Work And Energy

In the previous few chapters we have talked about ways of describing the motion of objects, the cause of motion and gravitation. Another concept that helps us understand and interpret many natural phenomena is ‘work’. Closely related to work are energy and power. In this chapter we shall study these concepts.

All living beings need food. Living beings have to perform several basic activities to survive. We call such activities ’life processes’. The energy for these processes comes from food. We need energy for other activities like playing, singing, reading, writing, thinking, jumping, cycling and running. Activities that are strenuous require more energy.

Animals too get engaged in activities. For example, they may jump and run. They have to fight, move away from enemies, find food or find a safe place to live. Also, we engage some animals to lift weights, carry loads, pull carts or plough fields. All such activities require energy.

Think of machines. List the machines that you have come across. What do they need for their working? Why do some engines require fuel like petrol and diesel? Why do living beings and machines need energy?

10.1 Work

What is work? There is a difference in the way we use the term ‘work’ in day-to-day life and the way we use it in science. To make this point clear let us consider a few examples.

10.1.1 NOT MUCH ‘WORK’ IN SPITE OF WORKING HARD!

Kamali is preparing for examinations. She spends lot of time in studies. She reads books, draws diagrams, organises her thoughts, collects question papers, attends classes, discusses problems with her friends, and performs experiments. She expends a lot of energy on these activities. In common parlance, she is ‘working hard’. All this ‘hard work’ may involve very little ‘work’ if we go by the scientific definition of work.

You are working hard to push a huge rock. Let us say the rock does not move despite all the effort. You get completely exhausted. However, you have not done any work on the rock as there is no displacement of the rock.

You stand still for a few minutes with a heavy load on your head. You get tired. You have exerted yourself and have spent quite a bit of your energy. Are you doing work on the load? The way we understand the term ‘work’ in science, work is not done.

You climb up the steps of a staircase and reach the second floor of a building just to see the landscape from there. You may even climb up a tall tree. If we apply the scientific definition, these activities involve a lot of work.

In day-to-day life, we consider any useful physical or mental labour as work. Activities like playing in a field, talking with friends, humming a tune, watching a movie, attending a function are sometimes not considered to be work. What constitutes ‘work’ depends on the way we define it. We use and define the term work differently in science. To understand this let us do the following activities:

Activity 10.1

  • We have discussed in the above paragraphs a number of activities which we normally consider to be work in day-to-day life. For each of these activities, ask the following questions and answer them:

    (i) What is the work being done on?

    (ii) What is happening to the object?

    (iii) Who (what) is doing the work?

10.1.2 SCIENTIFIC CONCEPTION OF WORK

To understand the way we view work and define work from the point of view of science, let us consider some situations:

Push a pebble lying on a surface. The pebble moves through a distance. You exerted a force on the pebble and the pebble got displaced. In this situation work is done.

A girl pulls a trolley and the trolley moves through a distance. The girl has exerted a force on the trolley and it is displaced. Therefore, work is done.

Lift a book through a height. To do this you must apply a force. The book rises up. There is a force applied on the book and the book has moved. Hence, work is done.

A closer look at the above situations reveals that two conditions need to be satisfied for work to be done: (i) a force should act on an object, and (ii) the object must be displaced.

If any one of the above conditions does not exist, work is not done. This is the way we view work in science.

A bullock is pulling a cart. The cart moves. There is a force on the cart and the cart has moved. Do you think that work is done in this situation?

Activity 10.2

  • Think of some situations from your daily life involving work.

  • List them.

  • Discuss with your friends whether work is being done in each situation.

  • Try to reason out your response.

  • If work is done, which is the force acting on the object?

  • What is the object on which the work is done?

  • What happens to the object on which work is done?

Activity 10.3

  • Think of situations when the object is not displaced in spite of a force acting on it.

  • Also think of situations when an object gets displaced in the absence of a force acting on it.

  • List all the situations that you can think of for each.

  • Discuss with your friends whether work is done in these situations.

10.1.3 WORK DONE BY A CONSTANT FORCE

How is work defined in science? To understand this, we shall first consider the case when the force is acting in the direction of displacement.

Let a constant force, $F$ act on an object. Let the object be displaced through a distance, $s$ in the direction of the force (Fig. 10.1). Let $W$ be the work done. We define work to be equal to the product of the force and displacement.

Work done $=$ force $\times$ displacement

Fig. 10.1

Thus, work done by a force acting on an object is equal to the magnitude of the force multiplied by the distance moved in the direction of the force. Work has only magnitude and no direction.

In Eq. (10.1), if $F=1 N$ and $s=1 m$ then the work done by the force will be $1 N m$. Here the unit of work is newton metre ( $N m$ ) or joule $(J)$. Thus $1 J$ is the amount of work done on an object when a force of $1 N$ displaces it by $1 m$ along the line of action of the force.

Look at Eq. (10.1) carefully. What is the work done when the force on the object is zero? What would be the work done when the displacement of the object is zero? Refer to the conditions that are to be satisfied to say that work is done.

Example 10.1 A force of $5 N$ is acting on an object. The object is displaced through $2 m$ in the direction of the force (Fig. 10.2). If the force acts on the object all through the displacement, then work done is $5 N \times 2 m=10 N m$ or $10 J$.

Fig. 10.2

Questions

1. A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 10.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case?

Fig. 10.3

Show Answer

Answer

When a force $F$ acts on an object to displace it through a distance $S$ in its direction, then the work done $W$ on the body by the force is given by:

Work done $=$ Force $\times$ Displacement

$W=F \times S$

Where,

$F=7 N$

$S=8 m$

Therefore, work done, $W=7 \times 8$

$=56 Nm$

$=56 J$

Consider another situation in which the force and the displacement are in the same direction: a baby pulling a toy car parallel to the ground, as shown in Fig. 10.4. The baby has exerted a force in the direction of displacement of the car. In this situation, the work done will be equal to the product of the force and displacement. In such situations, the work done by the force is taken as positive.

Fig. 10.4

Consider a situation in which an object is moving with a uniform velocity along a particular direction. Now a retarding force, $F$, is applied in the opposite direction. That is, the angle between the two directions is $180^{\circ}$. Let the object stop after a displacement $s$. In such a situation, the work done by the force, $F$ is taken as negative and denoted by the minus sign. The work done by the force is $F \times(-S)$ or $(-F \times s)$.

It is clear from the above discussion that the work done by a force can be either positive or negative. To understand this, let us do the following activity:

Activity 10.4

  • Lift an object up. Work is done by the force exerted by you on the object. The object moves upwards. The force you exerted is in the direction of displacement. However, there is the force of gravity acting on the object.

  • Which one of these forces is doing positive work?

  • Which one is doing negative work?

  • Give reasons.

Work done is negative when the force acts opposite to the direction of displacement. Work done is positive when the force is in the direction of displacement.

Example 10.2 A porter lifts a luggage of $15 kg$ from the ground and puts it on his head $1.5 m$ above the ground. Calculate the work done by him on the luggage.

Solution:

Mass of luggage, $m=15 kg$ and displacement, $s=1.5 m$.

Work done, $$W=F \times s=m g \times s$$

$$ \hspace{45px}=15 kg \times 10 m s^{-2} \times 1.5 m$$

$$=225 kg m s^{-2} m$$

$$=225 N m=225 J$$

Work done is $225 J$.

Questions

1. When do we say that work is done?

Show Answer

Answer

Work is done whenever the given conditions are satisfied:

(i) A force acts on the body.

(ii) There is a displacement of the body caused by the applied force along the direction of the applied force.

2. Write an expression for the work done when a force is acting on an object in the direction of its displacement.

Show Answer

Answer

When a force $F$ displaces a body through a distance $S$ in the direction of the applied force, then the work done W on the body is given by the expression:

Work done $=$ Force $\times$ Displacement

$W=F \times s$

3. Define $1 J$ of work.

Show Answer

Answer

$1 J$ is the amount of work done by a force of $1 N$ on an object that displaces it through a distance of $1 m$ in the direction of the applied force.

4. A pair of bullocks exerts a force of $140 N$ on a plough. The field being ploughed is $15 m$ long. How much work is done in ploughing the length of the field?

Show Answer

Answer

Work done by the bullocks is given by the expression:

Work done $=$ Force $\times$ Displacement

$W=F \times d$

Where,

Applied force, $F=140 N$

Displacement, $d=15 m$

10.2 Energy

Life is impossible without energy. The demand for energy is ever increasing. Where do we get energy from? The Sun is the biggest natural source of energy to us. Many of our energy sources are derived from the Sun. We can also get energy from the nuclei of atoms, the interior of the earth, and the tides. Can you think of other sources of energy?

Activity 10.5

  • A few sources of energy are listed above. There are many other sources of energy. List them.

  • Discuss in small groups how certain sources of energy are due to the Sun.

  • Are there sources of energy which are not due to the Sun?

The word energy is very often used in our daily life, but in science we give it a definite and precise meaning. Let us consider the following examples: when a fast moving cricket ball hits a stationary wicket, the wicket is thrown away. Similarly, an object when raised to a certain height gets the capability to do work. You must have seen that when a raised hammer falls on a nail placed on a piece of wood, it drives the nail into the wood. We have also observed children winding a toy (such as a toy car) and when the toy is placed on the floor, it starts moving. When a balloon is filled with air and we press it we notice a change in its shape. As long as we press it gently, it can come back to its original shape when the force is withdrawn. However, if we press the balloon hard, it can even explode producing a blasting sound. In all these examples, the objects acquire, through different means, the capability of doing work. An object having a capability to do work is said to possess energy. The object which does the work loses energy and the object on which the work is done gains energy.

How does an object with energy do work? An object that possesses energy can exert a force on another object. When this happens, energy is transferred from the former to the latter. The second object may move as it receives energy and therefore do some work. Thus, the first object had a capacity to do work. This implies that any object that possesses energy can do work.

The energy possessed by an object is thus measured in terms of its capacity of doing work. The unit of energy is, therefore, the same as that of work, that is, joule ( $J) .1 J$ is the energy required to do 1 joule of work. Sometimes a larger unit of energy called kilo joule (kJ) is used. $1 kJ$ equals $1000 J$.

10.2.1 FORMS OF ENERGY

Luckily the world we live in provides energy in many different forms. The various forms include mechanical energy (potential energy + kinetic energy), heat energy, chemical energy, electrical energy and light energy.


Think it over !

How do you know that some entity is a form of energy? Discuss with your friends and teachers.


James Prescott Joule was an outstanding British physicist. He is best known for his research in electricity and thermodynamics. Amongst other things, he formulated a law for the heating effect of electric current. He also verified experimentally the law of conservation of energy and discoveredthe value of the mechanical equivalent of heat. The unit of energy and work called joule, is named after him.

10.2.2 KINETIC ENERGY

Activity 10.6

  • Take a heavy ball. Drop it on a thick bed of sand. A wet bed of sand would be better. Drop the ball on the sand bed from height of about $25 cm$. The ball creates a depression.

  • Repeat this activity from heights of $50 cm, 1 m$ and $1.5 m$.

  • Ensure that all the depressions are distinctly visible.

  • Mark the depressions to indicate the height from which the ball was dropped.

  • Compare their depths.

  • Which one of them is deepest?

  • Which one is shallowest? Why?

  • What has caused the ball to make a deeper dent?

  • Discuss and analyse.

Activity 10.7

  • Set up the apparatus as shown in Fig. 10.5.

  • Place a wooden block of known mass in front of the trolley at a convenient fixed distance.

  • Place a known mass on the pan so that the trolley starts moving.

Fig. 10.5

  • The trolley moves forward and hits the wooden block.

  • Fix a stop on the table in such a manner that the trolley stops after hitting the block. The block gets displaced.

  • Note down the displacement of the block. This means work is done on the block by the trolley as the block has gained energy.

  • From where does this energy come?

  • Repeat this activity by increasing the mass on the pan. In which case is the displacement more?

  • In which case is the work done more?

  • In this activity, the moving trolley does work and hence it possesses energy.

A moving object can do work. An object moving faster can do more work than an identical object moving relatively slow. A moving bullet, blowing wind, a rotating wheel, a speeding stone can do work. How does a bullet pierce the target? How does the wind move the blades of a windmill? Objects in motion possess energy. We call this energy kinetic energy.

A falling coconut, a speeding car, a rolling stone, a flying aircraft, flowing water, blowing wind, a running athlete etc. possess kinetic energy. In short, kinetic energy is the energy possessed by an object due to its motion. The kinetic energy of an object increases with its speed.

How much energy is possessed by a moving body by virtue of its motion? By definition, we say that the kinetic energy of a body moving with a certain velocity is equal to the work done on it to make it acquire that velocity.

Let us now express the kinetic energy of an object in the form of an equation. Consider an object of mass, $m$ moving with a uniform velocity, $u$. Let it now be displaced through a distance $s$ when a constant force, $F$ acts on it in the direction of its displacement. From Eq. (10.1), the work done, $W$ is $F s$. The work done on the object will cause a change in its velocity. Let its velocity change from $u$ to $v$. Let $a$ be the acceleration produced.

We studied three equations of motion. The relation connecting the initial velocity $(u)$ and final velocity $(v)$ of an object moving with a uniform acceleration $a$, and the displacement, $s$ is

$$ v^{2}-u^{2}=2 a s $$

This gives

$$ s=\frac{v^{2}-u^{2}}{2 a} $$

From section 9.4, we know $F=m$ a. Thus, using (Eq. 10.2) in Eq. (10.1), we can write the work done by the force, $F$ as

$$ \begin{gathered} W=m a \times \frac{v^{2}-u^{2}}{2 a} \\ \text{ or } \\ W=\frac{1}{2} m(v^{2}-u^{2}) \end{gathered} $$

If the object is starting from its stationary position, that is, $u=0$, then

$$ W=\frac{1}{2} m v^{2} $$

It is clear that the work done is equal to the change in the kinetic energy of an object.

If $u=0$, the work done will be $\frac{1}{2} m v^{2}$.

Thus, the kinetic energy possessed by an object of mass, $m$ and moving with a uniform velocity, $v$ is

$ E_k=\frac{1}{2} m v^{2} $

Example 10.3 An object of mass $15 kg$ is moving with a uniform velocity of 4 $m s^{-1}$. What is the kinetic energy possessed by the object?

Solution:

Mass of the object, $m=15 kg$, velocity of the object, $v=4 m s^{-1}$.

From Eq. (10.5),

$$ \begin{aligned} E_k & =\frac{1}{2} m v^{2} \\ & =\frac{1}{2} \times 15 kg \times 4 m s^{-1} \times 4 m s^{-1} \\ & =120 J \end{aligned} $$

The kinetic energy of the object is $120 J$.

Example 10.4 What is the work to be done to increase the velocity of a car from $30 km h^{-1}$ to $60 km h^{-1}$ if the mass of the car is $1500 kg$ ?

Solution:

Mass of the car, $m=1500 kg$, initial velocity of car, $u=30 km h^{-1}$

$$ \begin{aligned} & =\frac{30 \times 1000 m}{60 \times 60 s} \\ & =25 / 3 m s^{-1} . \end{aligned} $$

Similarly, the final velocity of the car,

$$ \begin{aligned} V & =60 km h^{-1} \\ & =50 / 3 m s^{-1} . \end{aligned} $$

Therefore, the initial kinetic energy of the car,

$$ \begin{aligned} E _{k i} & =\frac{1}{2} m u^{2} \\ & =\frac{1}{2} \times 1500 kg \times(25 / 3 m s^{-1})^{2} \\ & =156250 / 3 J . \end{aligned} $$

The final kinetic energy of the car,

$$ \begin{gathered} E _{k f}=\frac{1}{2} \times 1500 kg \times(50 / 3 m s^{-1})^{2} \\ =625000 / 3 J \end{gathered} $$

Thus, the work done $=$ Change in kinetic energy

$$ \begin{aligned} & =E _{k f}-E _{k i} \\ & =156250 J . \end{aligned} $$

Questions

1. What is the kinetic energy of an object?

Show Answer

Answer

The energy possessed by a body by virtue of its motion is termed mechanical energy or kinetic energy. Every moving object possesses mechanical energy. A body uses mechanical energy to try to work. The kinetic energy of the hammer is employed in driving a nail into a log of wood, the mechanical energy of air is employed to run wind mills, etc.

2. Write an expression for the kinetic energy of an object.

Show Answer

Answer

If a body of mass $m$ is moving with a speed $v$, then its K.E. $E_k$ is given by the expression,

$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{~m} \mathrm{v}^2$

Its SI unit is Joule (J).

3. The kinetic energy of an object of mass, $m$ moving with a velocity of $5 m s^{-1}$ is $25 J$. What will be its kinetic energy when its velocity is doubled? What will be its kinetic energy when its velocity is increased three times?

Show Answer

Answer

Given

K.E. of the object $=25 \mathrm{~J}$

Velocity of the object (v) $=5 \mathrm{~m} / \mathrm{s}$

$ \begin{aligned} & \text { K.E. }=(1 / 2) \mathrm{mv}^2 \\ & 25=(1 / 2) \mathrm{m}(5)^2 \\ & 50=25 \mathrm{x} \mathrm{m} \\ & \mathrm{m}=50 / 25 \\ & \mathrm{~m}=2 \mathrm{~kg} \end{aligned} $

Now, when velocity is doubled

$ \begin{aligned} & \mathrm{v}=10 \mathrm{~m} / \mathrm{s} \\ & \mathrm{m}=2 \mathrm{~kg} \\ & \text { K.E. }=(1 / 2) \times 2 \times(10)^2 \\ & \text { K.E. }=10^2 \\ & \text { K.E. }=100 \mathrm{~J} \end{aligned} $

When velocity is increased three times, then

$ \begin{aligned} & \mathrm{v}=15 \mathrm{~m} / \mathrm{s} \\ & \mathrm{m}=2 \mathrm{~kg} \\ & \text { K.E. }=(1 / 2) \times 2 \times(15)^2 \end{aligned} $

$\begin{aligned} & \text { K.E. }=(15)^2 \\ & \text { K.E. }=225 \mathrm{~J}\end{aligned}$

10.2.3 POTENTIAL ENERGY

Activity 10.8

  • Take a rubber band.

  • Hold it at one end and pull from the other. The band stretches.

  • Release the band at one of the ends.

  • What happens?

  • The band will tend to regain its original length. Obviously the band had acquired energy in its stretched position.

  • How did it acquire energy when stretched?

Activity 10.9

  • Take a slinky as shown below.

  • Ask a friend to hold one of its ends. You hold the other end and move away from your friend. Now you release the slinky.

  • What happened?

  • How did the slinky acquire energy when stretched?

  • Would the slinky acquire energy when it is compressed?

Activity 10.10

  • Take a toy car. Wind it using its key.

  • Place the car on the ground.

  • Did it move?

  • From where did it acquire energy?

  • Does the energy acquired depend on the number of windings?

How can you test this?

Activity 10.11

  • Lift an object through a certain height. The object can now do work. It begins to fall when released.

  • This implies that it has acquired some energy. If raised to a greater height it can do more work and hence possesses more energy.

  • From where did it get the energy? Think and discuss.

In the above situations, the energy gets stored due to the work done on the object. The energy transferred to an object is stored as potential energy if it is not used to cause a change in the velocity or speed of the object.

You transfer energy when you stretch a rubber band. The energy transferred to the band is its potential energy. You do work while winding the key of a toy car. The energy transferred to the spring inside is stored as potential energy. The potential energy possessed by the object is the energy present in it by virtue of its position or configuration.

Activity 10.12

  • Take a bamboo stick and make a bow as shown in Fig. 10.6.

  • Place an arrow to made of a light stick on it with one end supported by the stretched string.

  • Now stretch the string and release the arrow.

  • Notice the arrow flying off the bow. Notice the change in the shape of the bow.

  • The potential energy stored in the bow due to the change of shape is thus used in the form of kinetic energy in throwing off the arrow.

Fig.10.6: An arrow and the stretched string on the bow.

10.2.4 POTENTIAL ENERGY OF AN OBJECT AT A HEIGHT

An object increases its energy when raised through a height. This is because work is done on it against gravity while it is being raised. The energy present in such an object is the gravitational potential energy.

The gravitational potential energy of an object at a point above the ground is defined as the work done in raising it from the ground to that point against gravity.

It is easy to arrive at an expression for the gravitational potential energy of an object at a height.

Fig. 10.7

Consider an object of mass, $m$. Let it be raised through a height, $h$ from the ground. A force is required to do this. The minimum force required to raise the object is equal to the weight of the object, $m g$. The object gains energy equal to the work done on it. Let the work done on the object against gravity be $W$. That is,

work done, $W=$ force $\times$ displacement

$$ \begin{aligned} & =m g \times h \\ & =m g h \end{aligned} $$

Since work done on the object is equal to $m g h$, an energy equal to $m g h$ units is gained by the object. This is the potential energy $(E_p)$ of the object.

$$ E_p=m g h $$


The potential energy of an object at a height depends on the ground level or the zero level you choose. An object in a given position can have a certain potential energy with respect to one level and a different value of potential energy with respect to another level.


It is useful to note that the work done by gravity depends on the difference in vertical heights of the initial and final positions of the object and not on the path along which the object is moved. Fig. 10.8 shows a case where a block is raised from position A to B by taking two different paths. Let the height $AB=h$. In both the situations the work done on the object is mgh.

Fig. 10.8

Example 10.5 Find the energy possessed by an object of mass $10 kg$ when it is at a height of $6 m$ above the ground. Given, $g=9.8 m s^{-2}$.

Solution:

Mass of the object, $m=10 kg$, displacement (height), $h=6 m$, and acceleration due to gravity, $g=9.8 m s^{-2}$. From Eq. (10.6),

Potential energy $=m g h$

$ =10 kg \times 9.8 m s^{-2} \times 6 m $

$ =588 J . $

The potential energy is $588 J$.

Example 10.6 An object of mass $12 kg$ is at a certain height above the ground. If the potential energy of the object is $480 J$, find the height at which the object is with respect to the ground. Given, $g=10 m s^{-2}$.

Solution:

Mass of the object, $m=12 kg$,

potential energy, $E_p=480 J$.

$$ \begin{aligned} E_p & =m g h \\ 480 J & =12 kg \times 10 m s^{-2} \times h \\ h & =\frac{480 J}{120 kg m s^{-2}}=4 m . \end{aligned} $$

The object is at the height of $4 m$.

10.2.5 ARE VARIOUS ENERGY FORMS INTERCONVERTIBLE?

Can we convert energy from one form to another? We find in nature a number of instances of conversion of energy from one form to another.

Activity 10.13

  • Sit in small groups.

  • Discuss the various ways of energy conversion in nature.

  • Discuss following questions in your group:

    (a) How do green plants produce food?

    (b) Where do they get their energy from?

    (c) Why does the air move from place to place?

    (d) How are fuels, such as coal and petroleum formed?

    (e) What kinds of energy conversions sustain the water cycle?

Activity 10.14

Many of the human activities and the gadgets we use involve conversion of energy from one form to another.

  • Make a list of such activities and gadgets.

  • Identify in each activity/gadget the kind of energy conversion that takes place.

10.2.6 LAW OF CONSERVATION OF ENERGY

In activities 10.13 and 10.14, we learnt that the form of energy can be changed from one form to another. What happens to the total energy of a system during or after the process? Whenever energy gets transformed, the total energy remains unchanged. This is the law of conservation of energy. According to this law, energy can only be converted from one form to another; it can neither be created or destroyed. The total energy before and after the transformation remains the same. The law of conservation of energy is valid in all situations and for all kinds of transformations.

Consider a simple example. Let an object of mass, $m$ be made to fall freely from a height, $h$. At the start, the potential energy is mgh and kinetic energy is zero. Why is the kinetic energy zero? It is zero because its velocity is zero. The total energy of the object is thus mgh. As it falls, its potential energy will change into kinetic energy. If $v$ is the velocity of the object at a given instant, the kinetic energy would be $1 / 2 m v^{2}$. As the fall of the object continues, the potential energy would decrease while the kinetic energy would increase. When the object is about to reach the ground, $h=0$ and $v$ will be the highest. Therefore, the kinetic energy would be the largest and potential energy the least. However, the sum of the potential energy and kinetic energy of the object would be the same at all points. That is,

potential energy + kinetic energy $=$ constant or

$$ m g h+\frac{1}{2} m v^{2}=\text{ constant. } $$

The sum of kinetic energy and potential energy of an object is its total mechanical energy.

We find that during the free fall of the object, the decrease in potential energy, at any point in its path, appears as an equal amount of increase in kinetic energy. (Here the effect of air resistance on the motion of the object has been ignored.) There is thus a continual transformation of gravitational potential energy into kinetic energy.

Activity 10.15

  • An object of mass $20 kg$ is dropped from a height of $4 m$. Fill in the blanks in the following table by computing the potential energy and kinetic energy in each case.
Height at which object is located Potential energy $(E_p=m g h)$ Kinetic energy $(E_k=m v^{2} / 2)$ $E_p+E_k$
m $J$ $J$ $J$
4
3
2
1
Just above
the ground
  • For simplifying the calculations, take the value of $g$ as $10 m s^{-2}$.

Think it over !

What would have happened if nature had not allowed the transformation of energy? There is a view that life could not have been possible without transformation of energy. Do you agree with this?


10.3 Rate of Doing Work

Do all of us work at the same rate? Do machines consume or transfer energy at the same rate? Agents that transfer energy do work at different rates. Let us understand this from the following activity:

Activity 10.16

  • Consider two children, say A and B. Let us say they weigh the same. Both start climbing up a rope separately. Both reach a height of $8 m$. Let us say A takes $15 s$ while B takes $20 s$ to accomplish the task.

  • What is the work done by each?

  • The work done is the same. However, A has taken less time than $B$ to do the work.

  • Who has done more work in a given time, say in $1 s$ ?

A stronger person may do certain work in relatively less time. A more powerful vehicle would complete a journey in a shorter time than a less powerful one. We talk of the power of machines like motorbikes and motorcars. The speed with which these vehicles change energy or do work is a basis for their classification. Power measures the speed of work done, that is, how fast or slow work is done. Power is defined as the rate of doing work or the rate of transfer of energy. If an agent does a work $W$ in time $t$, then power is given by:

Power $=$ work $/$ time

or

$$ P=\frac{W}{t} $$

The unit of power is watt [in honour of James Watt (1736 - 1819)] having the symbol W. 1 watt is the power of an agent, which does work at the rate of 1 joule per second. We can also say that power is $1 W$ when the rate of consumption of energy is $1 J s^{-1}$.

1 watt $=1$ joule $/$ second or $1 W=1 J s^{-1}$. We express larger rates of energy transfer in kilowatts (kW).

$$ \begin{matrix} 1 \text{ kilowatt } & =1000 \text{ watts } \\ 1 kW & =1000 W \\ 1 kW & =1000 J s^{-1} . \end{matrix} $$

The power of an agent may vary with time. This means that the agent may be doing work at different rates at different intervals of time. Therefore the concept of average power is useful. We obtain average power by dividing the total energy consumed by the total time taken.

Example 10.7 Two girls, each of weight 400 $N$ climb up a rope through a height of 8 $m$. We name one of the girls $A$ and the other B. Girl A takes 20 s while B takes $50 s$ to accomplish this task. What is the power expended by each girl?

Solution:

(i) Power expended by girl A:

Weight of the girl, $m g=400 N$

Displacement (height), $h=8 m$

Time taken, $t=20 s$

From Eq. (10.8),

Power, $P=$ Work done/time taken

$$ \begin{aligned} & =\frac{m g h}{t} \\ & =\frac{400 N \times 8 m}{20 s} \\ & =160 W . \end{aligned} $$

(ii) Power expended by girl B:

Weight of the girl, $m g=400 N$

Displacement (height), $h=8 m$

Time taken, $t=50 s$

$ \text{ Power, } \begin{aligned} P & =\frac{m g h}{t} \\ & =\frac{400 N \times 8 m}{50 s} \\ & =64 W . \end{aligned} $

Power expended by girl A is $160 W$.

Power expended by girl B is $64 W$.

Example 10.8 A boy of mass $50 kg$ runs up a staircase of 45 steps in $9 s$. If the height of each step is $15 cm$, find his power. Take $g=10 m s^{-2}$.

Solution:

Weight of the boy,

$ m g=50 kg \times 10 m s^{-2}=500 N $

Height of the staircase,

$ h=45 \times 15 / 100 m=6.75 m $

Time taken to climb, $t=9 s$

From Eq. (10.8), power, $P=$ Work done/time taken

$$ \begin{aligned} & =\frac{m g h}{t} \\ & =\frac{500 N \times 6.75 m}{9 s} \\ & =375 W . \end{aligned} $$

Power is $375 W$.

Questions

1. What is power?

Show Answer

Answer

Power is defined as the rate of doing work or the rate of transfer of energy. If an agent does a work W in time t, then power is given by:

$ \begin{aligned} & \text { Power }=\frac{\text { Work }}{\text { Time }} \\ \\ & \mathrm{P}=\mathrm{W} / \mathrm{T} \end{aligned} $

It is expressed in watt (W).

2. Define 1 watt of power.

Show Answer

Answer

A body is claimed to possess power of one watt if it works at the speed of 1 joule in $1 \mathrm{~s}$.

That is,

One $\mathrm{W}=1 \mathrm{~J} / 1 \mathrm{~S}$

3. A lamp consumes $1000 J$ of electrical energy in $10 s$. What is its power?

Show Answer

Answer

Power $=$ Work $/$ Time

$\mathrm{P}=\mathrm{W} / \mathrm{T}$

Time $=10 \mathrm{~s}$

Work done $=$ Energy consumed by the lamp $=1000 \mathrm{~J}$

Power $=1000 / 10=100 \mathrm{Js}^{-1}=100 \mathrm{~W}$

Hence, the power of the lamp is $100 \mathrm{~W}$

4. Define average power.

Show Answer

Answer

Average power is defined as the ratio of total work done by the body to the total time taken by the body.

$ \text { Average Power }=\frac{\text { Total Work Done }}{\text { Total Time Taken }} $

Activity 10.17

  • Take a close look at the electric meter installed in your house. Observe its features closely.

  • Take the readings of the meter each day at $6.30 am$ and $6.30 pm$.

  • Do this activity for about a week.

  • How many ‘units’ are consumed during day time?

  • How many ‘units’ are used during night?

  • Tabulate your observations.

  • Draw inferences from the data.

  • Compare your observations with the details given in the monthly electricity bill (One can also estimate the electricity to be consumed by specific appliances by tabulating their known wattages and hours of operation).

What you have learnt

  • Work done on an object is defined as the magnitude of the force multiplied by the distance moved by the object in the direction of the applied force. The unit of work is joule: 1 joule $=1$ newton $\times 1$ metre .

  • Work done on an object by a force would be zero if the displacement of the object is zero.

  • An object having capability to do work is said to possess energy. Energy has the same unit as that of work.

  • An object in motion possesses what is known as the kinetic energy of the object. An object of mass, $m$ moving with velocity $v$ has a kinetic energy of $\frac{1}{2} m v^{2}$.

  • The energy possessed by a body due to its change in position or shape is called the potential energy. The gravitational potential energy of an object of mass, $m$ raised through a height, $h$ from the earth’s surface is given by $m g h$.

  • According to the law of conservation of energy, energy can only be transformed from one form to another; it can neither be created nor destroyed. The total energy before and after the transformation always remains constant.

  • Energy exists in nature in several forms such as kinetic energy, potential energy, heat energy, chemical energy etc. The sum of the kinetic and potential energies of an object is called its mechanical energy.

  • Power is defined as the rate of doing work. The SI unit of power is watt. $1 W=1 J / s$.

Exercises

1. Look at the activities listed below. Reason out whether or not work is done in the light of your understanding of the term ‘work’.

  • Suma is swimming in a pond.
  • A donkey is carrying a load on its back.
  • A wind-mill is lifting water from a well.
  • A green plant is carrying out photosynthesis.
  • An engine is pulling a train.
  • Food grains are getting dried in the sun.
  • A sailboat is moving due to wind energy.
Show Answer

Answer

Work is finished whenever the given 2 conditions are satisfied:

(i) A force acts on the body.

(ii) There’s a displacement of the body by applying force in or opposite to the direction of the force.

(a) While swimming, Suma applies a force to push the water backwards. Therefore, Suma swims in the forward direction caused by the forward reaction of water. Here, the force causes a displacement. Hence, the work is done by Seema while swimming.

(b) While carrying a load, the donkey has to apply a force in the upward direction. But, displacement of the load is in the forward direction. Since displacement is perpendicular to force, the work done is zero.

(c) A windmill works against gravity to elevate water. The windmill lift water by applying a force in an upward direction, and thus the water is moving in the same upward direction itself. Hence, work is done by the windmill to lift water from the well.

(d) No force is required when a green plant is carrying out photosynthesis. The plant does not exert any force to move. Since there is no displacement or force. Hence, no work is done.

(e) When an engine is pulling a train, it is applying a force in the forward direction. So, it is moving in the forward direction. Since displacement and force are in the same direction. Hence, work is done by the engine.

(f) There is no force involved in the process of drying food grains in the sun and the grains do not move. Since there is no force or displacement. Hence, no work is done.

(g) When a sailboat is moving due to wind energy, it is applying force in the forward direction. So, it is moving in the forward direction. Since displacement and force are in the same direction. Hence, work is done.

2. An object thrown at a certain angle to the ground moves in a curved path and falls back to the ground. The initial and the final points of the path of the object lie on the same horizontal line. What is the work done by the force of gravity on the object?

Show Answer

Answer

Work done by the force of gravity on an object depends solely on vertical displacement. Vertical displacement is given by the distinction in the initial and final positions/heights of the object which is zero.

Work done by gravity is given by the expression,

$ \mathrm{W}=\mathrm{m} \times \mathrm{g} \times \mathrm{h} $

Where,

$ \begin{aligned} & \mathrm{h}=\text { Vertical displacement }=0 \\ & \mathrm{~W}=\mathrm{m} \mathrm{g} \times 0=0 \mathrm{~J} \end{aligned} $

Hence, the work done by the gravity on the given object is zero joule.

3. A battery lights a bulb. Describe the energy changes involved in the process.

Show Answer

Answer

When a bulb is connected to a battery, then the energy of the battery is transferred into voltage. Once the bulb receives this voltage, then it converts it into light and heat energy. Hence, the transformation of energy in the given situation can be shown as:

Chemical Energy $\rightarrow$ Electrical Energy $\rightarrow$ Light Energy + Heat Energy.

4. Certain force acting on a $20 kg$ mass changes its velocity from $5 m s^{-1}$ to $2 m s^{-1}$. Calculate the work done by the force.

Show Answer

Answer

Given

Initial velocity $u=5 \mathrm{~m} / \mathrm{s}$

Mass of the body $=20 \mathrm{~kg}$

Final velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$

The initial kinetic energy

$ \begin{aligned} & \mathrm{E}_{\mathrm{i}}=(1 / 2) \mathrm{mu}^2=(1 / 2) \times 20 \times(5)^2 \\ & =10 \times 25 \\ & =250 \mathrm{~J} \end{aligned} $

Final kinetic energy

$ \begin{aligned} & \mathrm{E}_{\mathrm{f}}=(1 / 2) \mathrm{mv}^2=(1 / 2) \times 20 \times(2)^2 \\ & =10 \times 4 \\ & =40 \mathrm{~J} \end{aligned} $

Therefore,

Work done $=$ Change in kinetic energy

Work done $=\mathrm{E_f}-\mathrm{E_i}$

Work done $=40 \mathrm{~J}-250 \mathrm{~J}$

Work done $=-210 \mathrm{~J}$

5. A mass of $10 kg$ is at a point $A$ on a table. It is moved to a point $B$. If the line joining $A$ and $B$ is horizontal, what is the work done on the object by the gravitational force? Explain your answer.

Show Answer

Answer

Work done by gravity depends solely on the vertical displacement of the body. It doesn’t rely on the trail of the body. Therefore, work done by gravity is given by the expression,

$ \mathrm{W}=\mathrm{mg} \mathrm{h} $

Where,

Vertical displacement, $\mathrm{h}=0$

$ \therefore \mathrm{W}=\mathrm{m} \times \mathrm{g} \times \text { zero }=0 $

Therefore the work done on the object by gravity is zero.

6. The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy? Why?

Show Answer

Answer

No, the method doesn’t violate the law of conservation of energy. This is because when the body falls from a height, its potential energy changes into kinetic energy progressively. A decrease in the potential energy is equal to an increase in the kinetic energy of the body. Throughout the method, the total mechanical energy of the body remains conserved. Therefore, the law of conservation of energy isn’t desecrated.

7. What are the various energy transformations that occur when you are riding a bicycle?

Show Answer

Answer

During riding a bicycle, the muscular energy of the rider regenerates into heat and mechanical energy. Kinetic energy provides a rate to the bicycle, and warmth energy heats our body.

Muscular energy $\rightarrow$ mechanical energy + heat

8. Does the transfer of energy take place when you push a huge rock with all your might and fail to move it? Where is the energy you spend going?

Show Answer

Answer

When we push a huge rock, there’s no transfer of muscular energy to the stationary rock. Also, there’s no loss of energy since muscular energy is transferred into heat energy, which causes our body to become hot.

9. A certain household has consumed 250 units of energy during a month. How much energy is this in joules?

Show Answer

Answer

1 unit of energy $=1 \mathrm{kWh}$

Given

Energy $(E)=250$ units

$ \begin{aligned} & 1 \text { unit }=1 \mathrm{kWh} \\ & 1 \mathrm{kWh}=3.6 \times 10^6 \mathrm{~J} \end{aligned} $

Therefore, 250 units of energy $=250 \times 3.6 \times 10^6$

$ =9 \times 10^8 \mathrm{~J} \text {. } $

10. An object of mass $40 kg$ is raised to a height of $5 m$ above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half-way down.

Show Answer

Answer

Given Mass $(\mathrm{m})=40 \mathrm{~kg}$

Acceleration due to gravity $(\mathrm{g})=10 \mathrm{~m} / \mathrm{s}^2$

Height $(\mathrm{h})=5 \mathrm{~m}$

Potential energy $=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$

P.E $=40 \times 10 \times 5=2000 \mathrm{~J}$

Potential energy $=2000 \mathrm{~J}$ (2000 joules)

At a height of 5 metres, the object has a potential energy of $2000 \mathrm{~J}$.

When this object is allowed to fall and it is halfway down, its height above the ground will be half of $5 \mathrm{~m}=5 / 2=2.5 \mathrm{~m}$.

P.E at Halfway down $=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$

$ \begin{aligned} & \text { P.E }=40 \times 10 \times 2.5=1000 \mathrm{~J} \\ & {[\mathrm{~h}=2.5 \mathrm{~m}]} \end{aligned} $

Potential Energy halfway down $=1000$ joules.

According to the law of conservation of energy:

Total potential energy= potential energy halfway down+ kinetic energy halfway down

$2000=1000+$ K.E halfway down

K.E at halfway down $=2000-1000=1000 \mathrm{~J}$

Kinetic energy at halfway down $=1000$ joules.

11. What is the work done by the force of gravity on a satellite moving round the earth? Justify your answer.

Show Answer

Answer

Work is completed whenever the given two conditions are satisfied:

(i) A force acts on the body.

(ii) There’s a displacement of the body by applying force in or opposite to the direction of the force.

If the direction of force is perpendicular to displacement, then the work done is zero. When a satellite moves around the Earth, then the force of gravity on the satellite is perpendicular to its displacement. Therefore, the work done on the satellite by the Earth is zero.

12. Can there be displacement of an object in the absence of any force acting on it? Think. Discuss this question with your friends and teacher.

Show Answer

Answer

Yes, there can be displacement of an object in the absence of any force acting on it. If a single force acts on an object, the object accelerates. If an object accelerates, a force is acting on it.

Assume an object is moving with constant velocity. The net force acting on it is zero. But, there is a displacement along with the motion of the object. Therefore, there can be a displacement without a force.

13. A person holds a bundle of hay over his head for 30 minutes and gets tired. Has he done some work or not? Justify your answer.

Show Answer

Answer

Work is completed whenever the given 2 conditions are satisfied.

(i) A force acts on the body.

(ii) There’s a displacement of the body by applying force in or opposite to the direction of the force.

When an individual holds a bundle of hay over his head, there is no displacement in the hay bundle. Although the force of gravity is acting on the bundle, the person isn’t applying any force on it. Therefore, in the absence of force, work done by the person on the bundle is zero.

14. An electric heater is rated $1500 W$. How much energy does it use in 10 hours?

Show Answer

Answer

Given,

Power of the heater $=1500 \mathrm{~W}=1.5 \mathrm{~kW}$

Time taken $=10$ hours

Energy consumed by an electric heater can be obtained with the help of the expression,

Power $=$ Energy consumed $/$ Time taken

Hence,

Energy consumed = Power $\mathrm{x}$ Time taken

Energy consumed $=1.5 \times 10$

Energy consumed $=15 \mathrm{kWh}$

Therefore, the energy consumed by the heater in 10 hours is $15 \mathrm{kWh}$.

15. Illustrate the law of conservation of energy by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy?

Show Answer

Answer

Consider the case of an oscillation pendulum.

When an apparatus moves from its mean position $\mathrm{P}$ to either of its extreme positions $\mathrm{A}$ or $\mathrm{B}$, it rises through a height $\mathrm{h}$ on top of the mean level P. At this time, the K.E. of the bob changes fully into P.E. The K.E. becomes zero, and also, the bob possesses P.E. solely. Because it moves towards purpose P, its P.E. decreases increasingly. Consequently, the K.E. will increase. Because the bob reaches purpose P, its P.E. becomes zero, and also, the bob possesses K.E. solely. This method is perennial as long as the apparatus oscillates.

The bob doesn’t oscillate forever. It involves rest as a result of air resistance resisting its motion. The apparatus loses its K.E. to beat this friction and stops once in a while. The law of conservation of energy isn’t desecrated because the energy lost by the apparatus to beat friction is gained by its surroundings. Hence, the overall energy of the apparatus and also the encompassing system stay preserved.

16. An object of mass, $m$ is moving with a constant velocity, $v$. How much work should be done on the object in order to bring the object to rest?

Show Answer

Answer

The kinetic energy of an object of mass $\mathrm{m}$, moving with a velocity, $\mathrm{v}$, is given by the expression, $\mathrm{K} . \mathrm{E}=1 / 2 \mathrm{mv}^2$

In order to bring it to rest, its velocity has to be reduced to zero, and in order to accomplish that, the kinetic energy has to be drained off and sent somewhere else.

An external force has to absorb energy from the object, i.e. do negative work on it, equal to its kinetic energy, or $-1 / 2 \mathrm{mv}^2$.

17. Calculate the work required to be done to stop a car of 1500 $kg$ moving at a velocity of $60 km / h$ ?

Show Answer

Answer

Given data:

The mass of the body $=1500 \mathrm{~kg}$

Velocity $\mathrm{v}=60 \mathrm{~km} / \mathrm{hr}$

$$ \begin{aligned} & =\frac{60 \times 1000 \mathrm{~m}}{3600 \mathrm{~s}} \\ & =\frac{50}{3} \mathrm{~m} / \mathrm{s} \end{aligned} $$

The work required to stop the moving car = change in kinetic energy

$= \frac{1}{2}mv^{2}$

$=\frac{1}{2}\times 1500\times \left ( \frac{50}{3} \right )^{2}$

$=-208333.3 J$

18. In each of the following a force, $F$ is acting on an object of mass, $m$. The direction of displacement is from west to east shown by the longer arrow. Observe the diagrams carefully and state whether the work done by the force is negative, positive or zero.

Show Answer

Answer

Case I

In this case, the direction of force functioning on the block is perpendicular to the displacement. Therefore, work done by force on the block will be zero.

Case II

In this case, the direction of force functioning on the block is in the direction of displacement. Therefore, work done by force on the block will be positive.

Case III

In this case, the direction of force functioning on the block is contrary to the direction of displacement. Therefore, work done by force on the block will be negative.

19. Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why?

Show Answer

Answer

Acceleration in an object could be zero even when many forces work on it. This happens when all the forces get rid of one another, i.e., the online force working on the object is zero. For a uniformly moving object, the online force working on the it is zero. Hence, the acceleration of the thing is zero. Hence, Soni is correct.

20. Find the energy in joules consumed in 10 hours by four devices of power $500 W$ each.

Show Answer

Answer

Given,

Power rating of the device $(\mathrm{P})=500 \mathrm{~W}=0.50 \mathrm{~kW}$

Time for which the device runs $(\mathrm{T})=10 \mathrm{~h}$

Energy consumed by an electric device can be obtained by the expression

Power $=$ Energy consumed/Time taken

$\therefore$ Energy consumed $=$ Power $\times$ Time

Energy consumed $=0.50 \times 10$

Energy consumed $=5 \mathrm{kWh}$

Thus, the energy consumed by four equal rating devices in $10 \mathrm{~h}$ will be

$ \begin{aligned} & \Rightarrow 4 \times 5 \mathrm{kWh} \\ & =20 \mathrm{kWh} \end{aligned} $

21. A freely falling object eventually stops on reaching the ground. What happenes to its kinetic energy?

Show Answer

Answer

When an object falls freely towards the ground, its potential energy decreases, and kinetic energy increases; as the object touches the ground, all its potential energy becomes kinetic energy. Since the object hits the ground, all its kinetic energy becomes heat energy and sound energy. It can also deform the ground depending upon the ground’s nature and the amount of kinetic energy possessed by the object.

पिछले कुछ अध्यायों में हम वस्तुओं की गति के वर्णन करने के तरीकों, गति का कारण तथा गुरुत्वाकर्षण के बारे में चर्चा कर चुके हैं। कार्य एक अन्य अवधारणा है जो हमें अनेक प्राकृतिक घटनाओं को समझने तथा उनकी व्याख्या करने में सहायता करती है। ऊर्जा तथा शक्ति का कार्य से निकट संबंध है। इस अध्याय में हम इन अवधारणाओं के बारे में अध्ययन करेंगे।

सभी सजीवों को भोजन की आवश्यकता होती है। जीवित रहने के लिए सजीवों को अनेक मूलभूत गतिविधियाँ करनी पड़ती हैं। इन गतिविधियों (क्रियाकलापों) को हम जैव प्रक्रम कहते हैं। इन प्रक्रमों के लिए ऊर्जा भोजन से प्राप्त होती है। कुछ अन्य क्रियाकलापों; जैसे - खेलने, गाने, पढ़ने, लिखने, सोचने, कूदने, दौड़ने तथा साइकिल चलाने के लिए भी हमें ऊर्जा की आवश्यकता होती है। कठिन क्रियाकलापों में अधिक ऊर्जा की आवश्यकता होती है।

जंतु भी क्रियाकलापों में व्यस्त रहते हैं। उदाहरण के लिए वे कूद या दौड़ सकते हैं। उन्हें लड़ना पड़ता है, अपने शत्रुओं से दूर भागना पड़ता है, भोजन खोजना या आवास के लिए सुरक्षित स्थान खोजना पड़ता है। इसके अतिरिक्त कुछ जंतुओं को हम बोझा ढोने, गाडी खींचने या खेत जोतने के लिए उपयोग में लाते हैं। इन सभी क्रियाकलापों के लिए ऊर्जा की आवश्यकता होती है।

मशीनों के बारे में सोचिए। उन मशीनों की सूची बनाइए जिनका उपयोग आप करते हैं। उन्हें कार्य करने के लिए किस चीज़ की आवश्यकता होती है? कुछ इंजनों को पेट्रोल तथा डीज़ल की आवश्यकता क्यों होती है? सजीवों तथा मशीनों को ऊर्जा की आवश्यकता क्यों होती है?

10.1 कार्य

कार्य क्या है? हम अपने दैनिक जीवन में जिस रूप में कार्य शब्द का प्रयोग करते हैं और जिस रूप में हम इसे विज्ञान में उपयोग करते हैं, उनमें अंतर है। इस बात को स्पष्ट करने के लिए आइए कुछ उदाहरणों पर विचार करें।

10.1.1 कठोर काम करने के बावजूद कुछ अधिक ‘कार्य’ नहीं!

कमली परीक्षा की तैयारी कर रही है। वह अध्ययन में बहुत-सा समय व्यतीत करती है। वह पुस्तकें पढ़ती है, चित्र बनाती है, अपने विचारों को सुव्यवस्थित करती है, प्रश्न-पत्रों को एकत्रित करती है, कक्षाओं में उपस्थित रहती है, अपने मित्रों के साथ समस्याओं पर विचार-विमर्श करती है तथा प्रयोग करती है। इन क्रियाकलापों पर वह बहुत-सी ऊर्जा व्यय करती है। सामान्य बोलचाल में वह ‘कठोर काम’ कर रही है। यदि हम कार्य को वैज्ञानिक परिभाषा के अनुसार देखें तो इस ‘कठोर काम’ में बहुत थोड़ा ‘कार्य’ सम्मिलित है।

आप एक बहुत बड़ी चट्टान को धकेलने के लिए कठोर परिश्रम कर रहे हैं। मान लीजिए आपके सारे प्रयत्नों के बावजूद चट्टान नहीं हिलती। आप पूर्णतया

थक चुके हैं। तथापि, आपने चट्टान पर कोई कार्य नहीं किया क्योंकि चट्टान में कोई विस्थापन नहीं हुआ।

आप अपने सिर पर एक भारी बोझा रखकर कुछ मिनट के लिए बिना हिले-डुले खड़े रहते हैं। आप थक जाते हैं। आपने प्रयास किया है तथा अपनी बहुत-सी ऊर्जा व्यय की है। क्या आप बोझे पर कुछ कार्य कर रहे हैं? हम विज्ञान में जिस प्रकार ‘कार्य’ शब्द का अर्थ समझते हैं उस रूप में, इस स्थिति में कार्य नहीं किया गया है।

प्राकृतिक दृश्यों को देखने के लिए, आप सीढ़ियों पर चढ़कर इमारत की ऊपरी मंजिलों पर पहुँच जाते हैं। आप एक ऊँचे पेड़ पर भी चढ़ सकते हैं। वैज्ञानिक परिभाषा के अनुसार इन क्रियाकलापों में बहुत-सा कार्य निहित है।

अपने दैनिक जीवन में, हम किसी भी लाभदायक शारीरिक या मानसिक परिश्रम को कार्य समझते हैं। कुछ क्रियाकलापों; जैसे - मैदान में खेलना, मित्रों से बातचीत करना, किसी धुन को गुनगुनाना, किसी चलचित्र (Cinema) को देखना, किसी समारोह में सम्मिलित होना को कभी-कभी कार्य नहीं समझा जाता। कार्य क्या होता है यह इस बात पर निर्भर है कि हम उसे कैसे परिभाषित करते हैं। विज्ञान में हम कार्य शब्द को भिन्न प्रकार से प्रयोग तथा परिभाषित करते हैं। इसे जानने के लिए आइए निम्न क्रियाकलाप करें:

क्रियाकलाप 10.1

  • उपरोक्त अनुच्छेदों में हमने अनेक ऐसे क्रियाकलापों की चर्चा की जिन्हें प्रायः हम अपने दैनिक जीवन में कार्य मानते हैं। इनमें से प्रत्येक क्रियाकलाप के लिए निम्नलिखित प्रश्नों का उत्तर दीजिए :

    (i) किस वस्तु पर कार्य किया गया?

    (ii) वस्तु पर क्या घटित हो रहा है?

    (iii) कार्य कौन (क्या) कर रहा है?

10.1.2 कार्य की वैज्ञानिक संकल्पना

विज्ञान के दृष्टिकोण से हम कार्य को किस प्रकार देखते और परिभाषित करते हैं यह समझने के लिए, आइए कुछ स्थितियों पर विचार करें:

किसी सतह पर रखे एक गुटके को धकेलें। गुटका कुछ दूरी तय करता है। आपने गुटके पर कुछ बल लगाया जिससे गुटका विस्थापित हो गया। इस स्थिति में कार्य हुआ।

एक लड़की किसी ट्रॉली को खींचती है और ट्रॉली कुछ दूर तक चलती है। लड़की ने ट्रॉली पर बल लगाया और यह विस्थापित हुई; इसलिए कार्य किया गया।

एक पुस्तक को किसी ऊँचाई तक उठाइए। ऐसा करने के लिए आपको बल लगाना पड़ेगा। पुस्तक ऊपर उठती है। पुस्तक पर एक बल लगाया गया तथा पुस्तक गतिमान हुई; इसलिए कार्य किया गया।

उपरोक्त स्थितियों को ध्यानपूर्वक देखने से ज्ञात होता है कि कार्य करने के लिए दो दशाओं का होना आवश्यक है: (i) वस्तु पर कोई बल लगना चाहिए, तथा (ii) वस्तु विस्थापित होनी चाहिए।

यदि इनमें से कोई भी दशा पूरी नहीं होती तो कार्य नहीं किया गया। विज्ञान में हम कार्य को इसी दृष्टि से देखते हैं।

एक बैल किसी गाड़ी को खींच रहा है। गाड़ी चलती है। गाड़ी पर एक बल लग रहा है तथा गाड़ी कुछ दूर चली है। क्या आपके विचार में इस स्थिति में कार्य किया गया है?

क्रियाकलाप 10.2

  • अपने दैनिक जीवन की कुछ स्थितियों पर विचार कीजिए जिनमें कार्य सम्मिलित हो।

  • इनकी सूची बनाइए।

  • अपने मित्रों से विचार-विमर्श कीजिए कि क्या प्रत्येक स्थिति में कार्य किया गया है। अपने उत्तरों का कारण जानने का प्रयत्न कीजिए।

  • यदि कार्य हुआ है तो वस्तु पर कौन सा बल कार्य कर रहा है?

वह कौन-सी वस्तु है जिस पर कार्य किया गया है?

जिस वस्तु पर कार्य किया गया है उसकी स्थिति में क्या परिवर्तन होता है?

क्रियाकलाप 10.3

  • कुछ स्थितियों पर विचार कीजिए जब वस्तु पर बल लगने के बावजूद वह विस्थापित नहीं होती।

  • ऐसी स्थिति पर भी विचार कीजिए जब कोई वस्तु बल लगे बिना ही विस्थापित हो जाए।

  • प्रत्येक के लिए जितनी स्थितियाँ आप सोच सकें उनकी सूची बनाइए।

  • अपने मित्रों से विचार-विमर्श कीजिए कि क्या इन स्थितियों में कार्य हुआ है।

10.1.3 एक नियत बल द्वारा किया गया कार्य

विज्ञान में कार्य को कैसे परिभाषित किया जाता है? इसे समझने के लिए, पहले हम उस स्थिति पर विचार करते हैं जब बल विस्थापन की दिशा में लग रहा हो।

मान लीजिए किसी वस्तु पर एक नियत बल $F$ कार्य करता है। मान लीजिए कि वस्तु बल की दिशा में $s$ दूरी विस्थापित हुई (चित्र 10.1)। मान लीजिए $W$ किया गया कार्य है। कार्य की परिभाषा के अनुसार किया गया कार्य बल तथा विस्थापन के गुणनफल के बराबर है।

किया गया कार्य $=$ बल $\times$ विस्थापन

$W=F s$

चित्र 10.1 अतः, किसी वस्तु पर लगने वाले बल द्वारा किया गया कार्य बल के परिमाण तथा बल की दिशा में चली गई दूरी के गुणनफल के बराबर होता है। कार्य में केवल परिमाण होता है तथा कोई दिशा नहीं होती।

समीकरण (10.1) में यदि $F=1 \mathrm{~N}$ तथा $s=1 \mathrm{~m}$ हों, तो बल द्वारा किया गया कार्य $1 \mathrm{~N} \mathrm{~m}$ होगा। यहाँ बल का मात्रक न्यूटन मीटर $(\mathrm{N} \mathrm{m})$ या जूल $(\mathrm{J})$ है। अतः $1 \mathrm{~J}$ किसी वस्तु पर किए गए कार्य की वह मात्रा है जब $1 \mathrm{~N}$ का बल वस्तु को बल की क्रिया रेखा की दिशा में $1 \mathrm{~m}$ विस्थापित कर दे।

समीकरण (10.1) को ध्यानपूर्वक देखिए। यदि वस्तु पर लगने वाला बल शून्य है तो किया गया कार्य कितना होगा? यदि वस्तु का विस्थापन शून्य है तो किया गया कार्य कितना होगा? उन दशाओं का उल्लेख कीजिए जिनका कार्य होने के लिए पूरा होना आवश्यक है।

उदाहरण 10.1 किसी वस्तु पर $5 \mathrm{~N}$ बल लग रहा है। बल की दिशा में वस्तु $2 \mathrm{~m}$ विस्थापित होती है (चित्र 10.2)। यदि विस्थापन होते समय लगातार वस्तु पर बल लगता रहे, तो समीकरण (10.1) के अनुसार किया गया कार्य होगा $5 \mathrm{~N} \times 2 \mathrm{~m}=10 \mathrm{Nm}$ या $10 \mathrm{~J}$

प्रशन

**1.**किसी वस्तु पर $7 \mathrm{~N}$ का बल लगता है। मान लीजिए बल की दिशा में विस्थापन $8 \mathrm{~m}$ है (चित्र 10.3)। मान लीजिए वस्तु के विस्थापन के समय लगातार वस्तु पर बल लगता रहता है। इस स्थिति में किया गया कार्य कितना होगा?

चित्र 10.3

एक अन्य स्थिति पर विचार करें जिसमें बल तथा विस्थापन एक ही दिशा में है; एक बच्चा किसी खिलौना कार को चित्र 10.4 में दर्शाए अनुसार धरती के समानांतर खींच रहा है। बच्चे ने कार के विस्थापन की दिशा में बल लगाया है। इस स्थिति में किया गया कार्य बल तथा विस्थापन के गुणनफल के बराबर होगा। इस प्रकार की स्थिति में बल द्वारा किया गया कार्य धनात्मक माना जाता है।

चित्र 10.4

अब एक स्थिति पर विचार करें जिसमें कि एक वस्तु समान वेग से किसी नियत दिशा में गति कर रही है और उस पर विपरीत दिशा में एक अवमंदक बल, $F$, आरोपित किया जाता है, अर्थात्, दोनों दिशाओं के बीच $180^{\circ}$ का कोण बन रहा है। माना कि वस्तु $s$ दूरी के विस्थापन के पश्चात रुक जाती है। ऐसी स्थिति में बल $F$ द्वारा किया गया कार्य ऋणात्मक माना जाता है और इसे ऋण चिहन द्वारा निर्दिष्ट किया जाता है। बल द्वारा किया गया कार्य $F \times(-s)$ या $(-F \times s)$ है।

जब बल विस्थापन की दिशा के विपरीत दिशा में लगता है तो किया गया कार्य ऋणात्मक होता है। जब बल विस्थापन की दिशा में लगता है तो किया गया कार्य धनात्मक होता है।

उपरोक्त विचार-विमर्श से यह स्पष्ट है कि किसी बल द्वारा किया गया कार्य धनात्मक अथवा ऋणात्मक, दोनों में से कोई एक, हो सकता है। इसे समझने के लिए आइए निम्नलिखित क्रियाकलाप करें: किसी वस्तु को ऊपर उठाइए। आपके द्वारा वस्तु पर लगाए गए बल के द्वारा कार्य किया गया। वस्तु ऊपर की ओर चलती है। आपके द्वारा लगाया गया बल विस्थापन की दिशा में है। तथापि वस्तु पर गुरुत्वीय बल भी कार्यरत है। इनमें से कौन-सा बल धनात्मक कार्य कर रहा है? कौन सा बल ऋणात्मक कार्य कर रहा है? कारण बताइए।

उदाहरण 10.2 एक कुली $15 \mathrm{~kg}$ का बोझ धरती से $1.5 \mathrm{~m}$ ऊपर उठाकर अपने सिर पर रखता है। उसके द्वारा बोझे पर किए गए कार्य का परिकलन कीजिए।

हल :

बोझ का द्रव्यमान $m=15 \mathrm{~kg}$ तथा

$$ \text { विस्थापन } s=1.5 \mathrm{~m} $$

किया गया कार्य $W=F \times S=m g \times s$

$$ \begin{aligned} & =15 \mathrm{~kg} \times 10 \mathrm{~m} \mathrm{~s}^{-2} \times 1.5 \mathrm{~m} \\ & =225 \mathrm{~kg} \mathrm{~m} \mathrm{~s}{ }^{-2} \mathrm{~m} \\ & =225 \mathrm{~N} \mathrm{~m}=225 \mathrm{~J} \end{aligned} $$

कुली द्वारा बोझे पर किया गया कार्य $225 \mathrm{~J}$ है।

प्रशन

1. हम कब कहते हैं कि कार्य किया गया है?

2. जब किसी वस्तु पर लगने वाला बल इसके विस्थापन की दिशा में हो तो किए गए कार्य का व्यंजक लिखिए।

3. $1 \mathrm{~J}$ कार्य को परिभाषित कीजिए।

4. बैलों की एक जोड़ी खेत जोतते समय किसी हल पर $140 \mathrm{~N}$ बल लगाती है। जोता गया खेत $15 \mathrm{~m}$ लंबा है। खेत की लंबाई को जोतने में कितना कार्य किया गया?

10.2 ऊर्जा

ऊर्जा के बिना जीवन असंभव है। ऊर्जा की आवश्यकता दिन प्रतिदिन बढ़ रही है। हमें ऊर्जा कहाँ से प्राप्त

होती है? सूर्य हमारे लिए ऊर्जा का सबसे बड़ा प्राकृतिक स्रोत है। हमारे ऊर्जा के बहुत-से स्रोत सूर्य से व्युत्पन्न होते हैं। हम परमाणुओं के नाभिकों से, पृथ्वी के आंतरिक भागों से तथा ज्वार-भाटों से भी ऊर्जा प्राप्त कर सकते हैं। क्या आप ऊर्जा के अन्य स्रोतों के बारे में सोच सकते हैं?

क्रियाकलाप 10.5

  • ऊर्जा के कुछ स्रोतों को ऊपर दिया गया है। ऊर्जा के अनेक अन्य स्रोत भी हैं। उनकी सूची बनाइए।

  • छोटे समूहों में विचार-विमर्श कीजिए कि किस प्रकार ऊर्जा के कुछ स्रोत सूर्य के कारण हैं।

  • क्या ऊर्जा के कुछ ऐसे स्रोत भी हैं जो सूर्य के कारण नहीं हैं?

ऊर्जा शब्द का प्रयोग प्रायः हमारे दैनिक जीवन में होता रहता है किंतु विज्ञान में इसका एक निश्चित एवं परिशुद्ध अर्थ है। आइए, निम्नलिखित उदाहरणों पर विचार करें: जब तीव्र वेग से गतिशील क्रिकेट की गेंद स्थिर विकेटों से टकराती है, तो विकेट दूर जा गिरते हैं। इसी प्रकार, जब हम किसी वस्तु को किसी निश्चित ऊँचाई तक उठाते हैं तब उसमें कार्य करने की क्षमता समाहित हो जाती है। आपने अवश्य ही देखा होगा कि ऊँचाई तक उठाया गया हथौड़ा जब लकड़ी के किसी टुकड़े पर रखी हुई कील पर प्रहार करता है तो वह कील को लकड़ी में ठोक देता है। हमने बच्चों को खिलौनों (जैसे खिलौना कार) में चाबी भरते भी देखा है और जब यह खिलौना किसी फर्श पर रखा जाता है तो ये गति करने लगता है। जब किसी गुब्बारे में हवा भर कर उसे दबाते हैं तो उसकी आकृति में परिवर्तन होता है। यदि हम गुब्बारे को कम बल लगाकर दबाते हैं तो बल को हटाने पर यह अपनी मूल आकृति में वापस आ सकता है। किंतु यदि हम गुब्बारे को अधिक बल से दबाएँ तो यह विस्फोटक ध्वनि करते हुए फट भी सकता है। इन सभी उदाहरणों में वस्तुएँ, विभिन्न प्रकार से, कार्य करने की क्षमता अर्जित कर लेती हैं। यदि किसी वस्तु में कार्य करने की क्षमता है तो कहा जाता है कि इसमें ऊर्जा है। जो वस्तु कार्य करती है उसमें ऊर्जा की हानि होती है और जिस वस्तु पर कार्य किया जाता है उसमें ऊर्जा की वृद्धि होती है।

किसी वस्तु में यदि ऊर्जा है तो यह कैसे कार्य करती है? कोई वस्तु जिसमें ऊर्जा है तो वह दूसरी वस्तु पर बल लगा सकती है। जब ऐसा होता है तो ऊर्जा पहली वस्तु से दूसरी वस्तु में स्थानांतरित हो जाती है। दूसरी वस्तु क्योंकि कुछ ऊर्जा ग्रहण करती है इसलिए कुछ कार्य कर सकती है और इस प्रकार यह गति में आ सकती है। इस प्रकार पहली वस्तु में कार्य करने की क्षमता है। इसका अर्थ हुआ कि कोई भी वस्तु जिसमें ऊर्जा है, कार्य कर सकती है।

इस प्रकार किसी वस्तु में निहित ऊर्जा को उसकी कार्य करने की क्षमता के रूप में मापा जाता है। इसीलिए ऊर्जा का मात्रक वही है जो कार्य का है अर्थात जूल (J)। एक जूल कार्य करने के लिए आवश्यक ऊर्जा की मात्रा $1 \mathrm{~J}$ होती है। कभी-कभी ऊर्जा के बड़े मात्रक किलो जूल $(\mathrm{kJ})$ का उपयोग किया जाता है। $1 \mathrm{~kJ}, 1000 \mathrm{~J}$ के बराबर होता है।

10.2.1 ऊर्जा के रूप

सौभाग्य से जिस संसार में हम रहते हैं उसमें ऊर्जा अनेक रूपों में विद्यमान है। विभिन्न रूपों में स्थितिज ऊर्जा, गतिज ऊर्जा, ऊष्मीय ऊर्जा, रासायनिक ऊर्जा, विद्युत् ऊर्जा तथा प्रकाश ऊर्जा सम्मिलित हैं।

इसे सोचिए!

आप कैसे ज्ञात करेंगे कि कोई सत्ता (वस्तु जिसका अस्तित्व है) ऊर्जा का रूप है। अपने मित्रों तथा अध्यापकों से विचार-विमर्श कीजिए।

जेम्स प्रेसकॉट जूल (1818-1889) जेम्स प्रेसकॉट जूल एक प्रतिभाशाली ब्रिटिश भौतिक विज्ञानी थे। वे अपने विद्युत् तथा ऊष्मागतिकी के अनुसंधानों के लिए विशेष रूप से प्रसिद्ध हुए। अन्य विचारों के अतिरिक्त उन्होंने विद्युत् के ऊष्मीय प्रभाव के बारे में नियम बनाया। उन्होंने ऊर्जा संरक्षण नियम को प्रयोगात्मक रूप से सत्यापित किया तथा ऊष्मा के यांत्रिक तुल्यांक के मान की खोज़ की। ऊर्जा तथा कार्य के मात्रक का नाम जूल, उन्हीं के सम्मान में रखा गया है।

10.2.2 गतिज ऊर्जा

क्रियाकलाप 10.6

  • एक भारी गेंद लीजिए। इसे रेत की मोटी परत (क्यारी) पर गिराइए। गीले रेत की सतह अच्छा कार्य करेगी। गेंद को रेत पर लगभग $25 \mathrm{~cm}$ की ऊँचाई से गिराइए। गेंद रेत में एक गर्त (गड्ढा) बना देती है।

  • इस क्रियाकलाप को $50 \mathrm{~cm}, 1 \mathrm{~m}$ तथा $1.5 \mathrm{~m}$ की ऊँचाइयों से गेंद को गिराकर दोहराइए।

  • सुनिश्चित कीजिए कि सभी गर्त सुस्पष्ट दिखाई दें।

  • गेंद को गिराने की ऊँचाई के अनुसार सभी गर्तों पर निशान लगाएँ।

  • उनकी गहराइयों की तुलना करें।

  • इनमें से कौन-सी गर्त सबसे अधिक गहरी है।

  • कौन-सा गड्ढा सबसे अधिक उथला है। ऐसा क्यों है?

  • गेंद ने किस कारण से गहरा गड्ढा बनाया?

  • विचार-विमर्श कीजिए तथा विश्लेषण कीजिए।

क्रियाकलाप 10.7

  • चित्र 10.5 के अनुसार उपकरण सज्जित कीजिए।
  • एक ज्ञात द्रव्यमान के लकड़ी के गुटके को

चित्र 10.5

ट्रॉली के सामने किसी सुविधाजनक निश्चित दूरी पर रखिए।

  • पलड़े पर एक ज्ञात द्रव्यमान रखिए जिससे कि ट्रॉली गतिमान हो जाए।

  • ट्रॉली आगे चलती है तथा लकड़ी के गुटके से टकराती है।

  • मेज पर एक अवरोधक इस प्रकार लगाइए कि गुटके से टकराने के पश्चात् ट्रॉली वहीं रुक जाए।

  • गुटका विस्थापित हो जाता है।

  • गुटके के विस्थापन को मापिए। इसका अर्थ हुआ कि जैसे ही गुटके ने ऊर्जा ग्रहण की, ट्रॉली द्वारा गुटके पर कार्य किया गया।

  • यह ऊर्जा कहाँ से आई?

  • पलड़े पर रखे द्रव्यमान को बढ़ाकर इस प्रयोग को दोहराइए।

  • किस अवस्था में विस्थापन अधिक है? किस अवस्था में किया गया कार्य अधिक होगा?

  • इस क्रियाकलाप में गतिशील ट्रॉली कार्य करती है अतः इसमें ऊर्जा विद्यमान है।

एक चलती हुई वस्तु कार्य कर सकती है। एक तेज़ चलती वस्तु, अपने सदृश अपेक्षाकृत धीमी चलती हुई वस्तु से अधिक कार्य कर सकती है। एक गतिशील गोली, बहती हुई हवा, घूमता हुआ पहिया, एक गतिशील पत्थर, ये सभी कार्य कर सकते हैं। गोली लक्ष्य को कैसे भेद पाती है? बहती हुई हवा पवन चक्की की पंखुड़ियों को कैसे घुमा पाती है? गतिशील वस्तुओं में ऊर्जा होती है।

गिरता हुआ नारियल, गतिशील कार, लुढ़कता हुआ पत्थर, उड़ता हुआ हवाई जहाज, बहता हुआ

पानी, बहती हुई हवा, दौड़ता हुआ खिलाड़ी आदि सभी में गतिज ऊर्जा विद्यमान है। संक्षेप में, किसी वस्तु में उसकी गति के कारण निहित ऊर्जा को गतिज ऊर्जा कहते हैं। किसी वस्तु की गतिज ऊर्जा उसकी चाल के साथ बढ़ती है।

किसी गतिशील वस्तु में उसकी गति के कारण कितनी ऊर्जा निहित होती है। परिभाषा के अनुसार हम कह सकते हैं कि किसी निश्चित वेग से गतिशील वस्तु की गतिज ऊर्जा उस वस्तु पर इस वेग को प्राप्त करने के लिए किए गए कार्य के बराबर है।

आइए अब किसी वस्तु की गतिज ऊर्जा को एक समीकरण के रूप में व्यक्त करें। मान लीजिए $m$ द्रव्यमान की एक वस्तु एकसमान वेग $u$ से गतिशील है। अब मान लीजिए जब इस पर एक नियत बल $F$ विस्थापन की दिशा में लगता है तो वस्तु $s$ दूरी तक विस्थापित हो जाती है। समीकरण (10.1) से, किया गया कार्य $W, F S$ के बराबर है। वस्तु पर किए गए कार्य के कारण इसके वेग में परिवर्तन होगा। मान लीजिए कि इसका वेग $u$ से $v$ हो जाता है। मान लीजिए उत्पन्न हुए त्वरण का मान $a$ है।

अनुभाग 7.5 में, हमने गति के तीन समीकरणों के बारे में अध्ययन किया है। एकसमान त्वरण $a$ से गतिशील किसी वस्तु के प्रारंभिक वेग $(u)$, अंतिम वेग (v) तथा विस्थापन $s$ के बीच निम्न संबंध है

$$ \begin{equation*} v^{2}-u^{2}=2 a s . \tag{7.7} \end{equation*} $$

या

$$ \begin{equation*} s=\frac{v^{2}-u^{2}}{2 a} \tag{10.2} \end{equation*} $$

अनुभाग 8.4 से, हमें ज्ञात है कि $F=m a$ । इस प्रकार समीकरण (10.2) को समीकरण (10.1) में रखने पर हम बल $F$ द्वारा किए गए कार्य को लिख सकते हैं

$$ W=m a \times \frac{v^{2}-u^{2}}{2 a} $$

अथवा

$$ \begin{equation*} W=\frac{1}{2} m\left(v^{2}-u^{2}\right) \tag{10.3} \end{equation*} $$

यदि वस्तु की गति अपनी विराम अवस्था से प्रारंभ होती है, अर्थात् $u=0$, तब

$$ \begin{equation*} W=\frac{1}{2} m v^{2} \tag{10.4} \end{equation*} $$

यह स्पष्ट है कि किया गया कार्य वस्तु की गतिज ऊर्जा में परिवर्तन के बराबर है।

यदि $u=0$, किया गया कार्य होगा $\frac{1}{2} m v^{2}$ ।

अतः $m$ द्रव्यमान की तथा एकसमान वेग $v$ से गतिशील वस्तु की गतिज ऊर्जा का मान

$$ \begin{equation*} E _{k}=\frac{1}{2} m v^{2} \tag{10.5} \end{equation*} $$

उदाहरण 10.3 $15 \mathrm{~kg}$ द्रव्यमान की एक वस्तु $4 \mathrm{~m} \mathrm{~s}^{-1}$ के एकसमान वेग से गतिशील है। वस्तु की गतिज ऊर्जा कितनी होगी?

हल :

वस्तु का द्रव्यमान $m=15 \mathrm{~kg}$,

वस्तु का वेग $V=4 \mathrm{~m} \mathrm{~s}^{-1}$

समीकरण (10.5) से

$$ \begin{aligned} E _{k} & =\frac{1}{2} m v^{2} \\ & =\frac{1}{2} \times 15 \mathrm{~kg} \times 4 \mathrm{~m} \mathrm{~s}^{-1} \times 4 \mathrm{~m} \mathrm{~s}^{-1} \\ & =120 \mathrm{~J} \end{aligned} $$

वस्तु की गतिज ऊर्जा $120 \mathrm{~J}$ है।

उदाहरण 10.4 यदि किसी कार का द्रव्यमान $1500 \mathrm{~kg}$ है तो उसके वेग को $30 \mathrm{~km} \mathrm{~h}^{-1}$ से $60 \mathrm{~km} \mathrm{~h}^{-1}$ तक बढ़ाने में कितना कार्य करना पड़ेगा?

हल :

कार का द्रव्यमान $m=1500 \mathrm{~kg}$ कार का प्रारंभिक वेग $u=30 \mathrm{~km} \mathrm{~h}^{-1}$

$$ \begin{aligned} & =\frac{30 \times 1000 \mathrm{~m}}{60 \times 60 \mathrm{~s}} \\ & =25 / 3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

इसी प्रकार कार का अंतिम वेग

$$ V=60 \mathrm{~km} \mathrm{~h}^{-1}=50 / 3 \mathrm{~m} \mathrm{~s}^{-1} $$

इसलिए कार की प्रारंभिक गतिज ऊर्जा

$$ \begin{aligned} E _{k i} & =\frac{1}{2} m u^{2} \\ & =\frac{1}{2} \times 1500 \mathrm{~kg} \times\left(25 / 3 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =156250 / 3 \mathrm{~J} \end{aligned} $$

इसी प्रकार, कार की अंतिम गतिज ऊर्जा

$$ \begin{aligned} E _{k f} & =\frac{1}{2} \times 1500 \mathrm{~kg} \times\left(50 / 3 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =625000 / 3 \mathrm{~J} \end{aligned} $$

अतः किया गया कार्य = गतिज ऊर्जा में परिवर्तन

$$ \begin{aligned} & =E _{k f}-E _{k i} \\ & =156250 \mathrm{~J} \end{aligned} $$

प्रशन

1. किसी वस्तु की गतिज ऊर्जा क्या होती है?

2. किसी वस्तु की गतिज ऊर्जा के लिए व्यंजक लिखो।

3. $5 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से गतिशील किसी $m$ द्रव्यमान की वस्तु की गतिज ऊर्जा $25 \mathrm{~J}$ है। यदि इसके वेग को दोगुना कर दिया जाए तो इसकी गतिज ऊर्जा कितनी हो जाएगी? यदि इसके वेग को तीनगुना बढ़ा दिया जाए तो इसकी गतिज ऊर्जा कितनी हो जाएगी?

10.2.3 स्थितिज ऊर्जा

क्रियाकलाप 10.8

  • एक रबड़ बैंड (रबड़ का छल्ला) लीजिए।
  • इसके एक सिरे को पकड़कर दूसरे सिरे से खींचिए। छल्ला खिंच जाता है।
  • छल्ले के एक सिरे को छोड़िए।
  • क्या होता है?
  • छल्ला अपनी प्रारंभिक लंबाई प्राप्त करने का प्रयत्न करेगा। स्पष्ट है कि छल्ले ने अपनी खिंची हुई स्थिति में कुछ ऊर्जा उपार्जित कर ली है। खींचने पर यह ऊर्जा किस प्रकार उपार्जित कर लेता है?

क्रियाकलाप 10.9

  • एक स्लिंकी लीजिए।

  • निम्न चित्र में दशाये अनुसार अपने मित्र से इसके एक सिरे को पकड़ने के लिए कहिए। आप दूसरे सिरे को पकड़िए तथा अपने मित्र से दूर चले जाइए।

  • अब आप स्लिंकी को छोड दीजिए।

  • क्या होता है?

  • खींचने पर स्लिकी ने किस प्रकार ऊर्जा उपार्जित की?

  • क्या संपीडित करने पर भी स्लिंकी ऊर्जा उपार्जित करेगी?

क्रियाकलाप 10.10

  • एक खिलौना कार लीजिए। इसमें चाबी भरिए।

  • कार को जमीन पर रखिए।

  • क्या ये चलती है?

  • इसने ऊर्जा कहाँ से उपार्जित की।

  • क्या उपार्जित ऊर्जा, चाबी द्वारा भरे गये लपेटनों की संख्या पर निर्भर है?

  • आप इसकी जाँच कैसे कर सकते हैं?

क्रियाकलाप 10.11

  • किसी वस्तु को एक निश्चित ऊँचाई तक उठाइए।

  • वस्तु अब कार्य कर सकती है। छोड़ने पर यह नीचे गिरने लगती है। इसका अर्थ है कि इसने कुछ ऊर्जा उपार्जित कर ली है।

  • अधिक ऊँचा उठाने पर यह अधिक कार्य कर सकती है और इस प्रकार इसमें अधिक ऊर्जा विद्यमान हो जाती है।

  • इसे ऊर्जा कहाँ से प्राप्त होती है? सोचिए तथा विचार-विमर्श कीजिए।

उपरोक्त परिस्थितियों में, वस्तु पर किए गए कार्य के कारण इसमें ऊर्जा संचित हो जाती है। किसी वस्तु को स्थानांतरित की गई ऊर्जा इसमें स्थितिज ऊर्जा के रूप में संचित रहती है यदि यह वस्तु की चाल या वेग में परिवर्तन करने के लिए उपयोग में नहीं आती है। वस्तु कार्य करने के लिए स्थिति प्राप्त कर लेती है।

जब आप किसी रबड़ बैंड को खींचते हैं तो आप कुछ ऊर्जा स्थानांतरित करते हैं। बैंड में स्थानांतरित की गई ऊर्जा इसमें स्थितिज ऊर्जा के रूप में संचित हो जाती है। किसी खिलौना कार से चाबी भरते समय आप कार्य करते हैं। इसके अंदर कमानी में स्थानांतरित की गई ऊर्जा स्थितिज ऊर्जा के रूप में संचित हो जाती है। किसी वस्तु द्वारा इसकी स्थिति अथवा विन्यास में परिवर्तन के कारण प्राप्त ऊर्जा को स्थितिज ऊर्जा कहते हैं।

क्रियाकलाप 10.12

  • बाँस की एक खपच्ची लीजिए और इससे चित्र 10.6 में दिखाए अनुसार एक धनुष बनाइए।

  • किसी हलकी डंडी का एक तीर बनाइए।

  • तीर का एक सिरा धनुष की तानित डोरी पर रखिए।

  • अब डोरी को खींचिए और तीर को मुक्त कीजिए।

  • तीर को धनुष से दूर जाते हुए देखिए।

  • धनुष की आकृति में परिवर्तन पर ध्यान दीजिए। धनुष की आकृति में परिवर्तन के कारण उसमें संचित स्थितिज ऊर्जा, तीर को गतिज ऊर्जा प्रदान करती है जिससे तीर गतिशील होकर दूर जा गिरता है।

चित्र 10.6: धनुष की तानित डोरी पर रखा तीर

10.2.4 किसी ऊँचाई पर वस्तु की स्थितिज ऊर्जा

वस्तु को किसी ऊँचाई तक उठाने में उसकी ऊर्जा में वृद्धि होती है। इसका कारण है कि इसको ऊपर उठाने में इस पर गुरुत्व बल के विरुद्ध कार्य किया जाता है। इस प्रकार की वस्तु में विद्यमान ऊर्जा उसकी गुरुत्वीय स्थितिज ऊर्जा है।

भूमि से ऊपर किसी बिंदु पर किसी वस्तु की गुरुत्वीय स्थितिज ऊर्जा को, वस्तु को भूमि से उस बिंदु तक उठाने में गुरुत्वीय बल के विरुद्ध किए गए कार्य द्वारा परिभाषित करते हैं।

किसी ऊँचाई पर किसी वस्तु के गुरुत्वीय स्थितिज ऊर्जा के व्यंजक को ज्ञात करना सरल है।

चित्र 10.7

एक $m$ द्रव्यमान की वस्तु के बारे में विचार कीजिए। मान लीजिए इसे धरती से $h$ ऊँचाई तक ऊपर उठाया जाता है। ऐसा करने के लिए एक बल की आवश्यकता है। वस्तु को उठाने के लिए आवश्यक न्यूनतम बल वस्तु के भार के बराबर अर्थात् $m g$ है। वस्तु में इस पर किए गए कार्य के बराबर ऊर्जा उपार्जित होगी। मान लीजिए कि वस्तु पर गुरुत्वीय बल के विरुद्ध किया गया कार्य $W$ है। तब, किया गया कार्य $W=$ बल $\times$ विस्थापन

$$ =m g \times h $$

$$ =m g h $$

क्योंकि वस्तु पर किया गया कार्य $m g h$ के बराबर है, इसलिए वस्तु को $m g h$ इकाई के बराबर ऊर्जा उपार्जित होगी। यह वस्तु की स्थितिज ऊर्जा $\left(E _{P}\right)$ है।

$$ \begin{equation*} E _{p}=m g h \tag{10.6} \end{equation*} $$

वस्तु की किसी ऊँचाई पर स्थितिज ऊर्जा भूमि तल या आपके द्वारा चुने गए शून्य तल पर निर्भर है। किसी वस्तु के लिए दी हुई स्थिति के लिए एक तल के सापेक्ष स्थितिज ऊर्जा का कोई विशेष मान हो सकता है और किसी दूसरे तल के सापेक्ष स्थितिज ऊर्जा का कोई दूसरा मान हो सकता है।

यह ध्यान देने योग्य बात है कि गुरुत्वीय बल द्वारा किया गया कार्य वस्तु की प्रारंभिक तथा अंतिम स्थितियों की ऊर्ध्वाधर ऊँचाइयों के अंतर पर निर्भर है न कि उस रास्ते पर जिस पर कि वस्तु ने गति की है। चित्र 10.8 में ऐसी स्थिति दिखाई गई है जहाँ एक गुटका स्थिति $A$ से स्थिति $B$ तक दो विभिन्न पथों से पहुँचाया गया है। मान लीजिए ऊँचाई $\mathrm{AB}=h$ । दोनों ही स्थितियों में वस्तु पर किया गया कार्य $m g h$ है।

चित्र 10.8

उदाहरण 10.5 $ 10 \mathrm{~kg}$ द्रव्यमान की एक वस्तु को धरती से $6 \mathrm{~m}$ की ऊँचाई तक उठाया गया है। इस वस्तु में विद्यमान ऊर्जा का परिकलन कीजिए। $g$ का मान $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ है।

हल :

वस्तु का द्रव्यमान $m=10 \mathrm{~kg}$,

विस्थापन (ऊँचाई) $h=6 \mathrm{~m}$ तथा

गुरुत्वीय त्वरण $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

समीकरण (10.6) से

स्थितिज ऊर्जा $=m g h$

$$ \begin{aligned} & =10 \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \times 6 \mathrm{~m} \\ & =588 \mathrm{~J} . \end{aligned} $$

स्थितिज ऊर्जा $588 \mathrm{~J}$ है।

उदाहरण 10.6 $12 \mathrm{~kg}$ द्रव्यमान की एक वस्तु धरती से एक निश्चित ऊँचाई पर स्थित है। यदि वस्तु की स्थितिज ऊर्जा $480 \mathrm{~J}$ है तो वस्तु की धरती के सापेक्ष ऊँचाई ज्ञात कीजिए। दिया है, परिकलन में सरलता के लिए $g$ का मान $10 \mathrm{~m} \mathrm{~s}^{-2}$ लें।

हल :

वस्तु का द्रव्यमान $m=12 \mathrm{~kg}$,

स्थितिज ऊर्जा $E _{p}=480 \mathrm{~J}$.

$$ \begin{aligned} & E _{p}=m g h \\ & 480 \mathrm{~J}=12 \mathrm{~kg} \times 10 \mathrm{~m} \mathrm{~s}^{-2} \times h \\ & h=\frac{480 \mathrm{~J}}{120 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}} \\ &=4 \mathrm{~m} . \\ & \text { वस्तु } 4 \mathrm{~m} \text { की ऊँचाई पर स्थित है। } \end{aligned} $$

10.2.5 क्या ऊर्जा के विभिन्न रूप परस्पर परिवर्तनीय हैं?

क्या हम ऊर्जा का एक रूप से दूसरे रूप में रूपांतरण कर सकते हैं? प्रकृति में हमें ऊर्जा रूपांतरण के अनेक उदाहरण देखने को मिलते हैं।

क्रियाकलाप 10.13

  • छोटे समूहों में बैठिए।

  • प्रकृति में ऊर्जा रूपांतरण की विभिन्न विधियों पर विचार करें।

  • अपने समूह में निम्न प्रश्नों के बारे में विचार-विमर्श कीजिए:

    (i) हरे पौधे खाना कैसे बनाते हैं?

    (ii) उन्हें ऊर्जा कहाँ से प्राप्त होती है?

    (iii) वायु एक स्थान से दूसरे स्थान को क्यों बहती है?

    (iv) कोयला तथा पेट्रोलियम जैसे ईंधन कैसे बने?

    (v) किस प्रकार के ऊर्जा रूपांतरण जल चक्र को बनाए रखते हैं?

क्रियाकलाप 10.14

  • अनेक मानव क्रियाकलापों तथा हमारे द्वारा उपयोग किए जाने वाले जुगतों में ऊर्जा रूपांतरण सम्मिलित है।

  • इस प्रकार के क्रियाकलापों तथा जुगतों की एक सूची बनाइए।

  • प्रत्येक क्रियाकलाप या जुगत में पहचानिए कि किस प्रकार का ऊर्जा रूपांतरण हो रहा है।

10.2.6 ऊर्जा संरक्षण का नियम

क्रियाकलाप 10.13 तथा 10.14 में हमने सीखा कि ऊर्जा एक रूप से दूसरे रूप में परिवर्तित हो सकती है। इस प्रक्रिया में निकाय की कुल ऊर्जा का क्या हुआ? ऊर्जा-रूपातरंण की अवस्था में निकाय की कुल ऊर्जा अपरिवर्तित रहती है। यह ऊर्जा संरक्षण के नियमानुसार है। इस नियम के अनुसार, ऊर्जा केवल एक रूप से दूसरे रूप में रूपांतरित हो सकती है; न तो इसकी उत्पत्ति की जा सकती है और न ही विनाश। रूपांतरण के पहले व रूपांतरण के पश्चात् कुल ऊर्जा सदैव अचर रहती है। ऊर्जा संरक्षण का नियम प्रत्येक स्थिति तथा सभी प्रकार के रूपांतरणों में मान्य है। एक सरल उदाहरण पर विचार कीजिए। मान लीजिए $m$ द्रव्यमान की एक वस्तु $h$ ऊँचाई से स्वतंत्रतापूर्वक गिराई जाती है। प्रारंभ में, स्थितिज ऊर्जा $m g h$ है तथा गतिज ऊर्जा शून्य है। गतिज ऊर्जा शून्य क्यों है? यह शून्य है क्योंकि इसका प्रारंभिक वेग शून्य है। इस प्रकार वस्तु की कुल ऊर्जा $m g h$ है। जब यह वस्तु गिरती है तो इसकी स्थितिज ऊर्जा गतिज ऊर्जा में परिवर्तित होगी। यदि किसी दिए हुए क्षण पर वस्तु का वेग $V$ है तो गतिज ऊर्जा $1 / 2 m v^{2}$ होगी। वस्तु जैसे-जैसे नीचे गिरती है, इसकी स्थितिज ऊर्जा कम होती जाती है तथा गतिज ऊर्जा बढ़ती जाती है। जब वस्तु धरती पर पहुँचने वाली होती है तो $h=0$ होगा तथा इस अवस्था में वस्तु का अंतिम वेग $V$ अधिकतम हो जाएगा। इसलिए अब गतिज ऊर्जा अधिकतम तथा स्थितिज ऊर्जा न्यूनतम होगी। तथापि, सभी बिंदुओं पर वस्तु की स्थितिज ऊर्जा तथा गतिज ऊर्जा का योग समान रहता है। अर्थात्,

स्थितिज ऊर्जा + गतिज ऊर्जा = अचर,

या $m g h+\frac{1}{2} m v^{2}=$ अचर

किसी वस्तु की गतिज ऊर्जा तथा स्थितिज ऊर्जा का योग उसकी कुल यांत्रिक ऊर्जा है।

हम देखते हैं कि किसी पिंड के मुक्त रूप से गिरते समय, इसके पथ में किसी बिंदु पर स्थितिज ऊर्जा में जितनी कमी होती है गतिज ऊर्जा में उतनी ही वृद्धि हो जाती है। (यहाँ पिंड की गति पर वायु प्रतिरोध के प्रभाव आदि की उपेक्षा की गई है।) इस प्रकार गुरुत्वीय स्थितिज ऊर्जा का गतिज ऊर्जा में निरंतर रूपांतरण हो रहा है।

क्रियाकलाप 10.15

  • $20 \mathrm{~kg}$ द्रव्यमान का कोई पिंड $4 \mathrm{~m}$ की ऊँचाई से मुक्त रूप से गिराया जाता है। निम्न सारणी के अनुसार प्रत्येक स्थिति में स्थितिज ऊर्जा तथा गतिज ऊर्जा की गणना करके, सारणी में रिक्त स्थानों को भरिए।
ऊँचाई जहाँ
पर पिंड स्थित है
m
स्थितिज ऊर्जा
$\left(E_p=m g h\right)$
$\mathrm{J}$
गतिज ऊर्जा
$\left(E_k=m v^2 / 2\right)$
$\mathrm{J}$
$E_p+E_k$
$\mathrm{J}$
4
3
2
1
भूमि से ठीक ऊपर

परिकलन में सुविधा के लिए $g$ का मान $10 \mathrm{~m} \mathrm{~s}^{-2}$ लीजिए।

विचार कीजिए!

यदि प्रकृति में ऊर्जा रूपांतरण संभव नहीं होता तो क्या होता? एक विचार के अनुसार ऊर्जा रूपांतरण के बिना जीवन संभव नहीं हो पाता। क्या आप इससे सहमत हैं?

10.3 कार्य करने की दर

क्या हम सब एक ही दर से कार्य करते हैं? क्या मशीनें ऊर्जा का उपयोग तथा रूपांतरण समान दर से करती हैं? अभिकर्ता (एजेंट) जो ऊर्जा रूपांतर करते हैं, विभिन्न दरों से कार्य करते हैं। आइए इसे निम्न क्रियाकलाप से समझें।

क्रियाकलाप 10.16

  • दो बच्चे, मान लीजिए $A$ तथा $B$ के बारे में विचार कीजिए। मान लीजिए दोनों का द्रव्यमान समान है। दोनों रस्से पर अलग-अलग चढ़ना प्रारंभ करते हैं। दोनों $8 \mathrm{~m}$ की ऊँचाई तक पहुँचते हैं। मान लीजिए इस कार्य को करने में A $15 \mathrm{~s}$ लेता है तथा $\mathrm{B} 20 \mathrm{~s}$ लेता है।
  • प्रत्येक बच्चे द्वारा किया गया कार्य कितना है?
  • किया गया कार्य समान है। तथापि $\mathrm{A}$ ने कार्य करने के लिए $B$ की अपेक्षा कम समय लिया। - किस बच्चे ने दिए हुए समय, मान लीजिए $1 \mathrm{~s}$, में अधिक कार्य किया?

एक शक्तिशाली व्यक्ति किसी दिए हुए कार्य को अपेक्षाकृत कम समय में पूरा कर सकता है। अधिक शक्तिशाली वाहन कम शक्तिशाली वाहन की अपेक्षा हमें किसी यात्रा को कम समय में पूरी करा सकता है। हम मोटरबाइक तथा मोटरकार जैसी मशीनों की शक्ति के बारे में बात करते हैं। इन वाहनों के वर्गीकरण का आधार यह है कि ये कितनी तेज़ी से ऊर्जा परिवर्तन या कार्य करते हैं। शक्ति, किए गए कार्य की गति को मापती है, अर्थात् कार्य कितनी शीघ्रता या देर से किया गया। शक्ति की परिभाषा इस प्रकार है कार्य करने की दर या ऊर्जा रूपांतरण की दर को शक्ति कहते हैं। यदि कोई अभिकर्ता (एजेन्ट) $t$ समय में $W$ कार्य करता है, तो शक्ति का मान होगा:

शक्ति $=$ कार्य/समय

या

$$ \begin{equation*} P=\frac{W}{t} \tag{10.8} \end{equation*} $$

शक्ति का मात्रक वाट है तथा इसका प्रतीक $\mathrm{W}$ है। (यह मात्रक जेम्स वाट $(1736$ - 1819) के सम्मान में रखा गया है।) 1 वाट उस अभिकर्ता (एजेंट) की शक्ति है जो 1 सेकंड में 1 जूल कार्य करता है। हम यह भी कह सकते हैं कि यदि ऊर्जा के उपयोग की दर $1 \mathrm{~J} \mathrm{~s}^{-1}$ हो तो शक्ति $1 \mathrm{~W}$ होगी।

1 वाट $=1$ जूल/सेकंड या $1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$

हम ऊर्जा स्थानांतरण की उच्च दरों को किलोवाट $(\mathrm{kW})$ में व्यक्त करते हैं

$$ \begin{aligned} 1 \text { किलोवाट } & =1000 \text { वाट } \\ 1 \mathrm{~kW} & =1000 \mathrm{~W} \text { या } 1000 \mathrm{~J} \mathrm{~s}^{-1} \end{aligned} $$

किसी अभिकर्ता (एजेंट) की शक्ति समय के साथ बदल सकती है। इसका अर्थ है कि अभिकर्ता विभिन्न समय अंतरालों में विभिन्न दरों से कार्य कर सकता है। इसीलिए औसत शक्ति की अवधारणा लाभप्रद है। औसत शक्ति को हम कुल उपयोग की गई ऊर्जा को, कुल लिए गए समय से विभाजित कर प्राप्त कर सकते हैं।

उदाहरण 10.7 दो लड़कियाँ जिनमें से प्रत्येक का भार $400 \mathrm{~N}$ है एक रस्से पर $8 \mathrm{~m}$ की ऊँचाई तक चढ़ती हैं। हम एक लड़की का नाम $A$ रखते हैं तथा दूसरी का $\mathrm{B}$ । इस कार्य को पूरा करने में लड़की $\mathrm{A}, 20 \mathrm{~s}$ का समय लेती है जबकि लड़की $\mathrm{B}, 50 \mathrm{~s}$ का समय लेती है। प्रत्येक लड़की द्वारा व्यय की गई शक्ति का परिकलन कीजिए।

हल :

(i) लड़की $A$ द्वारा व्यय की गई शक्ति : लड़की का भार $m g=400 \mathrm{~N}$ विस्थापन (ऊँचाई) $h=8 \mathrm{~m}$ लिया गया समय $t=20 \mathrm{~s}$ समीकरण (10.8) से, शक्ति $P=$ किया गया कार्य/लिया गया समय

$$ \begin{aligned} & =\frac{m g h}{t} \\ & =\frac{400 \mathrm{~N} \times 8 \mathrm{~m}}{20 \mathrm{~s}} \\ & =160 \mathrm{~W} \end{aligned} $$

(ii) लड़की $\mathrm{B}$ द्वारा व्यय की गई शक्ति:

लड़की का भार $m g=400 \mathrm{~N}$

विस्थापन (ऊँचाई) $h=8 \mathrm{~m}$

लिया गया समय $t=50 \mathrm{~s}$

$$ \begin{aligned} \text { शक्ति } P & =\frac{m g h}{t} \\ & =\frac{400 \mathrm{~N} \times 8 \mathrm{~m}}{50 \mathrm{~s}} \\ & =64 \mathrm{~W} \end{aligned} $$

लड़की A द्वारा व्यय की गई शक्ति $160 \mathrm{~W}$ है तथा लड़की $\mathrm{B}$ द्वारा व्यय की गई शक्ति $64 \mathrm{~W}$ है।

उदाहरण 10.8 $50 \mathrm{~kg}$ द्रव्यमान का एक लड़का एक सोपान (जीना) पर दौड़कर 45 सीढ़याँ $9 \mathrm{~s}$ में चढ़ता है। यदि प्रत्येक सीढ़ी की ऊँचाई $15 \mathrm{~cm}$ हो तो उसकी शक्ति का परिकलन कीजिए। $g$ का मान $10 \mathrm{~m} \mathrm{~s}^{-2}$ लीजिए।

हल :

लड़के का भार

$$ m g=50 \mathrm{~kg} \times 10 \mathrm{~m} \mathrm{~s}^{-2}=500 \mathrm{~N} $$

45 सीढ़ियों की कुल ऊँचाई

$$ h=45 \times 15 / 100 \mathrm{~m}=6.75 \mathrm{~m} $$

चढ़ने में लगा कुल समय $t=9 \mathrm{~s}$

समीकरण (10.8) से

शक्ति $P=$ किया गया कार्य/लिया गया समय

$$ \begin{aligned} & =\frac{m g h}{t} \\ & =\frac{500 \mathrm{~N} \times 6.75 \mathrm{~m}}{9 \mathrm{~s}} \\ & =375 \mathrm{~W} \end{aligned} $$

लड़के की शक्ति $375 \mathrm{~W}$ है।

प्रशन

1. शक्ति क्या है?

2. 1 वाट शक्ति को परिभाषित कीजिए।

3. एक लैंप $1000 \mathrm{~J}$ विद्युत ऊर्जा $10 \mathrm{~s}$ में व्यय करता है। इसकी शक्ति कितनी है?

4. औसत शक्ति को परिभाषित कीजिए।

क्रियाकलाप 10.17

  • अपने घर में, विद्युत् परिपथ में लगे विद्युत् मीटर को ध्यानपूर्वक देखिए। इसके लक्षणों का बारीकी से प्रेक्षण कीजिए। प्रतिदिन प्रातः तथा सायं 6.30 बजे मीटर का पाठ्यांक नोट करें।

  • इस क्रियाकलाप को लगभग एक सप्ताह तक कीजिए।

  • दिन के समय कितनी ‘यूनिट’ व्यय होती है?

  • रात के समय कितनी ‘यूनिट’ व्यय होती है?

  • अपने प्रेक्षणों को सारणीबद्ध कीजिए।

  • अपने आँकड़ों से निष्कर्ष निकालिए।

  • अपने प्रेक्षणों की तुलना विद्युत् के मासिक बिल में दिए गए विवरणों से कीजिए। ( किन्ही विशेष विद्युत उपकरणों द्वारा व्यय होने वाली विद्युत ऊर्जा का आंकलन भी किया जा सकता है। इसके लिए विभिन्न उपकरणों के ज्ञात वाटेज तथा उनके उपयोग के समयों को सारणीबद्ध कर किया जा सकता है।)

आपने क्या सीखा

  • किसी पिंड पर किया गया कार्य, उस पर लगाए गए बल के परिमाण व बल की दिशा में उसके द्वारा तय की गई दूरी के गुणनफल से परिभाषित होता है। कार्य का मात्रक जूल है अर्थात 1 जूल $=1$ न्यूटन $\times 1$ मीटर।
  • किसी पिंड का विस्थापन शून्य है तो बल द्वारा उस पिंड पर किया गया कार्य शून्य होगा।
  • यदि किसी वस्तु में कार्य करने की क्षमता हो तो यह कहा जाता है कि उसमें ऊर्जा है। ऊर्जा का मात्रक वही है जो कार्य का है।
  • किसी गतिमान पिंड में उसकी गति के कारण ऊर्जा को गतिज ऊर्जा कहते हैं। $v$ वेग से गतिशील किसी $m$ द्रव्यमान की वस्तु की गतिज ऊर्जा $\frac{1}{2} m v^{2}$ के बराबर होती है।
  • वस्तु द्वारा उसकी स्थिति अथवा आकृति में परिवर्तन के कारण प्राप्त ऊर्जा को स्थितिज ऊर्जा कहते हैं। पृथ्वी के तल से $h$ ऊँचाई तक उठाई गई किसी $m$ द्रव्यमान की वस्तु की गुरुत्वीय स्थितिज ऊर्जा $m g h$ होगी।
  • ऊर्जा-संरक्षण नियम के अनुसार ऊर्जा का केवल एक रूप से दूसरे रूप में रूपांतरण हो सकता है। इसकी न तो उत्पत्ति की जा सकती है और न ही विनाश। रूपांतरण के पहले व रूपांतरण के पश्चात् कुल ऊर्जा सदैव अचर रहती है।
  • प्रकृति में ऊर्जा विभिन्न रूपों में विद्यमान रहती है; जैसे - गतिज ऊर्जा, स्थितिज ऊर्जा, ऊष्मीय ऊर्जा, रासायनिक ऊर्जा आदि। किसी वस्तु की गतिज तथा स्थितिज ऊर्जाओं के योग को उसकी कुल यांत्रिक ऊर्जा कहते हैं।
  • कार्य करने की दर को शक्ति कहते हैं। शक्ति का SI मात्रक वाट है। $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$

अभ्यास

1. निम्न सूचीबद्ध क्रियाकलापों को ध्यान से देखिए। अपनी कार्य शब्द की व्याख्या के आधार पर तर्क दीजिए कि इनमें कार्य हो रहा है अथवा नहीं।

  • सूमा एक तालाब में तैर रही है।
  • एक गधे ने अपनी पीठ पर बोझा उठा रखा है।
  • एक पवन चक्की (विंड मिल) कुएँ से पानी उठा रही है।
  • एक हरे पौधे में प्रकाश संश्लेषण की प्रक्रिया हो रही है।
  • एक इंजन ट्रेन को खींच रहा है।
  • अनाज के दाने सूर्य की धूप में सूख रहे हैं।
  • एक पाल-नाव पवन ऊर्जा के कारण गतिशील है।

2. एक पिंड को धरती से किसी कोण पर फेंका जाता है। यह एक वक्र पथ पर चलता है और वापस धरती पर आ गिरता है। पिंड के पथ के प्रारंभिक तथा अंतिम बिंदु एक ही क्षैतिज रेखा पर स्थित हैं। पिंड पर गुरुत्व बल द्वारा कितना कार्य किया गया?

3. एक बैटरी बल्ब जलाती है। इस प्रक्रम में होने वाले ऊर्जा परिवर्तनों का वर्णन कीजिए।

4. $20 \mathrm{~kg}$ द्रव्यमान पर लगने वाला कोई बल इसके वेग को $5 \mathrm{~m} \mathrm{~s}^{-1}$ से $2 \mathrm{~m} \mathrm{~s}^{-1}$. में परिवर्तित कर देता है। बल द्वारा किए गए कार्य का परिकलन कीजिए।

5. $10 \mathrm{~kg}$ द्रव्यमान का एक पिंड मेज़ पर $A$ बिंदु पर रखा है। इसे $B$ बिंदु तक लाया जाता है। यदि $A$ तथा $B$ को मिलाने वाली रेखा क्षैतिज है तो पिंड पर गुरुत्व बल द्वारा किया गया कार्य कितना होगा? अपने उत्तर की व्याख्या कीजिए।

6. मुक्त रूप से गिरते एक पिंड की स्थितिज ऊर्जा लगातार कम होती जाती है। क्या यह ऊर्जा संरक्षण नियम का उल्लंघन करती है। कारण बताइए।

7. जब आप साइकिल चलाते हैं तो कौन-कौन से ऊर्जा रूपांतरण होते हैं?

8. जब आप अपनी सारी शक्ति लगा कर एक बड़ी चट्टान को धकेलना चाहते हैं और इसे हिलाने में असफल हो जाते हैं तो क्या इस अवस्था में ऊर्जा का स्थानांतरण होता है? आपके द्वारा व्यय की गई ऊर्जा कहाँ चली जाती है?

9. किसी घर में एक महीने में ऊर्जा की 250 ‘यूनिटे’ व्यय हुईं। यह ऊर्जा जूल में कितनी होगी?

10. $40 \mathrm{~kg}$ द्रव्यमान का एक पिंड धरती से $5 \mathrm{~m}$ की ऊँचाई तक उठाया जाता है। इसकी स्थितिज ऊर्जा कितनी है? यदि पिंड को मुक्त रूप से गिरने दिया जाए

तो जब पिंड ठीक आधे रास्ते पर है उस समय इसकी गतिज ऊर्जा का परिकलन कीजिए। $\left(g=10 \mathrm{~ms}^{-2}\right.$ )

11. पृथ्वी के चारों ओर घूमते हुए किसी उपग्रह पर गुरुत्व बल द्वारा कितना कार्य किया जाएगा? अपने उत्तर को तर्कसंगत बनाइए।

12. क्या किसी पिंड पर लगने वाले किसी भी बल की अनुपस्थिति में, इसका विस्थापन हो सकता है? सोचिए। इस प्रश्न के बारे में अपने मित्रों तथा अध्यापकों से विचार-विमर्श कीजिए।

13. कोई मनुष्य भूसे के एक गट्ठर को अपने सिर पर 30 मिनट तक रखे रहता है और थक जाता है। क्या उसने कुछ कार्य किया या नहीं? अपने उत्तर को तर्कसंगत बनाइए।

14. एक विद्युत्-हीटर (ऊष्मक) की घोषित शक्ति $1500 \mathrm{~W}$ है। 10 घंटे में यह कितनी ऊर्जा उपयोग करेगा?

15. जब हम किसी सरल लोलक के गोलक को एक ओर ले जाकर छोड़ते हैं तो यह दोलन करने लगता है। इसमें होने वाले ऊर्जा परिवर्तनों की चर्चा करते हुए ऊर्जा संरक्षण के नियम को स्पष्ट कीजिए। गोलक कुछ समय पश्चात् विराम अवस्था में क्यों आ जाता है? अंततः इसकी ऊर्जा का क्या होता है? क्या यह ऊर्जा संरक्षण नियम का उल्लंघन है?

16. $m$ द्रव्यमान का एक पिंड एक नियत वेग $v$ से गतिशील है। पिंड पर कितना कार्य करना चाहिए कि यह विराम अवस्था में आ जाए?

17. $1500 \mathrm{~kg}$ द्रव्यमान की कार को जो $60 \mathrm{~km} / \mathrm{h}$ के वेग से चल रही है, रोकने के लिए किए गए कार्य का परिकलन कीजिए।

18. निम्न में से प्रत्येक स्थिति में $m$ द्रव्यमान के एक पिंड पर एक बल $F$ लग रहा है। विस्थापन की दिशा पश्चिम से पूर्व की ओर है जो एक लंबे तीर से प्रदर्शित की गई है। चित्रों को ध्यानपूर्वक देखिए और बताइए कि किया गया कार्य ऋणात्मक है, धनात्मक है या शून्य है।

19. सोनी कहती है कि किसी वस्तु पर त्वरण शून्य हो सकता है चाहे उस पर कई बल कार्य कर रहे हों। क्या आप उससे सहमत हैं? बताइए क्यों?

20. चार युक्तियाँ, जिनमें प्रत्येक की शक्ति $500 \mathrm{~W}$ है 10 घंटे तक उपयोग में लाई जाती हैं। इनके द्वारा व्यय की गई ऊर्जा जूल में परिकलित कीजिए।

21. मुक्त रूप से गिरता एक पिंड अंततः धरती तक पहुँचने पर रूक जाता है। इसकी गतिज ऊर्जा का क्या होता है?



Table of Contents

Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane