1.**ऊतक क्या है?

**2.**बहुकोशिक जीवों में उतकों का क्या उपयोग है?

6.2 पादप ऊतक

6.2.1 विभज्योतक

जार-1

जार-2 चित्र 6.1: प्याज के मूल में वृद्धि

क्रियाकलाप 6.1

  • दो शीशे के जार लेते हैं और उनमें पानी भर देते हैं।

  • अब दो प्याज़ लेते हैं और दोनों जारों पर एक-एक प्याज़ रख देते हैं, जैसा कि चित्र 6.1 में दिखाया गया है।

  • कुछ दिनों तक दोनो प्याज़ों की मूलों की लंबाई मापते हैं।

  • पहले, दूसरे और तीसरे दिनों में मूल की लंबाई को माप लेते हैं।

  • दूसरे जार में रखी प्याज़ की मूल को चौथे दिन $1 \mathrm{~cm}$ काट लेते हैं। इसके बाद दोनों जार में रखी प्याज़ की मूलों की लंबाइयों का पाँच दिनों तक निरीक्षण करें और उनमें हुई प्रत्येक दिन की वृद्धि की माप को नीचे दी गई तालिका में लिखें।

  • ऊपर के निरीक्षणों को देखते हुए नीचे दिए गए प्रश्नों के उत्तर दें:

    1. किस जार में रखी हुई प्याज़ की मूल लंबी है?

    2. हमारे द्वारा मूल के ऊपरी हिस्से को काट लेने के बाद भी क्या वह वृद्धि करती रहती है?

    3. जब हम जार-2 में रखी प्याज़ की मूल के ऊपरी हिस्से को काटते हैं तो वे वृद्धि करना बंद कर देंगी, क्यों?

पौधों में वृद्धि कुछ निश्चित क्षेत्रों में ही होती है। ऐसा विभाजित ऊतकों के उन भागों में पाए जाने के कारण होता है। ऐसे ऊतकों को विभज्योतक (Meristematic tissue) भी कहा जाता है। ये विभज्योतक किस भाग में स्थित हैं, विभज्योतक की उपस्थिति वाले क्षेत्रों के आधार पर इन्हें शीर्षस्थ, केंबियम (पार्श्वीय) तथा अंतर्विष्ट भागों में वर्गीकृत किया जाता है (चित्र 6.2)। विभज्योतक के द्वारा तैयार नई कोशिकाएँ प्रारंभ में विभज्योतक की तरह

होती हैं लेकिन जैसे ही ये बढ़ती और परिपक्व होती हैं, इनके गुणों में धीर-धीरे परिवर्तन होता है और ये दूसरे ऊतकों के घटकों के रूप में विभाजित हो जाती हैं।

चित्र 6.2: किसी पौधे में विभज्योतक की स्थिति

प्ररोह के शीर्षस्थ विभज्योतक जड़ों एवं तनों की वृद्धि वाले भाग में विद्यमान रहता है तथा वह इनकी लंबाई में वृद्धि करता है। तने की परिधि या मूल में वृद्धि पार्श्व विभज्योतक (कैंबियम) के कारण होती है। अंतर्विष्ट विभज्योतक कुछ पौधों में पर्वसंधियों के पास पाए जाते हैं।

विभ्ज्योतक की कोशिकाएँ अत्यधिक क्रियाशील होती हैं, उनके पास बहुत अधिक कोशिकाद्रव्य, पतली कोशिका भित्ति, और स्पष्ट केंद्रक होते हैं। उनके पास रसधानी नहीं होती है। क्या हम सोच सकते हैं कि उनके पास रसधानी क्यों नहीं होती है? (आप कोशिकाओं पर आधारित अध्याय में उल्लेखित रसधानियों के कार्यों का संज्ञान ले सकते हैं।)

6.2.2 स्थायी ऊतक

विभज्योतक द्वारा बनी कोशिकाओं का क्या होता है? ये एक विशिष्ट कार्य करती हैं और विभाजित होने की शक्ति को खो देती हैं जिसके फलस्वरूप वे स्थायी ऊतक का निर्माण करती हैं। इस प्रकार एक विशिष्ट कार्य करने के लिए स्थायी रूप और आकार लेने की क्रिया को विभेदीकरण कहते हैं। विभज्योतक की कोशिकाएँ विशिष्टीकृत होकर विभिन्न प्रकार के स्थायी ऊतक का विकास करती है।

क्रियाकलाप 6.2

  • एक पौधे के तने को लीजिए तथा अपने शिक्षक की सहायता से उसके पतले सैक्शन काटिए।

अब सभी सैक्शन को सेफ्रेनिन से रंजित करें। एक अच्छे से कटे हुए सैक्शन को स्लाइड पर रखें और उस पर ग्लिसरीन की एक बूँद डालें। उसको कवर-स्लिप से ढक दें और स्लाइड का निरीक्षण सूक्ष्मदर्शी से करें। विभिन्न प्रकार की कोशिकाओं का अध्ययन करें और उनके विन्यास को देखें। चित्र 6.3 से इसकी तुलना करें। अब नीचे दिए गए प्रश्नों पर विचार करें और निरीक्षण के आधार पर उनके उत्तर दें:

1. क्या सभी कोशिकाओं की संरचनाएँ समान हैं?

2. कितने प्रकार की कोशिकाओं को देखा जा सकता है?

3. क्या हम उन कारणों पर विचार कर सकते हैं कि कोशिकाओं के इतने प्रकार क्यों हैं? हम पौधे की मूलों का सैक्शन काटने की कोशिश कर सकते हैं। हम विभिन्न पौधों के मूल और तने का सैक्शन भी काट सकते हैं।

6.2.2 (i) सरल स्थायी ऊतक

एपिडर्मिस के नीचे कोशिकाओं की कुछ परतें होती हैं जिसे सरल स्थायी ऊतक कहते हैं। पैरेन्कइमा सबसे अधिक पाया जाने वाला सरल स्थायी ऊतक है। यह पतली कोशिका भित्ति वाली सरल कोशिकाओं का बना होता है। ये जीवित कोशिकाएँ हैं। ये प्राय: बंधन मुक्त होती हैं तथा इस प्रकार के ऊतक की कोशिकाओं के मध्य काफी रिक्त स्थान पाया जाता है [चित्र $6.4 \mathrm{a}$ ]। ये ऊतक प्रायः भोजन का भंडारण

चित्र 6.4: विभिन्न प्रकार के सरल ऊतकः (a) पैरेन्काइमा (b) कॉलेन्काइमा

चित्र 6.4: (c) स्क्लेरेन्काइमा (i) अनुप्रस्थ सैक्शन (ii) अनुदैधर्ध्य सैक्शन

करती हैं। कुछ पैरेन्काइमा ऊतकों में क्लोरोफिल पाया जाता है, जिसके कारण प्रकाश संश्लेषण की क्रिया संपन्न होती है। स्थितियों में इन ऊतकों को क्लोरेन्काइमा (हरित ऊतक) कहा जाता है। जलीय पौधों में पैरेन्काइमा की कोशिकाओं के मध्य हवा की बड़ी गुहिकाएँ (cavities) होती हैं, जिसके कारण ये जल में उतराती हैं। इस प्रकार के पैरेन्काइमा को ऐरेन्काइमा कहते हैं। पौधों में लचीलेपन का गुण एक अन्य स्थायी ऊतक, कॉलेन्काइमा के कारण होता है। यह पौधों के विभिन्न भागों (पत्ती, तना) में बिना टूटे हुए लचीलापन लाता है। यह पौधों को यांत्रिक सहायता भी प्रदान करता है। हम इस ऊतक को एपिडर्मिस के नीचे पर्णवृत में पा सकते हैं। इस ऊतक की कोशिकाएँ जीवित, लंबी और अनियमित ढंग से कोनों पर मोटी होती हैं तथा कोशिकाओं के बीच बहुत कम स्थान होता है [चित्र 6.4 (b)]।

एक अन्य प्रकार का ऊतक स्क्लेरेन्काइमा होता है। यह ऊतक पौधे को कठोर एवं मज़बूत बनाता है। हमने नारियल के रेशेयुक्त छिलके को देखा है। यह स्क्लेरेन्काइमा ऊतक से बना होता है। इस ऊतक की कोशिकाएँ मृत होती हैं। ये लंबी और पतली होती हैं क्योंकि इस ऊतक की भित्ति लिग्निन के कारण मोटी होती है। ये भित्तियाँ प्राय: इतनी मोटी होती हैं कि कोशिका के भीतर कोई आंतरिक स्थान नहीं होता है [चित्र 6.4 (c)]। यह ऊतक तने में, संवहन बंडल के समीप, पत्तों की शिराओं में तथा बीजों और फलों के कठोर छिलके में उपस्थित होता है। यह पौधों के भागों को मज़बूती प्रदान करता है।

क्रियाकलाप 6.3

  • रियो की ताज़ा तोड़ी हुई पत्ती लीजिए।

  • इसे दबाव लगाकर इस तरह तोड़िए कि पत्ती का छिलका अलग निकल आए।

  • इस छिलके को अलग करके जल से भरी हुई पैट्रिडिश में रखें।

  • इसमें कुछ बूँद सेफ्रेनिन विलयन की डालिए।

(a)

(b)

चित्र 6.5: द्वार कोशिकाएँ तथा एपीडर्मिस कोशिकाएँ: (a) पार्श्व दृश्य, (b) पृष्ठ दृश्य

  • कुछ समय (लगभग दो मिनट) पश्चात् छिलके को स्लाइड पर रख दीजिए तथा इसे धीरे से कवर स्लिप से ढकें।

  • इसका सूक्ष्मदर्शी द्वारा अवलोकन कीजिए।

जो आप देख रहे हैं वह कोशिकाओं की सबसे बाहरी परत एपीडर्मिस है। एपीडर्मिस प्रायः कोशिकाओं के एक परत की बनी होती है। शुष्क स्थानों पर मिलने वाले पादपों में एपीडर्मिस मोटी हो सकती है। जो जल के क्षय से बचाव हेतु महत्वपूर्ण है। पौधे की पूरी सतह एपीडर्मिस से ढकी रहती है। यह पौधे के सभी भागों की रक्षा करती है। एपीडर्मल कोशिका पौधों की बाह्य सतह पर प्रायः एक मोम जैसी जल प्रतिरोधी परत बनाती है। यह जल क्षय के विरुद्ध यांत्रिक आघात तथा परजीवी कवक के प्रवेश से पौधों की रक्षा करती है। क्योंकि एपीडर्मल कोशिकाओं का उत्तरदायित्व रक्षा करने का है, अतः इसकी कोशिकाएँ बिना किसी अंतर्कोशिकीय स्थान के अछिन्न परत बनाती हैं। अधिकांश एपीडर्मल कोशिकाएँ अपेक्षाकृत चपटी होती हैं। सामान्यतः उनकी बाह्य तथा पार्श्व भित्तियाँ उनकी आंतरिक भित्तियों से मोटी होती हैं।

पत्ती की एपीडर्मिस में हम छोटे-छोटे छिद्रों को देख सकते हैं। इन छिद्रों को स्टोमेटा कहते हैं (चित्र 6.5)। स्टोमेटा को दो वृक्क के आकार की कोशिकाएँ घेरे रहती हैं, जिन्हें रक्षी कोशिकाएँ कहते हैं। ये कोशिकाएँ वायुमंडल से गैसों का आदान-प्रदान करने के लिए आवश्यक हैं। वाष्पोत्सर्जन (वाष्प के रूप में पानी का निकलना) की क्रिया भी स्टोमेटा के द्वारा होती है।

याद करें प्रकाश संश्लेषण के लिए किस गैस की आवश्यकता होती है?

यौधों में वाष्पोत्सर्जन के कार्यों का उल्लेख करें। जड़ों की एपीडर्मल कोशिकाएँ पानी को सोंखने का कार्य करती हैं। साधारणतः उनमें बाल जैसे प्रवर्ध होते हैं, जिससे जड़ों की कुल अवशोषक सतह बढ़ जाती है तथा उनकी पानी सोंखने की क्षमता में वृद्धि होती है।

मरुस्थलीय पौधों की बाहरी सतह वाले एपीडर्मिस में क्यूटिन (एक जल अवरोधक रासायनिक पदार्थ) का लेप होता है। क्या हम इसका कारण सोच सकते हैं?

क्या एक पेड़ की बाहरी शाखा की परत नए तने की बाह्य परत से भिन्न होती है?

जैसे-जैसे वृक्ष की आयु बढ़ती है, उसके बाह्य सुरक्षात्मक ऊतकों में कुछ परिवर्तन होता है। द्वितीयक विभज्योतक की एक पट्टी जो कॉर्टेक्स में होती है कॉर्क नामक कोशिकाओं की परतों को बनाती है इन छालों की कोशिकाएँ मृत होती हैं। ये बिना अंतःकोशिकीय स्थानों (चित्र 6.6) के व्यवस्थित होती हैं। इनकी भित्ति पर सुबरिन (suberin) नामक पदार्थ होता है जो इन छालों को हवा एवं पानी के लिए अभेद्य बनाता है।

चित्र 6.6: रक्षी ऊतक

6.2.2 (ii) जटिल स्थायी ऊतक

अब तक हम एक ही प्रकार की कोशिकाओं से बने हुए भिन्न-भिन्न प्रकार के ऊतकों पर विचार कर

चुके हैं, जो कि एक ही तरह के दिखाई देते हैं। ऐसे ऊतकों को साधारण स्थायी ऊतक कहते हैं। अन्य प्रकार के स्थायी ऊतक को जटिल ऊतक कहते हैं। जटिल ऊतक एक से अधिक प्रकार की कोशिकाओं से मिलकर बने होते हैं और ये सभी एक साथ मिलकर एक इकाई की तरह कार्य करते हैं। ज़ाइलम और फ़्लोएम इसी प्रकार के जटिल ऊतकों के उदाहरण हैं।

इन दोनों को संवहन ऊतक भी कहते हैं और ये मिलकर संवहन बंडल का निर्माण करते हैं। सवंहन ऊतक जटिल पौधों की एक विशेषता है, जो कि उनको स्थलीय वातावरण में रहने के अनुकूल बनाती है। चित्र 6.3 में तने का एक भाग दिखाया गया है। क्या हम संवहन बंडल में मौजूद विभिन्न प्रकार की कोशिकाओं को देख सकते हैं?

ज़ाइलम ट्रैकीड् (वाहिनिका), वाहिका, ज़ाइलम पैरेन्काइमा [चित्र 6.7(a), (b) तथा (c)] और ज़ाइलम फ़ाइबर (रेशे) से मिलकर बना होता है। ट्रैकीड् एवं वाहिका की कोशिका भित्ति मोटी होती है और इनमें से कई परिपक्व कोशिकाएँ मृत होती हैं। ट्रैकीड् और वाहिकाओं की संरचना नलिकाकार होती है। इनके द्वारा पानी और खनिज लवण का ऊर्ध्वाधर संवहन होता है। पैरेन्काइमा भोजन का संग्रह करता है ज़ाइलम फ़ाइबर (रेशे) मुख्यतः सहारा देने का कार्य करते हैं। फ़्लोएम पांच प्रकार के अवयवों: चालनी कोशिकाएं, चालनी नलिका (sieve tubes), साथी कोशिकाएँ, फ़्लोएम पैरेन्काइमा तथा फ़्लोएम रेशों से मिलकर बना होता है [चित्र 6.7(d)]। चालनी नलिका छिद्रित भित्ति वाली तथा नलिकाकार कोशिका होती है। फ़्लोएम पत्तियों से भोजन को पौधे के विभिन्न भागों तक पहुँचाता है। फ़्लोएम रेशों को छोड़कर, फ़्लोएम कोशिकाएँ जीवित कोशिकाएँ हैं।

(a) ट्रैकीड्

(b) वाहिका

(c) ज़ाइलम पैरेन्काइमा

(d) फ़्लोएम-सैक्शन

चित्र 6.7: जटिल ऊतकों के प्रकार

प्रशन

**1.**सरल ऊतकों के कितने प्रकार हैं?

**2.**प्ररोह का शीर्षस्थ विभज्योतक कहाँ पाया जाता है?

**3.**नारियल का रेशा किस ऊतक का बना होता है?

**4.**फ़्लोएम के संघटक कौन-कौन से हैं?

6.3 जंतु ऊतक

जब हम साँस लेते हैं तब हम अपनी छाती की गति को महसूस कर सकते हैं। शरीर के ये अंग कैसे गति करते हैं? इसके लिए हमारे पास कुछ विशेष कोशिकाएँ होती हैं जिन्हें हम पेशीय कोशिकाएँ कहते

चित्र 6.8: पेशीय रेशे हैं (चित्र 6.8)। इन कोशिकाओं का फैलना और सिकुड़ना अंगों को गति प्रदान करता है।

साँस लेते समय हम ऑक्सीजन लेते हैं। यह ऑक्सीजन कहाँ जाती है? यह फेफड़ों के द्वारा अवशोषित की जाती है तथा रक्त के साथ शरीर की सभी कोशिकाओं तक पहुँच जाती है। कोशिकाओं को ऑक्सीजन की आवश्यकता क्यों होती है? माइटोकॉन्ड्रिया का कार्य इस प्रश्न के हल के लिए एक संकेत देता है, जिसके बारे में हम पहले पढ़ चुके हैं। रक्त अपने साथ विभिन्न पदार्थों को शरीर में एक स्थान से दूसरे स्थान तक ले जाता है। उदाहरण के लिए यह भोजन और ऑक्सीजन को सभी कोशिकाओं तक पहुँचाता है। यह शरीर के सभी भागों से अपशिष्ट पदार्थों को एकत्र कर यकृत तथा वृक्क तक उत्सर्जन के लिए पहुँचाता है।

रक्त और पेशियाँ दोनों ही हमारे शरीर में पाए जाने वाले ऊतकों के उदाहरण हैं। उनके कार्य के आधार पर हम विभिन्न प्रकार के जंतु ऊतकों के बारे में विचार कर सकते हैं जैसे कि एपिथीलियमी ऊतक, संयोजी ऊतक, पेशीय ऊतक तथा तंत्रिका ऊतक। रक्त, संयोजी ऊतक का एक प्रकार है तथा पेशी, पेशीय ऊतक का।

6.3.1 एपिथीलियमी ऊतक

जंतु के शरीर को ढकने या बाह्य रक्षा प्रदान करने वाले ऊतक एपिथीलियमी ऊतक हैं। एपिथीलियम शरीर के अंदर स्थित बहुत से अंगों और गुहिकाओं को ढकते हैं। ये भिन्न-भिन्न प्रकार के शारीरिक तंत्रों को एक-दूसरे से अलग करने के लिए अवरोध का निर्माण करते हैं। त्वचा, मुँह, आहारनली, रक्त वाहिनी नली का अस्तर, फेफड़ों की कूपिका, वृक्कीय नली आदि सभी एपिथीलियमी ऊतक से बने होते हैं। एपिथीलियमी ऊतक की कोशिकाएँ एक-दूसरे से सटी होती हैं और ये एक अनवरत परत का निर्माण

(a) शल्की

(b) घनाकार

(c) स्तंभाकार (पक्ष्माभी)

(d) स्तरित शल्की

चित्र 6.9: विभिन्न प्रकार के एपिथीलियम ऊतक करती हैं। इन परतों के बीच चिपकाने वाले पदार्थ कम होते हैं तथा कोशिकाओं के बीच बहुत कम स्थान होता है। स्पष्टतः जो भी पदार्थ शरीर में प्रवेश करता है या बाहर निकलता है, वह एपिथीलियम की किसी परत से होकर अवश्य गुज़रता है। इसके फलस्वरूप विभिन्न प्रकार की एपिथीलियमी कोशिकाओं के बीच की पारगम्यता शरीर तथा बाहरी वातावरण और शरीर के विभिन्न अंगों के बीच पदार्थों के आदान-प्रदान में महत्वपूर्ण भूमिका निभाती है। सामान्यत: सभी एपिथीलियमों को एक बाह्य रेशेदार आधार झिल्ली उसे नीचे रहने वाले ऊतकों से अलग करती है।

चित्र 6.9 में दर्शाए अनुसार, विभिन्न एपिथीलियम की संरचनाएँ विभिन्न प्रकार की होती हैं, जो उनके कार्यों पर निर्भर करती हैं। उदाहरण के लिए, कोशिकाओं में रक्त नलिका अस्तर या कूपिका, जहाँ पदार्थों का संवहन वरणात्मक पारगम्य झिल्ली द्वारा होता है, वहाँ पर चपटी एपिथीलियमी ऊतक कोशिकाएँ होती हैं। इनको सरल शल्की एपिथीलियम कहते हैं। ये अत्यधिक पतली और चपटी होती हैं तथा कोमल अस्तर का निर्माण करती हैं। आहारनली तथा मुँह का अस्तर शल्की एपिथीलियम से ढका होता है। शरीर का रक्षात्मक कवच अर्थात् त्वचा इन्हीं शल्की एपिथीलियम से बनी होती है। त्वचा की एपिथीलियमी कोशिकाएँ इनको कटने तथा फटने से बचाने के लिए कई परतों में व्यवस्थित होती हैं। चूँकि ये कई परतों के पैटर्न में व्यवस्थित होती हैं इसलिए इन एपिथीलियम को स्तरित शल्की एपिथीलियम कहते हैं।

जहाँ अवशोषण और स्राव होता है, जैसे आँत के भीतरी अस्तर (lining) में, वहाँ लंबी एपिथीलियमी कोशिकाएँ मौजूद होती हैं। यह स्तंभाकार एपिथीलियम, एपिथीलियमी अवरोध को पार करने में सहायता प्रदान करता है। श्वास नली में, स्तंभाकार एपिथीलियमी ऊतक में पक्ष्माभ (Cilia) होते हैं, जो कि एपिथीलियमी ऊतक की कोशिकाओं की सतह पर बाल जैसी रचनाएँ होती हैं। ये पक्ष्माभ गति कर सकते हैं तथा

इनकी गति श्लेष्मा को आगे स्थानांतरित करके साफ़ करने में सहायता करती हैं। इस प्रकार के एपिथीलियम को पक्ष्माभी स्तंभाकार एपिथीलियम कहते हैं।

घनाकार एपिथीलियम वृक्कीय नली तथा लार ग्रंथी की नली के अस्तर का निर्माण करता है, जहाँ यह उसे यांत्रिक सहारा प्रदान करता है। ये एपिथीलियम कोशिकाएँ प्रायः ग्रंथि कोशिका के रूप में अतिरिक्त विशेषता अर्जित करती हैं, जो एपिथीलियमी ऊतक की सतह पर पदार्थों का स्राव कर सकती हैं। कभी-कभी एपिथीलियमी ऊतक का कुछ भाग अंदर की ओर मुड़ा होता है तथा एक बहुकोशिक ग्रंथि का निर्माण करता है। यह ग्रंथिल एपिथीलियम कहलाता है।

6.3.2 संयोजी ऊतक

रक्त एक प्रकार का संयोजी ऊतक है। इसे संयोजी ऊतक क्यों कहते हैं? इस अध्याय की भूमिका में इस संबंध में एक संकेत दिया गया है। आइए अब हम इस तरह के ऊतक के बारे में विस्तृत जानकारी लें। संयोजी ऊतक की कोशिकाएँ आपस में कम जुड़ी होती हैं और अंतरकोशिकीय आधात्री (matrix) में धँसी होती हैं (चित्र 6.10)। यह आधात्री जैली की तरह, तरल, सघन या कठोर हो सकती है। आधात्री की प्रकृति, विशिष्ट संयो जी ऊतक के कार्य के अनुसार बदलती रहती है।

क्रियाकलाप 6.4

  • रक्त की एक बूँद स्लाइड पर लें और उसमें मौज़ुद विभिन्न कोशिकाओं को सूक्ष्मदर्शी में देखें।

रक्त के तरल आधात्री भाग को प्लाज़्मा कहते हैं। प्लाज़्मा में लाल रक्त कणिकाएं (RBC), श्वेत रक्त कणिकाएं (WBC) तथा प्लेटलेट्स निलंबित होते हैं। प्लाज़्मा में प्रोटीन, नमक तथा हॉर्मोन भी होते हैं। रक्त गैसों, शरीर के पचे हुए भोजन, हॉर्मोन और उत्सर्जी पदार्थों को शरीर के एक भाग से दूसरे भाग में संवहन करता है।

(a)

लाल रक्त कणिका

ऐडिपो (वसा) साइट

(d)

(e)

चित्र 6.10: संयोजी ऊतकों के प्रकारः (a) विभिन्न रक्त कणिकाएं, (b) संहत अस्थि, (c) काचाभ उपास्थि, (d) वसामय ऊतक, (e) एरिओलर ऊतक

अस्थि संयोजी ऊतक का एक अन्य उदाहरण है। यह पंजर का निर्माण कर शरीर को आकार प्रदान करती है। यह मांसपेशियों को सहारा देती है और शरीर के मुख्य अंगों को सहारा देती है। यह ऊतक मज़बूत और कठोर होता है। (अस्थि कार्यों के लिए इन गुणों के क्या उपयोग हैं।) अस्थि कोशिकाएँ कठोर आधात्री में धँसी होती हैं, जो कैल्सियम तथा फॉस्फोरस से बनी होती हैं।

दो अस्थियाँ आपस में एक-दूसरे से, एक अन्य संयोजी ऊतक जिसे स्नायु (अस्थि बंधान तंतु) कहते हैं, से जुड़ी होती हैं। यह ऊतक बहुत लचीला एवं मज़बूत होता है। स्नायु में आधात्री बहुत कम होती है और अस्थियों को अस्थियों से जोड़ती है। एक अन्य प्रकार का संयोजी ऊतक कंडरा (tendon) है, जो अस्थियों से मांसपेशियों को जोड़ता है। कंडरा मज़बूत तथा सीमित लचीलेपन वाले रेशेदार ऊतक होते हैं।

उपास्थि (cartilage) एक अन्य प्रकार का संयोजी ऊतक होता है, जिसमें कोशिकाओं के बीच पर्याप्त स्थान होता है। इसकी ठोस आधात्री प्रोटीन और शर्करा की बनी होती है। यह अस्थियों के जोड़ों को चिकना बनाती है। उपास्थि नाक, कान, कंठ और श्वास नली में भी उपस्थित होती है। हम कान की उपास्थि को मोड़ सकते हैं, परंतु हाथ की अस्थि को नहीं। सोचिए, ये दो ऊतक किस प्रकार भिन्न हैं!

एरिओलर संयोजी ऊतक त्वचा और मांसपेशियों के बीच, रक्त नलिका के चारों ओर तथा नसों और अस्थि मज्जा में पाया जाता है। यह अंगों के भीतर की खाली जगह को भरता है, आंतरिक अंगों को सहारा प्रदान करता है और ऊतकों की मरम्मत में सहायता करता है।

हमारे शरीर में वसा कहाँ संचित होता है? वसा का संग्रह करने वाला वसामय ऊतक त्वचा के नीचे आंतरिक अंगों के बीच पाया जाता है। इस ऊतक की कोशिकाएँ वसा की गोलिकाओं से भरी होती हैं। वसा संग्रहित होने के कारण यह ऊष्मीय कुचालक का कार्य भी करता है।

6.3.3 पेशीय ऊतक

पेशीय ऊतक लंबी कोशिकाओं का बना होता है जिसे पेशीय रेशा (muscle fibre) भी कहा जाता है। यह हमारे शरीर में गति के लिए उत्तरदायी है। पेशियों में एक विशेष प्रकार की प्रोटीन होती है, जिसे सिकुड़ने वाला प्रोटीन कहते हैं, जिसके संकुचन एवं प्रसार के कारण गति होती है।

कुछ पेशियों की हम इच्छानुसार गति करा सकते हैं। हाथ और पैर में विद्यमान पेशियों को हम अपनी इच्छानुसार आवश्यकता पड़ने पर गति करा सकते हैं या उनकी गति को रोक सकते हैं। इस तरह की पेशियों को ऐच्छिक पेशी (voluntary muscle) कहा जाता है [चित्र 6.11(a)]। इन पेशियों को कंकाल पेशी भी कहा जाता है क्योंकि ये अधिकतर हड्डियों से जुड़ी होती हैं तथा शारीरिक गति में सहायक होती हैं। सूक्ष्मदर्शी से देखने पर ये पेशियाँ हलके तथा गहरे रंगों में एक के बाद एक रेखाओं या धारियों की तरह प्रतीत होती हैं। इसी कारण इसे रेखित पेशी भी कहते हैं। इस ऊतक की कोशिकाएँ लंबी, बेलनाकार, शाखारहित और बहुनाभीय होती हैं।

आहारनली में भोजन का प्रवाह या रक्त नलिका का प्रसार एवं संकुचन जैसी गतियाँ ऐच्छिक नहीं हैं। इन गतिविधियों को हम स्वयं संचालित नहीं कर सकते हैं, अर्थात् हम इन गतियों को इच्छानुसार प्रारंभ या बंद नहीं कर सकते हैं। चिकनी पेशियाँ [चित्र $6.11(\mathrm{~b})]$ अथवा अनैच्छिक पेशियाँ इनकी गति को नियंत्रित करती हैं। ये आँख की पलक, मूत्रवाहिनी और फेफड़ों की श्वसनी में भी पाया जाता है। कोशिकाएँ लंबी और इनका आखिरी सिरा नुकीला (तर्कुरूपी spindle shaped) होता है। ये एक-केंद्रकीय होती हैं। इनको आरेखित पेशी भी कहा जाता है। इनका नाम आरेखित क्यों है?

हृद्य की पेशियाँ जीवन भर लयबद्ध होकर प्रसार एवं संकुचन करती रहती हैं। इन अनैच्छिक पेशियों को कार्डिक (हृद) पेशी कहा जाता है [चित्र 6.11(c)]। हृदय की पेशी कोशिकाएँ बेलनाकार, शाखाओं वाली और एक-केंद्रकीय होती हैं।

क्रियाकलाप 6.5

विभिन्न प्रकार की पेशीय ऊतकों की संरचना की तुलना करें। उनके आकार, केंद्रक की संख्या तथा कोशिका में केंद्रक की स्थिति को नोट करें।

लक्षण रेखित चिकनी हृद्
आकर
केंद्रकों की संख्या
केंद्रकों की स्थिति

(a)

(b)

(c)

चित्र 6.11 : पेशीय ऊतक: (a) रेखित पेशी, (b) चिकनी पेशी, (c) कार्डिक (हृदयक) पेशी

6.3.4 तंत्रिका ऊतक

सभी कोशिकाओं में उत्तेजना के अनुकूल प्रतिक्रिया करने की क्षमता होती है। यद्यपि, तंत्रिका ऊतक की कोशिकाएँ बहुत शीघ्र उत्तेजित होती हैं और इस उत्तेजना को बहुत ही शीघ्र पूरे शरीर में एक स्थान से दूसरे स्थान तक पहुँचाती हैं। मस्तिष्क, मेरुरज्जु तथा तंत्रिकाएँ सभी तंत्रिका ऊतकों की बनी होती हैं। तंत्रिका ऊतक की कोशिकाओं को तंत्रिका कोशिका या न्यूरॉन कहा जाता है। न्यूरॉन में कोशिकाएँ केंद्रक तथा कोशिकाद्रव्य (साइटोप्लाज़्म) होते हैं। इससे लंबे, पतले बालों जैसी शाखाएँ निकली होती हैं (चित्र 6.12)। प्रायः प्रत्येक न्यूरॉन में इस तरह का एक लंबा प्रवर्ध होता है, जिसको एक्सॉन कहते हैं तथा बहुत सारे छोटी शाखा वाले प्रवर्ध (डेंडराइट्स) होते हैं। एक तंत्रिका कोशिका 1 मीटर तक लंबी हो सकती है। बहुत सारे तंत्रिका रेशे संयोजी ऊतक के द्वारा एक साथ मिलकर एक तंत्रिका का निर्माण करते हैं।

चित्र 6.12: न्यूरॉन-तंत्रिका ऊतक की इकाई

तंत्रिका रेशे से गुजरने वाली संवेदना को तंत्रिका स्पंदन कहते हैं। तंत्रिका का स्पंदन हमें इच्छानुसार अपनी पेशियों की गति करने में सहायता करता है। तंत्रिका तथा पेशीय ऊतकों का कार्यात्मक संयोजन प्रायः सभी जीवों में मौलिक है। साथ ही, यह संयोजन उत्तेजना के अनुसार जंतुओं को गति प्रदान करता है।

प्रशन

**1.**उस ऊतक का नाम बताएँ जो हमारे शरीर में गति के लिए उत्तरदायी है।

**2.**न्यूरॉन देखने में कैसा लगता है?

**3.**हृदय पेशी के तीन लक्षणों को बताएँ।

**4.**एरिओलर ऊतक के क्या कार्य हैं?

आपने क्या सीखा

  • ऊतक कोशिकाओं का समूह होता है जिसमें कोशिकाओं की संरचना तथा कार्य एकसमान होते हैं।
  • पौधों के ऊतक (पादप ऊतक) दो प्रकार के होते हैं — विभज्योतक तथा स्थायी ऊतक।
  • विभज्योतक (मेरिस्टेमेटिक) ऊतक एक विभाज्य ऊतक है तथा यह पौधों के वृद्धि वाले क्षेत्रों में पाए जाते हैं।
  • स्थायी ऊतक विभज्योतक से बनते हैं, जो एक बार विभाजित होने की क्षमता को खो देते हैं। इनको सरल तथा जटिल ऊतकों में वर्गीकृत किया जाता है।
  • पैरेन्काइमा, कॉलेन्काइमा तथा स्क्लेरेन्काइमा सरल ऊतकों के तीन प्रकार हैं। ज़ाइलम और फ़्लोएम जटिल ऊतकों के प्रकार हैं।
  • एपिथीलियमी, पेशीय, संयोजी तथा तंत्रिका ऊतक जंतु ऊतक होते हैं।
  • आकृति और कार्य के आधार पर एपिथीलियमी ऊतक को शल्की, घनाकार, स्तंभाकार, रोमीय तथा ग्रंथिल श्रेणियों में वर्गीकृत किया जाता है।
  • हमारे शरीर में विद्यमान संयोजी ऊतक के विभिन्न प्रकार हैं: एरिओलर ऊतक, एडीपोज़ (वसामय) ऊतक, अस्थि, कंडरा, स्नायु, उपास्थि तथा रक्त (रुधिर)।
  • पेशीय ऊतक के तीन प्रकार होते हैं - रेखित, आरेखित और कार्डिक (हृदयक पेशी)।
  • तंत्रिका ऊतक न्यूरॉन का बना होता है, जो संवेदना को प्राप्त और संचालित करता है।

अभ्यास

1. ऊतक को परिभाषित करें।

2. कितने प्रकार के तत्व मिलकर ज़ाइलम ऊतक का निर्माण करते हैं? उनके नाम बताएँ।

3. पौधों में सरल ऊतक जटिल ऊतक से किस प्रकार भिन्न होते हैं?

4. कोशिका भित्ति के आधार पर पैरेन्काइमा, कॉलेन्काइमा और स्क्लेरेन्काइमा के बीच भेद स्पष्ट करें।

5. रंध्र के क्या कार्य हैं?

6. तीनों प्रकार के पेशीय रेशों में चित्र बनाकर अंतर स्पष्ट करें।

7. कार्डिक (हृदयक) पेशी का विशेष कार्य क्या है?

8. रेखित, अरेखित तथा कार्डिक (हृदयक) पेशियों में शरीर में स्थित कार्य और स्थान के आधार पर अंतर स्पष्ट करें।

9. न्यूरॉन का एक चिह्नित चित्र बनाएँ।

10. निम्नलिखित के नाम लिखें:

(a) ऊतक जो मुँह के भीतरी अस्तर का निर्माण करता है।

(b) ऊतक जो मनुष्य में पेशियों को अस्थि से जोड़ता है।

(c) ऊतक जो पौधों में भोजन का संवहन करता है।

(d) ऊतक जो हमारे शरीर में वसा का संचय करता है।

(e) तरल आधात्री सहित संयोजी ऊतक।

(f) मस्तिष्क में स्थित ऊतक।

11. निम्नलिखित में ऊतक के प्रकार की पहचान करें:

त्वचा, पौधे का वल्क, अस्थि, वृक्कीय नलिका अस्तर, संवहन बंडल।

12. पैरेन्काइमा ऊतक किस क्षेत्र में स्थित होते हैं?

13. पौधों में एपिडर्मिस की क्या भूमिका है?

14. छाल (कॉर्क) किस प्रकार सुरक्षा ऊतक के रूप में कार्य करता है?

15. निम्न दी गई तालिका को पूर्ण करें:

$0965 \mathrm{CH} 08$



Table of Contents

Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane