Chapter-05 Principles of Inheritance and Variation

Have you ever wondered why an elephant always gives birth only to a baby elephant and not some other animal? Or why a mango seed forms only a mango plant and not any other plant?

Given that they do, are the offspring identical to their parents? Or do they show differences in some of their characteristics? Have you ever wondered why siblings sometimes look so similar to each other? Or sometimes even so different?

These and several related questions are dealt with, scientifically, in a branch of biology known as Genetics. This subject deals with the inheritance, as well as the variation of characters from parents to offspring. Inheritance is the process by which characters are passed on from parent to progeny; it is the basis of heredity. Variation is the degree by which progeny differ from their parents.

Humans knew from as early as 8000-1000 B.C. that one of the causes of variation was hidden in sexual reproduction. They exploited the variations that were naturally present in the wild populations of plants and animals to selectively breed and select for organisms that possessed desirable characters. For example, through artificial selection and domestication from ancestral wild cows, we have well-known Indian breeds, e.g., Sahiwal cows in Punjab. We must, however, recognise that though our ancestors knew about the inheritance of characters and variation, they had very little idea about the scientific basis of these phenomena.

5.1 MENDEL’S LAWS OF INHERITANCE

It was during the mid-nineteenth century that headway was made in the understanding of inheritance. Gregor Mendel, conducted hybridisation experiments on garden peas for seven years (1856-1863) and proposed the laws of inheritance in living organisms. During Mendel’s investigations into inheritance patterns it was for the first time that statistical analysis and mathematical logic were applied to problems in biology. His experiments had a large sampling size, which gave greater credibility to the data that he collected. Also, the confirmation of his inferences from experiments on successive generations of his test plants, proved that his results pointed to general rules of inheritance rather than being unsubstantiated ideas. Mendel investigated characters in the garden pea plant that were manifested as two opposing traits, e.g., tall or dwarf plants, yellow or green seeds. This allowed him to set up a basic framework of rules governing inheritance, which was expanded on by later scientists to account for all the diverse natural observations and the complexity inherent in them.

Figure 5.1 Seven pairs of contrasting traits in pea plant studied by Mendel

Mendel conducted such artificial pollination/cross pollination experiments using several true-breeding pea lines. A true- breeding line is one that, having undergone continuous self-pollination, shows the stable trait inheritance and expression for several generations. Mendel selected 14 true-breeding pea plant varieties, as pairs which were similar except for one character with contrasting traits. Some of the contrasting traits selected were smooth or wrinkled seeds, yellow or green seeds, inflated (full) or constricted green or yellow pods and tall or dwarf plants (Figure 5.1, Table 5.1).

Table 5.1: Contrasting Traits Studied by Mendel in Pea

S.No. Characters Contrasting Traits
1. Stem height Tall/dwarf
2. Flower colour Violet/white
3. Flower position Axial/terminal
4. Pod shape Inflated/constricted
5. Pod colour Green/yellow
6. Seed shape Round/wrinkled
7. Seed colour Yellow/green

5.2 INHERITANCE OF ONE GENE

Let us take the example of one such hybridisation experiment carried out by Mendel where he crossed tall and dwarf pea plants to study the inheritance of one gene (Figure 5.2). He collected the seeds produced as a result of this cross and grew them to generate plants of the first hybrid generation. This generation is also called the Filial1 progeny or the $F_{1}$. Mendel observed that all the $F_{1}$ progeny plants were tall, like one of its parents; none were dwarf (Figure 5.3). He made similar observations for the other pairs of traits - he found that the $\mathrm{F}_{1}$ always resembled either one of the parents, and that the trait of the other parent was not seen in them.

Figure 5.2 Steps in making a cross in pea

Mendel then self-pollinated the tall $\mathrm{F} _{1}$ plants and to his surprise found that in the Filial2 generation some of the offspring were ‘dwarf ’; the character that was not seen in Figure 5.2 Steps in making a cross in pea the $F _{1}$ generation was now expressed. The proportion of plants that were dwarf were 1/4th of the $\mathrm{F} _{2}$ plants while 3/4th of the $\mathrm{F} _{2}$ plants were tall. The tall and dwarf traits were identical to their parental type and did not show any blending, that is all the offspring were either tall or dwarf, none were of in71 between height (Figure 5.3).

Similar results were obtained with the other traits that he studied: only one of the parental traits was expressed in the $\mathrm{F} _{1}$ generation while at the $\mathrm{F} _{2}$ stage both the traits were expressed in the proportion 3:1. The contrasting traits did not show any blending at either $\mathrm{F} _{1}$ or $\mathrm{F} _{2}$ stage.

Based on these observations, Mendel proposed that something was being stably passed down, unchanged, from parent to offspring through the gametes, over successive generations. He called these things as ‘factors’. Now we call them as genes. Genes, therefore, are the units of inheritance. They contain the information that is required to express a particular trait in an organism. Genes which code for a pair of contrasting traits are known as alleles, i.e., they are slightly different forms of the same gene.

Figure 5.3 Diagrammatic representation of monohybrid cross

If we use alphabetical symbols for each gene, then the capital letter is used for the trait expressed at the $\mathrm{F}_{1}$ stage and the small alphabet for the other trait. For example, in case of the character of height, $T$ is used for the Tall trait and $t$ for the ‘dwarf’, and $T$ and $t$ are alleles of each other. Hence, in plants the pair of alleles for height would be $\mathbf{T T}, \mathbf{T t}$ or $\mathbf{t t}$. Mendel also proposed that in a true Figure 5.3 Diagrammatic representation breeding, tall or dwarf pea variety of monohybrid cross the allelic pair of genes for height are identical or homozygous, $\mathbf{T T}$ and $\mathbf{t t}$, respectively. $\mathbf{T T}$ and $\mathbf{t t}$ are called the genotype of the plant while the descriptive terms tall and dwarf are the phenotype. What then would be the phenotype of a plant that had a genotype $\mathbf{~ T t}$?

As Mendel found the phenotype of the $\mathrm{F} _{1}$ heterozygote $\mathbf{T t}$ to be exactly like the $\mathbf{T T}$ parent in appearance, he proposed that in a pair of dissimilar factors, one dominates the other (as in the $\mathrm{F} _{1}$ ) and hence is called the dominant factor while the other factor is recessive . In this case $\mathbf{T}$ (for tallness) is dominant over $t$ (for dwarfness), that is recessive. He observed identical behaviour for all the other characters/trait-pairs that he studied.

It is convenient (and logical) to use the capital and lower case of an alphabetical symbol to remember this concept of dominance and recessiveness. (Do not use $\mathbf{T}$ for tall and $d$ for dwarf because you will find it difficult to remember whether $\mathbf{T}$ and $\mathbf{d}$ are alleles of the same gene/character or not). Alleles can be similar as in the case of homozygotes $\mathbf{T T}$ and $\mathbf{t t}$ or can be dissimilar as in the case of the heterozygote $\mathbf{T t}$. Since the $\mathbf{T t}$ plant is heterozygous for genes controlling one character (height), it is a monohybrid and the cross between $\mathbf{T T}$ and $\mathbf{t t}$ is a monohybrid cross.

From the observation that the recessive parental trait is expressed without any blending in the $\mathrm{F} _{2}$ generation, we can infer that, when the tall and dwarf plant produce gametes, by the process of meiosis, the alleles of the parental pair separate or segregate from each other and only one allele is transmitted to a gamete. This segregation of alleles is a random process and so there is a 50 per cent chance of a gamete containing either allele, as has been verified by the results of the crossings. In this way the gametes of the tall $\mathbf{T T}$ plants have the allele $\mathbf{T}$ and the gametes of the dwarf tt plants have the allele t. During fertilisation the two alleles, $\mathbf{T}$ from one parent say, through the pollen, and $\mathbf{t}$ from the other parent, then through the egg, are united to produce zygotes that have one $\mathbf{T}$ allele and one $t$ allele. In other words the hybrids have $\mathbf{T t}$. Since these hybrids contain alleles which express contrasting traits, the plants are heterozygous. The production of gametes by the parents, the formation of the zygotes, the F 1 and F 2 plants can be understood from a diagram called Punnett Square as shown in Figure 5.4.

Figure 5.4 A Punnett square used to understand a typical monohybrid cross conducted by Mendel between true-breeding tall plants and true-breeding dwarf plants

It was developed by a British geneticist, Reginald C. Punnett. It is a graphical representation to calculate the probability of all possible genotypes of offspring in a genetic cross. The possible gametes are written on two sides, usually the top row and left columns. All possible combinations are represented in boxes below in the squares, which generates a square output form. The Punnett Square shows the parental tall $\mathbf{T T}$ understand a typical monohybrid (male) and dwarf $\mathbf{t t}$ (female) plants, the gametes produced by them and, the $\mathrm{~F} _{1}$ $\mathbf{T t}$ progeny. The $\mathrm{F} _{1}$ plants of genotype $\mathbf{T t}$ are self-pollinated. The symbols & and % are used to denote the female (eggs) and male (pollen) of the $\mathrm{F} _{1}$ generation, respectively. The $\mathrm{F} _{1}$ plant of the genotype $\mathbf{T t}$ when self-pollinated, produces gametes of the genotype $\mathbf{T}$ and $\mathbf{t}$ in equal proportion. When fertilisation takes place, the pollen grains of genotype $\mathbf{T}$ have a 50 per cent chance to pollinate eggs of the genotype $\mathbf{T}$, as well as of genotype $\mathbf{t}$. Also pollen grains of genotype $\mathbf{t}$ have a 50 per cent chance of pollinating eggs of genotype $\mathbf{T}$, as well as of genotype t. As a result of random fertilisation, the resultant zygotes can be of the genotypes $\mathbf{T T}, \mathbf{T t}$ or $\mathbf{t t}$.

From the Punnett square it is easily seen that 1/4th of the random fertilisations lead to $\mathbf{T T}$, 1/2 lead to $\mathbf{T t}$ and 1/4th to tt. Though the $\mathrm{F} _{1}$ have a genotype of $\mathbf{T t}$, but the phenotypic character seen is ‘tall’. At $\mathrm{F} _{2}$, 3/4th of the plants are tall, where some of them are $\mathbf{T T}$ while others are $\mathbf{T t}$. Externally it is not possible to distinguish between the plants with the genotypes $\mathbf{T T}$ and $\mathbf{T t}$. Hence, within the genopytic pair $\mathbf{T t}$ only one character ‘T ’ tall is expressed. Hence the character T or ‘tall’ is said to dominate over the other allele t or ‘dwarf’ character. It is thus due to this dominance of one character over the other that all the $\mathrm{F} _{1}$ are tall (though the genotype is $\mathbf{T t}$) and in the $\mathrm{F} _{2}$ 3/4th of the plants are tall (though genotypically 1/2 are $\mathbf{T t}$ and only 1/4th are $\mathbf{T T}$). This leads to a phenotypic ratio of 3/4th tall : (1/4 $\mathbf{T T}$ + 1/2 $\mathbf{T t}$) and 1/4th tt, i.e., a 3:1 ratio, but a genotypic ratio of 1:2:1.

The 1/4 : 1/2 : 1/4 ratio of $\mathbf{T T}$: $\mathbf{T t}$: tt is mathematically condensable to the form of the binomial expression (ax +by)2, that has the gametes bearing genes $\mathbf{T}$ or $\mathbf{t}$ in equal frequency of ½. The expression is expanded as given below :

(1/2T + 1/2 t)2 = (1/2T + 1/2t) x (1/2T + 1/2t) = 1/4 TT + 1/2Tt + 1/4 tt

Mendel self-pollinated the $\mathrm{F} _{2}$ plants and found that dwarf $\mathrm{F} _{2}$ plants continued to generate dwarf plants in $\mathrm{F} _{3}$ and $\mathrm{F} _{4}$ generations. He concluded that the genotype of the dwarfs was homozygous - tt. What do you think he would have got had he self-pollinated a tall $\mathrm{F} _{2}$ plant?

From the preceeding paragraphs it is clear that though the genotypic ratios can be calculated using mathematical probability, by simply looking at the phenotype of a dominant trait, it is not possible to know the genotypic composition. That is, for example, whether a tall plant from $\mathrm{F} _{1}$ or $\mathrm{F} _{2}$ has $\mathbf{T T}$ or $\mathbf{T t}$ composition, cannot be predicted. Therefore, to determine the genotype of a tall plant at $\mathrm{F} _{2}$, Mendel crossed the tall plant from $\mathrm{F} _{2}$ with a dwarf plant. This he called a test cross. In a typical test cross an organism (pea plants here) showing a dominant phenotype (and whose genotype is to be determined) is crossed with the recessive parent instead of self-crossing. The progenies of such a cross can easily be analysed to predict the genotype of the test organism. Figure 5.5 shows the results of typical test cross where violet colour flower $(\mathrm{W})$ is dominant over white colour flower $(\mathrm{w})$.

Using Punnett square, try to find out the nature of offspring of a test cross. What ratio did you get?

Using the genotypes of this cross, can you give a general definition for a test cross?

Figure 5.5 Diagrammatic representation of a test cross

Based on his observations on monohybrid crosses Mendel proposed two general rules to consolidate his understanding of inheritance in monohybrid crosses. Today these rules are called the Principles or Laws of Inheritance: the First Law or Law of Dominance and the Second Law or Law of Segregation.

5.2.1 Law of Dominance

(i) Characters are controlled by discrete units called factors.

(ii) Factors occur in pairs.

(iii) In a dissimilar pair of factors one member of the pair dominates (dominant) the other (recessive).

The law of dominance is used to explain the expression of only one of the parental characters in a monohybrid cross in the $\mathrm{F} _{1}$ and the expression of both in the $\mathrm{F} _{2}$. It also explains the proportion of 3:1 obtained at the $\mathrm{F} _{2}$.

5.2.2 Law of Segregation

This law is based on the fact that the alleles do not show any blending and that both the characters are recovered as such in the $\mathrm{F} _{2}$ generation though one of these is not seen at the $\mathrm{F} _{1}$ stage. Though the parents contain two alleles during gamete formation, the factors or alleles of a pair segregate from each other such that a gamete receives only one of the two factors. Of course, a homozygous parent produces all gametes that are similar while a heterozygous one produces two kinds of gametes each having one allele with equal proportion.

5.2.2.1 Incomplete Dominance

When experiments on peas were repeated using other traits in other plants, it was found that sometimes the $\mathrm{F} _{1}$ had a phenotype that did not resemble either of the two parents and was in between the two. The inheritance of flower colour in the dog flower (snapdragon or Antirrhinum sp.) is a good example to understand incomplete dominance. In a cross between true-breeding red-flowered $( \mathbf{R R})$ and true- breeding white-flowered plants (rr), the $\mathrm{F} _{1}$ $2(\mathbf{R r})$ was pink (Figure 5.6). When the $\mathrm{F} _{1}$ was self-pollinated the $\mathrm{F} _{2}$ resulted in the following ratio 1 $( \mathbf{R R})$ Red : 2 $2(\mathbf{R r})$ Pink : 1 (rr) White. Here the genotype ratios were exactly as we would expect in any mendelian monohybrid cross, but the phenotype ratios had changed from the 3:1 dominant : recessive ratio. What happened was that R was not completely dominant over r and this made it possible to distinguish $2(\mathbf{R r})$ as pink from $( \mathbf{R R})$ (red) and $(\mathbf{r r})$ (white) . Explanation of the concept of dominance: What exactly is dominance? Why are some alleles dominant and some recessive? To tackle these questions, we must understand what a gene does. Every gene, as you know by now, contains the information to express a particular trait. In a diploid organism, there are two copies of each gene, i.e., as a pair of alleles. Now, these two alleles need not always be identical, as in a heterozygote. One of them may be different due to some changes that it has undergone (about which you will read further on, and in the next chapter) which modifies the information that particular allele contains.

Figure 5.6 Results of monohybrid cross in the plant Snapdragon, where one allele is incompletely dominant over the other allele

Let’s take an example of a gene that contains the information for producing an enzyme. Now Figure 5.6 Results of monohybrid cross in there are two copies of this gene, the two allelic the plant Snapdragon, where forms. Let us assume (as is more common) that one allele is incompletely dominant over the other allele the normal allele produces the normal enzyme that is needed for the transformation of a substrate S. Theoretically, the modified allele could be responsible for production of –

(i) the normal/less efficient enzyme, or

(ii) a non-functional enzyme, or

(iii) no enzyme at all

In the first case, the modified allele is equivalent to the unmodified allele, i.e., it will produce the same phenotype/trait, i.e., result in the transformation of substrate S. Such equivalent allele pairs are very common. But, if the allele produces a non-functional enzyme or no enzyme, the phenotype may be effected. The phenotype/trait will only be dependent on the functioning of the unmodified allele. The unmodified (functioning) allele, which represents the original phenotype is the dominant allele and the modified allele is generally the recessive allele. Hence, in the example above the recessive trait is seen due to non-functional enzyme or because no enzyme is produced.

5.2.2.2 Co-dominance

Till now we were discussing crosses where the $\mathrm{F} _{1}$ resembled either of the two parents (dominance) or was in-between (incomplete dominance). But, in the case of co-dominance the $\mathrm{F} _{1}$ generation resembles both parents. A good example is different types of red blood cells that determine $\mathrm{ABO}$ blood grouping in human beings. $\mathrm{ABO}$ blood groups are controlled by the gene $I$. The plasma membrane of the red blood cells has sugar polymers that protrude from its surface and the kind of sugar is controlled by the gene. The gene $(I)$ has three alleles $I^{\mathrm{A}}$, $I^{\mathrm{B}}$ and $\boldsymbol{i}$. The alleles $I^{\mathrm{A}}$ and IB produce a slightly different form of the sugar while allele i does not produce any sugar. Because humans are diploid organisms, each person possesses any two of the three I gene alleles. $I^{\mathrm{A}}$ and $I^{\mathrm{B}}$ are completely dominant over i, in other words when $I^{\mathrm{A}}$ and i are present only $I^{\mathrm{A}}$ expresses (because i does not produce any sugar), and when $I^{\mathrm{B}}$ and i are present $I^{\mathrm{B}}$ expresses. But when $I^{\mathrm{A}}$ and $I^{\mathrm{B}}$ are present together they both express their own types of sugars: this is because of co-dominance. Hence red blood cells have both $\mathrm{A}$ and $\mathrm{B}$ types of sugars. Since there are three different alleles, there are six different combinations of these three alleles that are possible, and therefore, a total of six different genotypes of the human $\mathrm{ABO}$ blood types (Table 5.2). How many phenotypes are possible?

Table 5.2: Table Showing the Genetic Basis of Blood Groups in Human Population

Allele from
Parent 1
Allele from
Parent 2
Genotype of
offspring
Blood
types of
offspring
$I^{\Lambda}$ $I^{\Lambda}$ $I^{\wedge} I^{\Lambda}$ $\mathrm{A}$
$I^{\Lambda}$ $I^B$ $I^{\wedge} I^B$ $\mathrm{AB}$
$I^{\Lambda}$ $i$ $I^{\wedge} i$ $\mathrm{~A}$
$I^B$ $I^{\Lambda}$ $I^{\wedge} I^B$ $\mathrm{AB}$
$I^B$ $I^B$ $I^B I^B$ $\mathrm{~B}$
$I^B$ $i$ $I^B i$ $\mathrm{~B}$
$i$ $i$ $i i^{\prime}$ $\mathrm{O}$

Do you realise that the example of $\mathrm{ABO}$ blood grouping also provides a good example of multiple alleles? Here you can see that there are more than two, i.e., three alleles, governing the same character. Since in an individual only two alleles can be present, multiple alleles can be found only when population studies are made.

Occasionally, a single gene product may produce more than one effect. For example, starch synthesis in pea seeds is controlled by one gene. It has two alleles ( $\mathbf{B}$ and $\mathbf{b}$ ). Starch is synthesised effectively by $\mathbf{B B}$ homozygotes and therefore, large starch grains are produced. In contrast, $\mathbf{b b}$ homozygotes have lesser efficiency in starch synthesis and produce smaller starch grains. After maturation of the seeds, $\mathbf{B B}$ seeds are round and the $\mathbf{b b}$ seeds are wrinkled. Heterozygotes produce round seeds, and so $\mathbf{B}$ seems to be the dominant allele. But, the starch grains produced are of intermediate size in $\mathbf{B b}$ seeds. So if starch grain size is considered as the phenotype, then from this angle, the alleles show incomplete dominance.

Therefore, dominance is not an autonomous feature of a gene or the product that it has information for. It depends as much on the gene product and the production of a particular phenotype from this product as it does on the particular phenotype that we choose to examine, in case more than one phenotype is influenced by the same gene.

5.3 INHERITANCE OF TWO GENES

Mendel also worked with and crossed pea plants that differed in two characters, as is seen in the cross between a pea plant that has seeds with yellow colour and round shape and one that had seeds of green colour and wrinkled shape (Figure5.7). Mendel found that the seeds resulting from the crossing of the parents, had yellow coloured and round shaped seeds. Here can you tell which of the characters in the pairs yellow/ green colour and round/wrinkled shape was dominant?

Thus, yellow colour was dominant over green and round shape dominant over wrinkled. These results were identical to those that he got when he made separate monohybrid crosses between yellow and green seeded plants and between round and wrinkled seeded plants.

Let us use the genotypic symbols $\mathbf{Y}$ for dominant yellow seed colour and $\mathbf{y}$ for recessive green seed colour, $\mathbf{R}$ for round shaped seeds and $\mathbf{r}$ for wrinkled seed shape. The genotype of the parents can then be written as RRYY and rryy. The cross between the two plants can be written down as in Figure 5.7 showing the genotypes of the parent plants. The gametes $\mathbf{R Y}$ and $\mathbf{r y}$ unite on fertilisation to produce the $\mathrm{F} _{1}$ hybrid RrYy. When Mendel self hybridised the $\mathrm{F} _{1}$ plants he found that 3/4th of $\mathrm{F} _{2}$ plants had yellow seeds and 1/4th had green. The yellow and green colour segregated in a 3:1 ratio. Round and wrinkled seed shape also segregated in a 3:1 ratio; just like in a monohybrid cross.

Figure 5.7 Results of a dihybrid cross where the two parents differed in two pairs of contrasting traits: seed colour and seed shape

5.3.1 Law of Independent Assortment

In the dihybrid cross (Figure 5.7), the phenotypes round, yellow; wrinkled, yellow; round, green and wrinkled, green appeared in the ratio $9:3:3:1.$ Such a ratio was observed for several pairs of characters that Mendel studied.

The ratio of $9:3:3:1$ can be derived as a combination series of 3 yellow: 1 green, with 3 round : 1 wrinkled. This derivation can be written as follows:

(3 Round : 1 Wrinkled) (3 Yellow : 1 Green) = 9 Round, Yellow : 3 Wrinkled, Yellow: 3 Round, Green : 1 Wrinkled, Green

Based upon such observations on dihybrid crosses (crosses between plants differing in two traits) Mendel proposed a second set of generalisations that we call Mendel’s Law of Independent Assortment. The law states that ‘when two pairs of traits are combined in a hybrid, segregation of one pair of characters is independent of the other pair of characters’.

The Punnett square can be effectively used to understand the independent segregation of the two pairs of genes during meiosis and the production of eggs and pollen in the $\mathrm{F} _{1}$ $\operatorname{Rr}$ Yy plant. Consider the segregation of one pair of genes $\mathbf{R}$ and r. Fifty per cent of the gametes have the gene R and the other 50 per cent have r. Now besides each gamete having either $\mathbf{R}$ or r, it should also have the allele $\mathbf{Y}$ or $\mathbf{y}$. The important thing to remember here is that segregation of 50 per cent $\mathbf{R}$ and 50 per cent r is independent from the segregation of 50 per cent $\mathbf{Y}$ and 50 per cent $\mathbf{y}$. Therefore, 50 per cent of the r bearing gametes has $\mathbf{Y}$ and the other 50 per cent has $\mathbf{y}$. Similarly, 50 per cent of the R bearing gametes has $\mathbf{Y}$ and the other 50 per cent has y. Thus there are four genotypes of gametes (four types of pollen and four types of eggs). The four types are RY, Ry, rY and ry each with a frequency of 25 per cent or 1/4th of the total gametes produced. When you write down the four types of eggs and pollen on the two sides of a Punnett square it is very easy to derive the composition of the zygotes that give rise to the $\mathrm{F} _{2}$ plants (Figure 5.7). Although there are 16 squares how many different types of genotypes and phenotypes are formed? Note them down in the format given.

Can you, using the Punnett square data work out the genotypic ratio at the $\mathrm{F} _{2}$ stage and fill in the format given? Is the genotypic ratio also $9:3:3:1$?

S.No. Genotypes found in $F_{\mathbf{2}}$ Their expected Phenotypes

5.3.2 Chromosomal Theory of Inheritance

Mendel published his work on inheritance of characters in 1865 but for several reasons, it remained unrecognised till 1900. Firstly, communication was not easy (as it is now) in those days and his work could not be widely publicised. Secondly, his concept of genes (or factors, in Mendel’s words) as stable and discrete units that controlled the expression of traits and, of the pair of alleles which did not ‘blend’ with each other, was not accepted by his contemporaries as an explanation for the apparently continuous variation seen in nature. Thirdly, Mendel’s approach of using mathematics to explain biological phenomena was totally new and unacceptable to many of the biologists of his time. Finally, though Mendel’s work suggested that factors (genes) were discrete units, he could not provide any physical proof for the existence of factors or say what they were made of.

In 1900, three Scientists (de Vries, Correns and von Tschermak) independently rediscovered Mendel’s results on the inheritance of characters. Also, by this time due to advancements in microscopy that were taking place, scientists were able to carefully observe cell division. This led to the discovery of structures in the nucleus that appeared to double and divide just before each cell division. These were called chromosomes (colored bodies, as they were visualised by staining). By 1902, the chromosome movement during meiosis had been worked out. Walter Sutton and Theodore Boveri noted that the behaviour of chromosomes was parallel to the behaviour of genes and used chromosome movement (Figure 5.8) to explain Mendel’s laws (Table 5.3). Recall that you have studied the behaviour of chromosomes during mitosis (equational division) and during meiosis (reduction division). The important things to remember are that chromosomes as well as genes occur in pairs. The two alleles of a gene pair are located on homologous sites on homologous chromosomes.

Figure 5.8 Meiosis and germ cell formation in a cell with four chromosomes. Can you see how chromosomes segregate when germ cells are formed?

Table 5.3: A Comparison between the Behaviour of Chromosomes and Genes

A B
Occur in pairs Occur in pairs
Segregate at the time of gamete formation such that only one of each pair is transmitted to a gamete Segregate at gamete formation and only one of each pair is transmitted to a gamete
Independent pairs segregate independently of each other One pair segregates independently of another pair

Can you tell which of these columns $\mathrm{A}$ or $\mathrm{B}$ represent the chromosome and which represents the gene? How did you decide?

During Anaphase of meiosis $I$, the two chromosome pairs can align at the metaphase plate independently of each other (Figure 5.9). To understand this, compare the chromosomes of four different colour in the left and right columns. In the left column (Possibility $I$) orange and green is segregating together. But in the right hand column (Possibility II) the orange chromosome is segregating with the red chromosomes.

Possibility I

One long orange and short green chromosome and long yellow and short red chromosome at the same pole

Possibility II

One long orange and short red chromosome and long yellow and short green chromosome at the same pole

Figure 5.9 Independent assortment of chromosomes

Sutton and Boveri argued that the pairing and separation of a pair of chromosomes would lead to the segregation of a pair of factors they carried. Sutton united the knowledge of chromosomal segregation with Mendelian principles and called it the chromosomal theory of inheritance.

Figure 5.10 Drosophila melanogaster (a) Male (b) Female

Following this synthesis of ideas, experimental verification of the chromosomal theory of inheritance by Thomas Hunt Morgan and his colleagues, led to discovering the basis for the variation that sexual reproduction produced. Morgan worked with the tiny fruit flies, Drosophila melanogaster (Figure 5.10), which were found very suitable for such studies. They could be grown on simple synthetic medium in the laboratory. They complete their life cycle in about two weeks, and a single mating could produce a large number of progeny flies. Also, there was a clear differentiation of the sexes - the male and female flies are easily distinguishable. Also, it has many types of hereditary variations that can be seen with low power microscopes.

5.3.3 Linkage and Recombination

Morgan carried out several dihybrid crosses in Drosophila to study genes that were sex-linked. The crosses were similar to the dihybrid crosses carried out by Mendel in peas. For example Morgan hybridised yellow-bodied, white-eyed females to brown-bodied, red-eyed males and intercrossed their $\mathrm{F} _{1}$ progeny. He observed that the two genes did not segregate independently of each other and the $\mathrm{F} _{2}$ ratio deviated very significantly from the $9:3:3:1$ ratio (expected when the two genes are independent).

Morgan and his group knew that the genes were located on the X chromosome (Section 5.4) and saw quickly that when the two genes in a dihybrid cross were situated on the same chromosome, the proportion of parental gene combinations were much higher than the non-parental type. Morgan attributed this due to the physical association or linkage of the two genes and coined the term linkage to describe this physical association of genes on a chromosome and the term recombination to describe the generation of non-parental gene combinations (Figure 5.11). Morgan and his group also found that even when genes were grouped on the same chromosome, some genes were very tightly linked (showed very low recombination) (Figure 5.11, Cross A) while others were loosely linked (showed higher recombination) (Figure 5.11, Cross B). For example he found that the genes white and yellow were very tightly linked and showed only 1.3 per cent recombination while white and miniature wing showed 37.2 per cent recombination. His student Alfred Sturtevant used the frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes and ‘mapped’ their position on the chromosome. Today genetic maps are extensively used as a starting point in the sequencing of whole genomes as was done in the case of the Human Genome Sequencing Project, described later.

Figure 5.11 Linkage: Results of two dihybrid crosses conducted by Morgan. Cross $\mathrm{A}$ shows crossing between gene $\mathrm{y}$ and $\mathrm{w}$; Cross $\mathrm{B}$ shows crossing between genes $\mathrm{w}$ and $\mathrm{m}$. Here dominant wild type alleles are represented with $(+)$ sign in superscript Note: The strength of linkage between $\mathrm{y}$ and $\mathrm{w}$ is higher than $\mathrm{m}$ and $\mathrm{m}$.

5.4 POLYGENIC INHERITANCE

Mendel’s studies mainly described those traits that have distinct alternate forms such as flower colour which are either purple or white. But if you look around you will find that there are many traits which are not so distinct in their occurrence and are spread across a gradient. For example, in humans we don’t just have tall or short people as two distinct alternatives but a whole range of possible heights. Such traits are generally controlled by three or more genes and are thus called as polygenic traits. Besides the involvement of multiple genes polygenic inheritance also takes into account the influence of environment. Human skin colour is another classic example for this. In a polygenic trait the phenotype reflects the contribution of each allele, i.e., the effect of each allele is additive. To understand this better let us assume that three genes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ control skin colour in human with the dominant forms $\mathrm{A}, \mathrm{B}$, and $\mathrm{C}$ responsible for dark skin colour and the recessive forms $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ for light skin colour. The genotype with all the dominant alleles (AABBCC) will have the darkest skin colour and that with all the recessive alleles (aabbcc) will have the lightest skin colour. As expected the genotype with three dominant alleles and three recessive alleles will have an intermediate skin colour. In this manner the number of each type of alleles in the genotype would determine the darkness or lightness of the skin in an individual.

5.5 PLEIOTROPY

We have so far seen the effect of a gene on a single phenotype or trait. There are however instances where a single gene can exhibit multiple phenotypic expression. Such a gene is called a pleiotropic gene. The underlying mechanism of pleiotropy in most cases is the effect of a gene on metabolic pathways which contribute towards different phenotypes. An example of this is the disease phenylketonuria, which occurs in humans. The disease is caused by mutation in the gene that codes for the enzyme phenyl alanine hydroxylase (single gene mutation). This manifests itself through phenotypic expression characterised by mental retardation and a reduction in hair and skin pigmentation.

5.6 SEX DETERMINATION

The mechanism of sex determination has always been a puzzle before the geneticists. The initial clue about the genetic/chromosomal mechanism of sex determination can be traced back to some of the experiments carried out in insects. In fact, the cytological observations made in a number of insects led to the development of the concept of genetic/chromosomal basis of sex-determination. Henking (1891) could trace a specific nuclear structure all through spermatogenesis in a few insects, and it was also observed by him that 50 per cent of the sperm received this structure after spermatogenesis, whereas the other 50 per cent sperm did not receive it. Henking gave a name to this structure as the $\mathrm{X}$ body but he could not explain its significance. Further investigations by other scientists led to the conclusion that the ‘$\mathrm{X}$ body’ of Henking was in fact a chromosome and that is why it was given the name $\mathrm{X}$-chromosome. It was also observed that in a large number of insects the mechanism of sex determination is of the XO type, i.e., all eggs bear an additional $\mathrm{X}$-chromosome besides the other chromosomes (autosomes). On the other hand, some of the sperms bear the $\mathrm{X}$-chromosome whereas some do not. Eggs fertilised by sperm having an $\mathrm{X}$-chromosome become females and, those fertilised by sperms that do not have an X-chromosome become males. Do you think the number of chromosomes in the male and female are equal? Due to the involvement of the $\mathrm{X}$-chromosome in the determination of sex, it was designated to be the sex chromosome, and the rest of the chromosomes were named as autosomes.Grasshopper is an example of XO type of sex determination in which the males have only one $\mathrm{X}$-chromosome besides the autosomes, whereas females have a pair of $\mathrm{X}$-chromosomes.

Figure 5.12 Determination of sex by chromosomal differences: (a,b) Both in humans and in Drosophila, the female has a pair of $\mathrm{XX}$ chromosomes (homogametic) and the male $\mathrm{XY}$ (heterogametic) composition; (c) In many birds, female has a pair of dissimilar chromosomes $\mathrm{ZW}$ and male two similar $\mathrm{ZZ}$ chromosomes

These observations led to the investigation of a number of species to understand the mechanism of sex determination. In a number of other insects Figure 5.12 Determination of sex by chromosomal and mammals including man, $\mathrm{XY}$ type of sex differences: (a,b) Both in humans and determination is seen where both male and in Drosophila, the female has a pair of female have same number of chromosomes. $\mathrm{XX}$ chromosomes (homogametic) and the male $\mathrm{XY}$ (heterogametic) composition; Among the males an X-chromosome is (c) In many birds, female has a pair of present but its counter part is distinctly dissimilar chromosomes $\mathrm{ZW}$ and male smaller and called the Y-chromosome. two similar $\mathrm{ZZ}$ chromosomes Females, however, have a pair of Xchromosomes. Both males and females bear same number of autosomes. Hence, the males have autosomes plus $\mathrm{XY}$, while female have autosomes plus $\mathrm{XX}$. In human beings and in Drosophila the males have one $\mathrm{X}$ and one $\mathrm{Y}$ chromosome, whereas females have a pair of $\mathrm{X}$-chromosomes besides autosomes (Figure 5.12 a, b).

In the above description you have studied about two types of sex determining mechanisms, i.e., XO type and XY type. But in both cases males produce two different types of gametes, (a) either with or without $\mathrm{X}$-chromosome or (b) some gametes with $\mathrm{X}$-chromosome and some with Y-chromosome. Such types of sex determination mechanism is designated to be the example of male heterogamety. In some other organisms, e.g., birds, a different mechanism of sex determination is observed (Figure 5.12 c). In this case the total number of chromosome is same in both males and females. But two different types of gametes in terms of the sex chromosomes, are produced by females, i.e., female heterogamety. In order to have a distinction with the mechanism of sex determination described earlier, the two different sex chromosomes of a female bird has been designated to be the $\mathrm{Z}$ and $\mathrm{W}$ chromosomes. In these organisms the females have one $\mathrm{Z}$ and one $\mathrm{W}$ chromosome, whereas males have a pair of $\mathrm{Z}$-chromosomes besides the autosomes.

5.6.1 Sex Determination in Humans

It has already been mentioned that the sex determining mechanism in case of humans is $\mathrm{XY}$ type. Out of 23 pairs of chromosomes present, 22 pairs are exactly same in both males and females; these are the autosomes. A pair of $\mathrm{X}$-chromosomes are present in the female, whereas the presence of an $\mathrm{X}$ and $\mathrm{Y}$ chromosome are determinant of the male characteristic. During spermatogenesis among males, two types of gametes are produced. 50 per cent of the total sperm produced carry the $\mathrm{X}$-chromosome and the rest 50 per cent has $\mathrm{Y}$-chromosome besides the autosomes. Females, however, produce only one type of ovum with an $\mathrm{X}$-chromosome. There is an equal probability of fertilisation of the ovum with the sperm carrying either $\mathrm{X}$ or $\mathrm{Y}$ chromosome. In case the ovum fertilises with a sperm carrying $\mathrm{X}$-chromosome the zygote develops into a female $(\mathrm{XX})$ and the fertilisation of ovum with $\mathrm{Y}$-chromosome carrying sperm results into a male offspring. Thus, it is evident that it is the genetic makeup of the sperm that determines the sex of the child. It is also evident that in each pregnancy there is always 50 per cent probability of either a male or a female child. It is unfortunate that in our society women are blamed for giving birth to female children and have been ostracised and ill-treated because of this false notion.

5.6.2 Sex Determination in Honey Bee

The sex determination in honey bee is based on the number of sets of chromosomes an individual receives. An offspring formed from the union of a sperm and an egg develops as a female (queen or worker), and an unfertilised egg develops as a male (drone) by means of parthenogenesis. This means that the males have half the number of chromosomes than that of a female. The females are diploid having 32 chromosomes and males are haploid, i.e., having 16 chromosomes.This is called as haplodiploid sex-determination system and has special characteristic features such as the males produce sperms by mitosis (Figure 5.13), they do not have father and thus cannot have sons, but have a grandfather and can have grandsons.

How is the sex-determination mechanism different in the birds? Is the sperm or the egg responsible for the sex of the chicks?

Figure 5.13 Sex determination in honey bee

5.7 MUTATION

Mutation is a phenomenon which results in alteration of DNA sequences and consequently results in changes in the genotype and the phenotype of an organism. In addition to recombination, mutation is another phenomenon that leads to variation in DNA.

As you will learn in Chapter 6, one DNA helix runs continuously from one end to the other in each chromatid, in a highly supercoiled form. Therefore loss (deletions) or gain (insertion/duplication) of a segment of DNA, result in alteration in chromosomes. Since genes are known to be located on chromosomes, alteration in chromosomes results in abnormalities or aberrations. Chromosomal aberrations are commonly observed in cancer cells. In addition to the above, mutation also arise due to change in a single base pair of DNA. This is known as point mutation. A classical example of such a mutation is sickle cell anemia. Deletions and insertions of base pairs of DNA, causes frame-shift mutations (see Chapter 6).

The mechanism of mutation is beyond the scope of this discussion, at this level. However, there are many chemical and physical factors that induce mutations. These are referred to as mutagens. UV radiations can cause mutations in organisms - it is a mutagen.

5.8 GENETIC DISORDERS

5.8.1 Pedigree Analysis

The idea that disorders are inherited has been prevailing in the human society since long. This was based on the heritability of certain characteristic features in families. After the rediscovery of Mendel’s work the practice of analysing inheritance pattern of traits in human beings began. Since it is evident that control crosses that can be performed in pea plant or some other organisms, are not possible in case of Figure 5.13 Symbols used in the human human beings, study of the family history about pedigree analysis inheritance of a particular trait provides an alternative. Such an analysis of traits in a several of generations of a family is called the pedigree analysis. In the pedigree analysis the inheritance of a particular trait is represented in the family tree over generations.

In human genetics, pedigree study provides a strong tool, which is utilised to trace the inheritance of a specific trait, abnormality or disease. Some of the important standard symbols used in the pedigree analysis have been shown in Figure 5.13.

Figure 5.13 Symbols used in the human pedigree analysis

As you have studied in this chapter, each and every feature in any organism is controlled by one or the other gene located on the DNA present in the chromosome. DNA is the carrier of genetic information. It is hence transmitted from one generation to the other without any change or alteration. However, changes or alteration do take place occasionally. Such an alteration or change in the genetic material is referred to as mutation. A number of disorders in human beings have been found to be associated with the inheritance of changed or altered genes or chromosomes.

5.8.2 Mendelian Disorders

Broadly, genetic disorders may be grouped into two categories - Mendelian disorders and Chromosomal disorders. Mendelian disorders are mainly determined by alteration or mutation in the single gene. These disorders are transmitted to the offspring on the same lines as we have studied in the principle of inheritance. The pattern of inheritance of such Mendelian disorders can be traced in a family by the pedigree analysis. Most common and prevalent Mendelian disorders are Haemophilia, Cystic fibrosis, Sicklecell anaemia, Colour blindness, Phenylketonuria, Thalassemia, etc. It is important to mention here that such Mendelian disorders may be dominant or recessive. By pedigree analysis one can easily understand whether the trait in question is dominant or recessive. Similarly, the trait may also be linked to the sex chromosome as in case of haemophilia. It is evident that this $\mathrm{X}$-linked recessive trait shows transmission from carrier female to male progeny. A representative pedigree is shown in Figure 5.14 for dominant and recessive traits. Discuss with your teacher and design pedigrees for characters linked to both autosomes and sex chromosome.

Figure 5.14 Representative pedigree analysis of (a) Autosomal dominant trait (for example: Myotonic dystrophy) (b) Autosomal recessive trait (for example: Sickle-cell anaemia)

Colour Blidness : It is a sex-linked recessive disorder due to defect in either red or green cone of eye resulting in failure to discriminate between red and green colour. This defect is due to mutation in certain genes present in the $\mathrm{X}$ chromosome. It occurs in about 8 per cent of males and only about 0.4 per cent of females. This is because the genes that lead to red-green colour blindness are on the $\mathrm{X}$ chromosome. Males have only one $\mathrm{X}$ chromosome and females have two. The son of a woman who carries the gene has a 50 per cent chance of being colour blind. The mother is not herself colour blind because the gene is recessive. That means that its effect is suppressed by her matching dominant normal gene. A daughter will not normally be colour blind, unless her mother is a carrier and her father is colour blind.

Haemophilia : This sex linked recessive disease, which shows its transmission from unaffected carrier female to some of the male progeny has been widely studied. In this disease, a single protein that is a part of the cascade of proteins involved in the clotting of blood is affected. Due to this, in an affected individual a simple cut will result in non-stop bleeding. The heterozygous female (carrier) for haemophilia may transmit the disease to sons. The possibility of a female becoming a haemophilic is extremely rare because mother of such a female has to be at least carrier and the father should be haemophilic (unviable in the later stage of life). The family pedigree of Queen Victoria shows a number of haemophilic descendents as she was a carrier of the disease.

Sickle-cell anaemia : This is an autosome linked recessive trait that can be transmitted from parents to the offspring when both the partners are carrier for the gene (or heterozygous). The disease is controlled by a single pair of allele, $\mathrm{Hb}^{\mathrm{A}}$ and $\mathrm{Hb}^{\mathrm{s}}$. Out of the three possible genotypes only homozygous individuals for $\mathrm{Hb}^{\mathrm{s}}\left(\mathrm{Hb}^{\mathrm{s}} \mathrm{Hb}^{\mathrm{s}}\right)$ show the diseased phenotype. Heterozygous $\left(\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{s}}\right)$ individuals appear apparently unaffected but they are carrier of the disease as there is 50 per cent probability of transmission of the mutant gene to the progeny, thus exhibiting sickle-cell trait (Figure 5.15). The defect is caused by the substitution of Glutamic acid (Glu) by Valine (Val) at the sixth position of the beta globin chain of the haemoglobin molecule. The substitution of amino acid in the globin protein results due to the single base substitution at the sixth codon of the beta globin gene from GAG to GUG. The mutant haemoglobin molecule undergoes polymerisation under low oxygen tension causing the change in the shape of the $\mathrm{RBC}$ from biconcave disc to elongated sickle like structure (Figure 5.15).

Figure 5.15 Micrograph of the red blood cells and the amino acid composition of the relevant portion of $\mathrm{B}$ chain of haemoglobin: (a) From a normal individual; (b) From an individual with sickle-cell anaemia

Phenylketonuria : This inborn error of metabolism is also inherited as the autosomal recessive trait. The affected individual lacks an enzyme that converts the amino acid phenylalanine into tyrosine. As a result of this phenylalanine is accumulated and converted into phenylpyruvic acid and other derivatives. Accumulation of these in brain results in mental retardation. These are also excreted through urine because of its poor absorption by kidney.

Thalassemia : This is also an autosome-linked recessive blood disease transmitted from parents to the offspring when both the partners are unaffected carrier for the gene (or heterozygous). The defect could be due to either mutation or deletion which ultimately results in reduced rate of synthesis of one of the globin chains (α and β chains) that make up haemoglobin. This causes the formation of abnormal haemoglobin molecules resulting into anaemia which is characteristic of the disease. Thalassemia can be classified according to which chain of the haemoglobin molecule is affected. In α Thalassemia, production of α globin chain is affected while in β Thalassemia, production of β globin chain is affected. α Thalassemia is controlled by two closely linked genes HBA1 and HBA2 on chromosome 16 of each parent and it is observed due to mutation or deletion of one or more of the four genes. The more genes affected, the less alpha globin molecules produced. While β Thalassemia is controlled by a single gene HBB on chromosome 11 of each parent and occurs due to mutation of one or both the genes. Thalassemia differs from sickle-cell anaemia in that the former is a quantitative problem of synthesising too few globin molecules while the latter is a qualitative problem of synthesising an incorrectly functioning globin.

5.6.3 Chromosomal Disorders

The chromosomal disorders on the other hand are caused due to absence or excess or abnormal arrangement of one or more chromosomes. Failure of segregation of chromatids during cell division cycle results in the gain or loss of a chromosome(s), called aneuploidy. For example, Down’s syndrome results in the gain of extra copy of chromosome 21. Similarly, Turner’s syndrome results due to loss of an $\mathrm{X}$ chromosome in human females. Failure of cytokinesis after telophase stage of cell division results in an increase in a whole set of chromosomes in an organism and, this phenomenon is known as polyploidy. This condition is often seen in plants.

The total number of chromosomes in a normal human cell is 46 (23 pairs). Out of these 22 pairs are autosomes and one pair of chromosomes are sex chromosome. Sometimes, though rarely, either an additional copy of a chromosome may be included in an individual or an individual may lack one of any one pair of chromosomes. These situations are known as trisomy or monosomy of a chromosome, respectively. Such a situation leads to very serious consequences in the individual. Down’s syndrome, Turner’s syndrome, Klinefelter’s syndrome are common examples of chromosomal disorders.

Figure 5.16 A representative figure showing an individual inflicted with Down’s syndrome and the corresponding chromosomes of the individual

Down’s Syndrome : The cause of this genetic disorder is the presence of an additional copy of the chromosome number 21 (trisomy of 21). This disorder was first described by Langdon Down (1866). The affected individual is short statured with small round head, furrowed tongue and partially open mouth (Figure 5.16). Palm is broad with characteristic palm crease. Physical, psychomotor and mental development is retarded.

Klinefelter’s Syndrome : This genetic disorder is also caused due to the presence of an additional copy of $\mathrm{X}$ chromosome resulting into a karyotype of 47, XXY. Such an individual has overall masculine development, however, the feminine development (development of breast, i.e., Gynaecomastia) is also expressed (Figure 5.17 a). Such individuals are sterile.

Figure 5.17 Diagrammatic represe-ntation of genetic disorders due to sex chromosome composition in humans : (a) Klinefelter Syndrome; (b) Turner’s Syndrome

Turner’s Syndrome : Such a disorder is caused due to the absence of one of the $\mathrm{X}$ chromosomes, i.e., 45 with X0, Such females are sterile as ovaries are rudimentary besides other features including lack of other secondary sexual characters (Figure 5.17 b).

Summary

Genetics is a branch of biology which deals with principles of inheritance and its practices. Progeny resembling the parents in morphological and physiological features has attracted the attention of many biologists. Mendel was the first to study this phenomenon systematically. While studying the pattern of inheritance in pea plants of contrasting characters, Mendel proposed the principles of inheritance, which are today referred to as ‘Mendel’s Laws of Inheritance’. He proposed that the ‘factors’ (later named as genes) regulating the characters are found in pairs known as alleles. He observed that the expression of the characters in the offspring follow a definite pattern in different–first generations ($\mathrm{F} _{1}$), second ($\mathrm{F} _{2}$) and so on. Some characters are dominant over others. The dominant characters are expressed when factors are in heterozygous condition (Law of Dominance). The recessive characters are only expressed in homozygous conditions. The characters never blend in heterozygous condition. A recessive character that was not expressed in heterozygous conditon may be expressed again when it becomes homozygous. Hence, characters segregate while formation of gametes (Law of Segregation).

Not all characters show true dominance. Some characters show incomplete, and some show co-dominance. When Mendel studied the inheritance of two characters together, it was found that the factors independently assort and combine in all permutations and combinations (Law of Independent Assortment). Different combinations of gametes are theoretically represented in a square tabular form known as ‘Punnett Square’. The factors (now known as gene) on chromosomes regulating the characters are called the genotype and the physical expression of the chraracters is called phenotype.

After knowing that the genes are located on the chromosomes, a good correlation was drawn between Mendel’s laws : segregation and assortment of chromosomes during meiosis. The Mendel’s laws were extended in the form of ‘Chromosomal Theory of Inheritance’. Later, it was found that Mendel’s law of independent assortment does not hold true for the genes that were located on the same chromosomes. These genes were called as ‘linked genes’. Closely located genes assorted together, and distantly located genes, due to recombination, assorted independently. Linkage maps, therefore, corresponded to arrangement of genes on a chromosome.

Many genes were linked to sexes also, and called as sex-linked genes. The two sexes (male and female) were found to have a set of chromosomes which were common, and another set which was different. The chromosomes which were different in two sexes were named as sex chromosomes. The remaining set was named as autosomes. In humans, a normal female has 22 pairs of autosomes and a pair of sex chromosomes (XX). A male has 22 pairs of autosomes and a pair of sex chromosome as $(\mathrm{XY})$. In chicken, sex chromosomes in male are $\mathrm{ZZ}$, and in females are $\mathrm{ZW}$.

Mutation is defined as change in the genetic material. A point mutation is a change of a single base pair in DNA. Sickle-cell anemia is caused due to change of one base in the gene coding for beta-chain of hemoglobin. Inheritable mutations can be studied by generating a pedigree of a family. Some mutations involve changes in whole set of chromosomes (polyploidy) or change in a subset of chromosome number (aneuploidy). This helped in understanding the mutational basis of genetic disorders. Down’s syndrome is due to trisomy of chromosome 21, where there is an extra copy of chromosome 21 and consequently the total number of chromosome becomes 47. In Turner’s syndrome, one X chromosome is missing and the sex chromosome is as $\mathrm{X}$, and in Klinefelter’s syndrome, the condition is $\mathrm{XXY}$. These can be easily studied by analysis of Karyotypes.

EXERCISES

1. Mention the advantages of selecting pea plant for experiment by Mendel.

Show Answer

Answer

Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected a pea plant because of the following features.

(a) Peas have many visible contrasting characters such as tall/dwarf plants, round/wrinkled seeds, green/yellow pod, purple/white flowers, etc.

(b) Peas have bisexual flowers and therefore undergo self pollination easily. Thus, pea plants produce offsprings with same traits generation after generation.

(c) In pea plants, cross pollination can be easily achieved by emasculation in which the stamen of the flower is removed without affecting the pistil.

(d) Pea plants have a short life span and produce many seeds in one generation.

2. Differentiate between the following –

(a) Dominance and Recessive

(b) Homozygous and Heterozygous

(c) Monohybrid and Dihybrid.

Show Answer

Answer

(a) Dominance and Recessive

Dominance Recessive
1. A dominant factor or allele expresses itself in the
presence or absence of a recessive trait.
A recessive trait is able to express itself only in
the absence of a dominant trait.
2. For example, tall plant, round seed, violet flower,
etc. are dominant characters in a pea plant.
For example, dwarf plant, wrinkled seed, white
flower, etc. are recessive traits in a pea plant.

(b) Homozygous and Heterozygous

Homozygous Heterozygous
1. It contains two similar alleles for a particular trait. It contains two different alleles for a
particular trait.
2. Genotype for homozygous possess either dominant or
recessive, but never both the alleles. For example, RR
or rr
Genotype for heterozygous possess both
dominant and recessive alleles. For example,
$\mathrm{Rr}$
3. It produces only one type of gamete. It produces two different kinds of gametes.

(c) Monohybrid and Dihybrid

Monohybrid Dihybrid
1. Monohybrid involves cross between parents,
which differs in only one pair of contrasting
characters.
Dihybrid involves cross between parents, which
differs in two pairs of contrasting characters.
2. For example, the cross between tall and
dwarf pea plant is a monohybrid cross.
For example, the cross between pea plants having
yellow wrinkled seed with those having green round
seeds is a dihybrid cross.

3. A diploid organism is heterozygous for 4 loci, how many types of gametes can be produced?

Show Answer

Answer

Locus is a fixed position on a chromosome, which is occupied by a single or more genes. Heterozygous organisms contain different alleles for an allelic pair. Hence, a diploid organism, which is heterozygous at four loci, will have four different contrasting characters at four different loci.

For example, if an organism is heterozygous at four loci with four characters, say $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}$, Dd, then during meiosis, it will segregate to form 8 separate gametes.

If the genes are not linked, then the diploid organism will produce 16 different gametes. However, if the genes are linked, the gametes will reduce their number as the genes might be linked and the linked genes will be inherited together during the process of meiosis.

4. Explain the Law of Dominance using a monohybrid cross.

Show Answer

Answer

Mendel’s law of dominance states that a dominant allele expresses itself in a monohybrid cross and suppresses the expression of recessive allele. However, this recessive allele for a character is not lost and remains hidden or masked in the progenies of $F_{1}$ generation and reappears in the next generation.

For example, when pea plants with round seeds (RR) are crossed with plants with wrinkled seeds (rr), all seeds in $F_{1}$ generation were found to be round $(\mathrm{Rr})$. When these round seeds were self fertilized, both the round and wrinkled seeds appeared in $F_{2}$ generation in 3: 1 ratio. Hence, in $F_{1}$ generation, the dominant character (round seeds) appeared and the recessive character (wrinkled seeds) got suppressed, which reappeared in $F_{2}$ generation.

A monohybrid cross between round and wrinkled pea seeds

5. Define and design a test-cross.

Show Answer

Answer

Test cross is a cross between an organism with unknown genotype and a recessive parent. It is used to determine whether the individual is homozygous or heterozygous for a trait.

If the progenies produced by a test cross show 50% dominant trait and $50 %$ recessive trait, then the unknown individual is heterozygous for a trait. On the other hand, if the progeny produced shows dominant trait, then the unknown individual is homozygous for a trait.

Cross between homozygous (unknown) individual and homozygous recessive individual

Cross between homozygous (unknown) individual and homozygous recessive individual

6. Using a Punnett Square, workout the distribution of phenotypic features in the first filial generation after a cross between a homozygous female and a heterozygous male for a single locus.

Show Answer

Answer

In guinea pigs, heterozygous male with black coat colour $(\mathrm{Bb})$ is crossed with the female having white coat colour (bb). The male will produce two types of gametes, $B$ and $b$, while the female will produce only one kind of gamete, $r$. The genotypic and phenotypic ratio in the progenies of $F_{1}$ generation will be same i.e., 1:1.

7. When a cross in made between tall plant with yellow seeds (TtYy) and tall plant with green seed (Ttyy), what proportions of phenotype in the offspring could be expected to be

(a) tall and green.

(b) dwarf and green.

Show Answer

Answer

A cross between tall plant with yellow seeds and tall plant with green seeds will produce

(a) three tall and green plants

(b) one dwarf and green plant

Parents Tall yellow
seed plant
TtYy
Tall green
seed plant
Ttyy
Gametes $\mathrm{TY}, \mathrm{Ty}, \mathrm{ty}, \mathrm{tY}$ Ty, ty
Ty ty
TY TTYy TtYy
TTyy Ttyy
$1 \mathrm{y}$ Tall green Tall green
ty Ttyy thyy
$\frac{\text { Tall green }}{\text { Thyy }}$ Dwarf green
ty Tall yellow Dwarf yellow
Phenotyp {Tall and green $=3$
Dwarf and green =}

8. Two heterozygous parents are crossed. If the two loci are linked what would be the distribution of phenotypic features in F1 generation for a dibybrid cross?

Show Answer

Answer

Linkage is defined as the coexistence of two or more genes in the same chromosome. If the genes are situated on the same chromosome and lie close to each other, then they are inherited together and are said to be linked genes.

For example, a cross between yellow body and white eyes and wild type parent in a Drosophila will produce wild type and yellow white progenies. It is because yellow bodied and white eyed genes are linked. Therefore, they are inherited together in progenies.

9. Briefly mention the contribution of T.H. Morgan in genetics.

Show Answer

Answer

Morgan’s work is based on fruit flies (Drosophila melanogaster). He formulated the chromosomal theory of linkage. He defined linkage as the co-existence of two or more genes in the same chromosome and performed dihybrid crosses inDrosophila to show that linked genes are inherited together and are located on X-chromosome. His experiments have also proved that tightly linked genes show very low recombination while loosely linked genes show higher recombination.

10. What is pedigree analysis? Suggest how such an analysis, can be useful.

Show Answer

Answer

Pedigree analysis is a record of occurrence of a trait in several generations of a family. It is based on the fact that certain characteristic features are heritable in a family, for example, eye colour, skin colour, hair form and colour, and other facial characteristics. Along with these features, there are other genetic disorders such as Mendelian disorders that are inherited in a family, generation after generation. Hence, by using pedigree analysis for the study of specific traits or disorders, generation after generation, it is possible to trace the pattern of inheritance. In this analysis, the inheritance of a trait is represented as a tree, called family tree. Genetic counselors use pedigree chart for analysis of various traits and diseases in a family and predict their inheritance patterns. It is useful in preventing hemophilia, sickle cell anemia, and other genetic disorders in the future generations.

11. How is sex determined in human beings?

Show Answer

Answer

Human beings exhibit male heterogamy. In humans, males (XY) produce two different types of gametes, $X$ and $Y$. The human female $(X X)$ produces only one type of gametes containing $X$ chromosomes. The sex of the baby is determined by the type of male gamete that fuses with the female gamete. If the fertilizing sperm contains $X$ chromosome, then the baby produced will be a girl and if the fertilizing sperm contains $Y$ chromosome, then the baby produced will be a boy. Hence, it is a matter of chance that determines the sex of a baby. There is an equal probability of the fertilizing sperm being an $X$ or $Y$ chromosome. Thus, it is the genetic make up of the sperm that determines the sex of the baby.

Sex determination in humans

12. A child has blood group O. If the father has blood group A and mother blood group B, work out the genotypes of the parents and the possible genotypes of the other offsprings.

Show Answer

Answer

The blood group characteristic in humans is controlled by three set of alleles, namely, $I^{A}, I^{B}$, and $i$. The alleles, $I^{A}$ and $I^{B}$, are equally dominant whereas allele, $i$, is recessive to the other alleles. The individuals with genotype, $I^{A} I^{A}$ and $I^{A} i$, have blood group $A$ whereas the individuals with genotype, $I^{B} I^{B}$ and $I^{B}$, have blood group $B$. The persons with genotype $I^{A} I^{B}$ have blood group $A B$ while those with blood group $O$ have genotype ii.

Hence, if the father has blood group A and mother has blood group B, then the possible genotype of the parents will be

Father Mother

$\left.\left.\right|^{A}\right|^{A}$ or $\left.\left.\right|^{A} i I^{B}\right|^{B}$ or $I^{B} i$

A cross between homozygous parents will produce progeny with AB blood group.

A cross between heterozygous parents will produce progenies with $A B$ blood group $\left(\left.{ }^{A}\right|^{B}\right)$ and $O$ blood group (ii).

13. Explain the following terms with example (a) Co-dominance (b) Incomplete dominance

Show Answer

Answer

(a) Co-dominance

Co-dominance is the phenomenon in which both the alleles of a contrasting character are expressed in heterozygous condition. Both the alleles of a gene are equally dominant. ABO blood group in human beings is an example of codominance. The blood group character is controlled by three sets of alleles, namely, $I^{A}, I^{B}$, and $i$. The alleles, $I^{A}$ and $I^{B}$, are equally dominant and are said to be co-dominant as they are expressed in AB blood group. Both these alleles do not interfere with the expression of each other and produce their respective antigens. Hence, AB blood group is an example of co-dominance.

2. Incomplete dominance

Incomplete dominance is a phenomenon in which one allele shows incomplete dominance over the other member of the allelic pair for a character. For example, a monohybrid cross between the plants having red flowers and white flowers inAntirrhinum species will result in all pink flower plants in $F_{1}$ generation. The progeny obtained in $F_{1}$ generation does not resemble either of the parents and exhibits intermediate characteristics. This is because the dominant allele, $R$, is partially dominant over the other allele, $r$. Therefore, the recessive allele, $r$, also gets expressed in the $F_{1}$ generation resulting in the production of intermediate pink flowering progenies with $\mathrm{Rr}$ genotype.

14. What is point mutation? Give one example.

Show Answer

Answer

Point mutation is a change in a single base pair of DNA by substitution, deletion, or insertion of a single nitrogenous base. An example of point mutation is sickle cell anaemia. It involves mutation in a single base pair in the beta-globin chain of haemoglobin pigment of the blood. Glutamic acid in short arm of chromosome II gets replaced with valine at the sixth position.

15. Who had proposed the chromosomal theory of the inheritance?

Show Answer

Answer

Sutton and Boveri proposed the chromosomal theory of inheritance in 1902. They linked the inheritance of traits to the chromosomes.

16. Mention any two autosomal genetic disorders with their symptoms.

Show Answer

Answer

Two autosomal genetic disorders are as follows.

क्या आपने कभी यह सोचा कि हाथी हमेशा शिशु हाथी को ही जन्म देता है किसी अन्य जानवर को क्यों नहीं या आम के बीज से आम का पौधा ही उगता है, कोई अन्य पौधा क्यों नहीं?

माना कि संतति अपने जनकों से मिलती जुलती है पर क्या वह उनसे बिल्कुल ही अभिन्न होती है, या उनके लक्षणों में कुछ भिन्नता दिखती है? क्या तुमने कभी आश्चर्य किया कि सहोदर कभी एक जैसे दिखते हैं या फिर कभी अलग-अलग क्यों दिखते हैं?

जीव विज्ञान की एक शाखा आनुवंशिकी ( आनुवंशिक विज्ञान ) ऐसे तथा इनसे संबंधित अनेक प्रश्नों पर विचार करती है। इस शाखा में वंशागति और विविधता दोनों का अध्ययन होता है, अर्थात् यह विचार किया जाता है, कि जनक और संतति के लक्षणों में समानता या असमानता क्यों होती है। वंशागति आनुवंशिकी का आधार है। वंशागति वह प्रक्रम है जिससे लक्षण जनक से संतति में जाते हैं तथा विविधता जनक और संतति के लक्षणों की असमानता की अवस्था है।

मानव को 8000-10000 वर्ष ईसा पूर्व यह ज्ञान हो चुका था कि विविधता का कारण लैंगिक जनन की प्रक्रिया में छिपा हुआ है। उसने पादपों और जंतुओं की प्रकृति में उपस्थित जीव विविधता का लाभ उठाया और लाभदायक लक्षणों वाले जीवों को चुनकर उनका प्रजनन करवाया तथा उनसे इच्छित लक्षणों के जीव प्राप्त किए। उदाहरण पुरानी जंगली गायों के कृत्रिम चयन और उनको पालतू बनाकर हमने आज उच्च भारतीय किस्में प्राप्त कर ली हैं जैसे पंजाब की शाहीवाल गायें। हमें मानना पड़ता है कि भले ही हमारे पूर्वजों को लक्षणों की वंशागति और विविधता का ज्ञान था किंतु उनको इन घटनाओं के वैज्ञानिक आधार के विषय में बहुत कम जानकारी थी।

4.1 मेंडल के वंशागति के नियम

उन्नीसवीं सदी के मघ्य के वर्षों में ही आनुवंशिकता को समझने के संबंध में प्रगति हो सकी। ग्रीगोर मेंडल ने उद्यान मटर के पौधे में सात वर्षों (1856-1863) तक संकरण के प्रयोग किए तथा उनके आधार पर जीवों की वंशागति नियम को प्रस्तावित किया। सांख्यकीय विश्लेषणों और गणितीय तर्कशास्त्र का जीव विज्ञान की समस्याओं के समाधान हेतु प्रथम उपयोग भी मेंडल द्वारा वंशागत अंवेषणों के दौरान ही किया गया। उनके प्रयोगों में नमूनों की विशाल संख्या ने उनके आँकड़ों को विश्वसनीयता प्रदान की। साथ ही उनके परीक्षाधीन पौधों की उत्तरोत्तर पीढ़ियों पर किए गए प्रयोग तथा उनके सफल निष्कर्षों ने सिद्ध किया कि मेंडल के वंशागति नियमों में व्यापकता थी और वे केवल अपुष्ट विचार नहीं थे। मेंडल ने मटर के पौधे के उन लक्षणों पर विचार किया जो सर्वथा विपरीतार्थ थे; जैसे लंबे या बौने पौधे, पीले या हरे बीज। इसके कारण उसे वंशागति नियमों का आधारभूत ढाँचा तैयार करने में सहायता मिली। बाद के वैज्ञानिकों ने इसे विस्तार दिया जिससे विविध नैसर्गिक घटनाओं और उनमें निहित जटिलता का स्पष्टीकरण किया जा सका। मेंडल ने अनेक तद्रूप-प्रजनन-सम, मटर के शुद्ध वंशक्रमों को लेकर कृत्रिम परागण/पर-परागण के प्रयोग किए। तद्रूपप्रजनन-सम (ट्रू ब्रीडिंग) वंशक्रम वह होता है, जो कई पीढ़ियों तक स्वपरागण के फलस्वरूप स्थायी विशेषक लक्षण

चित्र 4.1 मेंडल द्वारा अघ्ययन किए गए मटर के पौधे के विपर्यास विशेषकों के सात जोड़े।

मेंडल द्वारा अघ्ययन किए गए मटर के पौधे के विपर्यास विशेषकों के सात जोड़े। (ट्रेट) प्रदर्शित करता है। मेंडल ने मटर की 14 तद्रूप प्रजननी मटर की किस्मों को छाँटा अर्थात् सात जोड़े विपरीत लक्षणों को लिया, इनके अन्य लक्षण समान थे। इनमें से कुछ उदाहरण इस प्रकार हैं — चिकने या झुर्रीदार बीज, पीले या हरे बीज, फूली हुई या सिकुड़ी हुई फलियाँ, हरी या पीली फलियाँ, लंबे या बौने पौधे (चित्र 4.1, व तालिका 4.1)।

तालिका 4.1 मेंडल द्वारा अध्ययन किए गए मटर के पौधे के विपर्यास विशेषक

क्र.सं. लक्षण विपर्यास विशेषक
1. तने की ऊँचाई लंबा/बौना
2. फूल का रंग बैंगनी/सफेद
3. फूल की स्थिति अक्षीय/अंत्य
4. फली का आकार फूला/सिकुड़ा
5. फली का रंग हरा/पीला
6. बीज का आकार गोल/मुझाया
7. बीज का रंग पीला/हरा

4.2 एक जीन की वंशागति

मेंडल ने वंशागत के अध्ययन के लिए एक प्रयोग में मटर के लंबे तथा बौने पौधे का संकरण किया। इस प्रयोग द्वारा एक जीन का आनुवंशिक अध्ययन किया गया। इस संकरण से उत्पन्न बीजों को उगाकर उन्होंने प्रथम संकर पीढ़ी के पौधे प्राप्त किए (चित्र 4.2)। इस पीढ़ी को प्रथम संतति पीढ़ी ( फिलिअल प्रोजेनी ) या $F_{1}$ भी कहा जाता है। मेंडल ने देखा कि $F_{1}$ पीढ़ी के सभी पौधे लंबे थे अर्थात् अपने लंबे जनक के समान थे, कोई पौधा बौना नहीं था (चित्र 4.3)। इसी प्रकार के परिणाम अन्य विशेषकों वाले संकरण प्रयोगों में भी पाए गए। उन्होंने देखा कि $\mathrm{F}_{1}$ में दो में से एक जनक के लक्षणों की ही अभिव्यक्ति होती है। दूसरे जनक के लक्षण प्रकट नहीं होते।

चित्र 4.2 मटर में संकरण के चरण

मेंडल ने फिर $\mathrm{F} _{1}$ के सभी लंबे पौधों को स्वयं परागित किया और उसे देखकर आश्चर्य हुआ कि $\mathrm{F} _{2}$ पीढ़ी में प्रत्युत्पन्न कुछ पौधे बौने थे। जो लक्षण $F _{1}$ पीढ़ी में नहीं देखा गया, वह अब प्रदर्शित हो गया। बौने पौधों का अनुपात कुल $\mathrm{F} _{2}$ पौधों का 25 प्रतिशत था जबकि 75 प्रतिशत पौधे लंबे थे। लंबे और बौनेपन के लक्षण जनकों के समान ही थे और इनमें किसी प्रकार का सम्मिश्रण नहीं था। अर्थात् सभी या तो लंबे थे या बौने, मझोले कद के कोई भी नहीं थे (चित्र 4.3)।

जिन अन्य विशेषकों का अध्ययन किया उनसे भी इसी प्रकार के परिणाम प्राप्त हुए अर्थात् $\mathrm{F} _{1}$ पीढ़ी में केवल एक ही जनकीय लक्षण प्रकट हुआ जबकि $\mathrm{F} _{2}$ पीढ़ी में दोनों विशेषक $3: 1$ के अनुपात में अभिव्यक्त हुए। विपरीत विशेषकों में दोनों $\mathrm{F} _{1}$ या $\mathrm{F} _{2}$ स्तर पर किसी प्रकार का सम्मिश्रण नजर नहीं आया।

इन प्रेक्षणों के आधार पर, मेंडल ने प्रस्तावित किया कि कोई ‘वस्तु’ अपरिवर्तित रूप में जनक से संतति को युग्मकों के माघ्यम से उत्तरोत्तर पीढ़यों में अग्रसित होती है। उसने इस वस्तु को ‘कारक’ ( फैक्टर) कहा। अब हम इसे ‘जीन’ कहते हैं। दूसरे शब्दों में जीन आनुवंशिकता की इकाइयाँ हैं। किस जीन में कौन-सा विशेष लक्षण अभिव्यक्त होगा, इसकी सूचना इसमें निहित होती है। विकल्पी विपरीत लक्षणों के संकेतक जोड़े को युग्म विकल्पी (अलील) कहा जाता है। ये एक ही जीन के थोड़ा सा भिन्न रूप होते हैं।

चित्र 4.3 एक-संकर क्रास का आरेखीय निरूपण

यदि हम प्रत्येक जीन को अक्षरों के प्रतीक दें, तो जो लक्षण $\mathrm{F}_{1}$ पीढ़ी में व्यक्त होता है उसे कैपीटल अक्षर से तथा विपरीत लक्षण की जीन को छोटे अक्षर से व्यक्त किया जाता है। उदाहरण के लिए, ऊँचाई के लक्षण में लंबे के लिए ’ $T$ ’ और बौने के लिए ’ $t$ ’ का प्रयोग होता है, $T$ और $t$ एक दूसरे के युग्म विकल्पी (अलील) हैं। दूसरे शब्दों में पौधों में ऊँचाई के एलील जोड़े इस प्रकार होंगे- $\mathbf{T T}, \mathbf{T t}$ या $\mathbf{t t}$ मेंडल ने यह भी प्रस्तावित किया तदूरूप प्रजननक्षम मटर की लंबी या बौनी प्रजाति में अलील जोड़ा समयुग्मजी ( होमोजाइगस ) क्रमशः $TT$ या $\mathbf{t t}$ होगा, $\mathbf{T T}$ या $\mathbf{t t}$ को पौधे का जीनोटाइप (जीनी प्ररूप) और लंबे-बौने को फीनोटाइप ( दृश्य प्ररूप ) कहा गया। अगर किसी पौधे का जीनोटाइप $\mathbf{~ T t}$ है तो उसका फीनोटाइप क्या होगा?

मेंडल ने पाया कि $\mathrm{F} _{1}$ विषमयुग्मजी $\mathbf{T t}$ का फीनोटाइप दिखने में बिल्कुल $\mathbf{T T}$ जनक के समान होता है। इसलिए उसने प्रस्ताव किया कि असमान कारकों के जोड़े में से कोई एक, दूसरे के ऊपर प्रभावी हो जाता है (जैसा कि $\mathrm{F} _{1}$ में) इसे प्रभावी और दूसरे को अप्रभावी नाम दे दिया गया। इस प्रयोग में $\mathbf{T}$ (लंबाई का कारक) $t$ (बौनेपन के कारक) के ऊपर प्रभावी हो जाता है। जिन अन्य लक्षण युग्मों का उन्होंने अघ्ययन किया, वहाँ भी यही पाया।

प्रभाविता और अप्रभाविता की संकल्पना को याद रखने के लिए यही सुविधाजनक (और तर्कसंगत) होगा कि बड़े (कैपीटल) और छोटे अक्षरों का प्रयोग किया जाए। (लंबे के लिए $\mathbf{T}$ और बौने के लिए ’ $d$ ’ का प्रयोग न करें; क्योंकि यह याद रखना कठिन रहेगा चित्र 4.4 मेंडल द्वारा संकरित शुद्ध वंशक्रम लंबे तथा शुद्ध वंशक्रम बौने पौधों की क्रॉस को समझने के लिए पनेट वर्ग का उपयोग कि क्या $\mathbf{T}$ और $\mathbf{d}$ एक ही जीन/लक्षण के अलील हैं या नहीं है। समयुग्मजी मामलों में अलील समान हो सकते हैं, जैसे $\mathbf{T T}, \mathbf{t t}$ और विषमयुग्मजी मामलों में असमान हो सकते हैं, जैसे $\mathbf{T t}$, क्योंकि $\mathbf{T t}$ पौधा एक लक्षण (ऊँचाई) को नियंत्रक जीन के लिहाज से विषमयुग्मजी है; अतः इसे एकल संकर ( मोनोहाइब्रिड) कहा जाता है और $\mathbf{T T}$ और $\mathbf{t t}$ के बीच के क्रॉस (संकरण) को एकल संकर क्रॉस कहा जाता है।

इस प्रेक्षण से कि अप्रभावी जनकीय विशेषक की अभिव्यक्ति बिना किसी प्रकार के सम्मिश्रण से ही $\mathrm{F} _{2}$ पीढ़ी में हो जाती है, हम यह निष्कर्ष निकाल सकते हैं कि जब अर्धसूत्रण (मीओसिस) कोशिका-विभाजन के समय लंबे और बौने पौध युग्मकों का उत्पादन करते हैं तो जनकीय जोड़े के अलील एक-दूसरे से अलग-अलग हो जाते हैं, और केवल एक ही अलील युग्मक में प्रेषित होगा। अलीलों का यह विसंयोजन यादृच्छिक (रैंडम) होता है और युग्मक में कोई एक अलील होने की संभावना 50 प्रतिशत होती है, ऐसा संकर प्रयोगों द्वारा सत्यापित हो चुका है। इस प्रकार लंबे TT पौधे के युग्मकों में $\mathbf{T}$ अलील और बौने $\mathrm{tt}$ पौधे के युग्मकों में $\mathbf{t}$ अलील होता है। निषेचन के समय ये दो अलील- $\mathbf{T}$ एक जनक से, पराग के माघ्यम से, और $\mathbf{t}$ दूसरे जनक से अंड के माघ्यम से, आकर युग्मन करके ऐसे युग्मनजों (जाइगोटों) का निर्माण करते हैं जिनमें एक $\mathbf{T}$ अलील और दूसरा $t$ अलील होता है। दूसरे शब्दों में संकरों में $\mathbf{T t}$ होते हैं। क्योंकि इन संकरों में विपरीत विशेषकों के अलील होते हैं, इन पौधों को विषमयुग्मजी (हैटरोजाइगस ) कहा जाता है (चित्र 4.4)।

चित्र 4.4 मेंडल द्वारा संकरित शुद्ध वंशक्रम लंबे तथा शुद्ध वंशक्रम बौने पौधों की क्रॉस को समझने के लिए पनेट वर्ग का उपयोग

पनेट वर्ग नामक आरेख के अध्ययन की सहायता से जनकों द्वारा युग्मकों का उत्पादन, युग्मनजों (जाइगोटों) का निर्माण $\mathrm{F} _{1}, \mathrm{~F} _{2}$ संतति पादपों को समझाया जा सकता है। इसे ब्रितानकी आनुवंशिकीविद् रेजीनाल्ड सी पनेट ने विकसित किया था। यह आरेख आनुवंशिक संकरण प्रयोगों में संतति के सभी संभाव्य जीनोटाइपों की गणना करने के लिए बनाया गया है। सभी संभाव्य युग्मकों को सबसे ऊपर की कतार में बाईं तरफ के स्तंभों में दोनों तरफ लिखा जाता है। सारे संभाव्य संयोजनों का प्रतिरूपण नीचे के वर्गों के बक्सों में किया गया है। सारे का सारा आरेख एक वर्ग की शक्ल में है। पनेट वर्ग में जनकीय लंबे $\mathbf{T T}$ (नर), बौने $\mathbf{t t}$ (मादा) पौधे, इनके द्वारा उत्पन्न युग्मक और $\mathrm{F} _{1}, \mathbf{T t}$ संतति पीढ़ी, दर्शाए गए हैं। $\mathbf{T t}$ जीनोटाइप के $\mathrm{F} _{1}$ पौधे स्वपरागित हैं। $\mathrm{F} _{1}$ पीढ़ी के नर (अंड) और मादा (पराग) के द्योतन के लिए क्रमशः ९ और $\sigma$ के प्रतीकों को काम में लाया गया है। जीनोटाइप $\mathbf{~ T t}$ के $F _{1}$ पौधे स्वपरागित किए जाने पर बराबर संख्या में जीनोटाइप $\mathbf{T}$ और $\mathbf{t}$ के युग्मक उत्पन्न करते हैं। जब निषेचन होता है तो जीनोटाइप $\mathbf{T}$ के परागकणों द्वारा जीनोटाइप $\mathbf{T}$ और $\mathbf{t}$ के अंडों को परागित करने की 50 प्रतिशत संभावना रहती है। साथ ही जीनोटाइप $\mathbf{t}$ के परागकणों के जीनोटाइप $\mathbf{T}$ और जीनोटाइप $\mathbf{t}$ के अंडों को परागित करने की 50 प्रतिशत संभावना रहती है। संयोग आधारित (यादृच्छिक) निषेचन का परिणाम यह होता है कि प्रत्युत्पन्न जाइगोट $\mathbf{T T}, \mathbf{T t}$ या $\mathbf{t t}$ जीनोटापों के हो सकते हैं।

पनेट वर्ग से आसानी से देखा जा सकता है कि यादृच्छिक निषेचन के परिणामस्वरूप $1 / 4 \mathbf{T T}, 1 / 2 \mathbf{~ T t}$ और $1 / 4 \mathbf{t t}$ जीनोटाइप पैदा करते हैं। साथ ही केवल ‘लंबा’ फीनोटाइप दृष्टिगोचर होता है । $\mathrm{F} _{2}$ अवस्था में $3 / 4$ पौधे लंबे होते हैं जिनमें से कुछ TT और कुछ $\mathbf{T t}$ होते हैं। बाहर से देखने पर $\mathbf{T T}$ और $\mathbf{T t}$ पौधों में भेद नहीं किया जा सकता। अतः जीनोटाइप जोड़े $\mathbf{T t}$ से केवल एक ही लक्षण ( $\mathbf{T}$ ) ‘लंबे’ की अभिव्यक्ति होती है। इसीलिए कहा जाता है कि लक्षण ‘लंबा’, बौने लक्षण अर्थात् अलील $\mathbf{t}$ के ऊपर प्रभावी हो जाता है। इसी लक्षण प्रभाविता का यह असर होता है कि $\mathrm{F} _{1}$ के सारे के सारे पौधे लंबे होते हैं (भले ही जीनोटाइप $\mathbf{T t}$ हो) और $\mathrm{F} _{2}$ पीढ़ी में $3 / 4$ पौधे लंबे होते हैं (भले ही जीनोटाइप के लिहाज से $1 / 2 \mathbf{~ T t}$ और $1 / 4 \mathbf{T T}$ हों) अंत में जीनोटाइप अनुपात $3 / 4$ लंबे $(1 / 4 \mathbf{T T}, 1 / 2 \mathbf{T t})$ और $1 / 4$ ठिगने $(\mathbf{t t})$ दूसरे शब्दों में $3: 1$ का अनुपात पर जीनोटाइप अनुपात होता है $1: 2: 1$

$\mathbf{T T}: \mathbf{T t}: \mathbf{t t}$ का $1 / 4: 1 / 2: 1 / 4$ के अनुपात को गणित के द्विनामी पद $(\mathrm{ax}+\mathrm{by})^{2}$ में व्यक्त किया जा सकता है जिसमें $\mathbf{T}$ और $\mathbf{t}$ जीनधारी युग्मक समान आवृत्ति $1 / 2$ में रहते हैं। इस पद का इस प्रकार विस्तार किया जाता है-

(1/2T + 1/2 t)2 = (1/2T + 1/2t) x (1/2T + 1/2t) = 1/4 TT + 1/2Tt + 1/4 tt

मेंडल ने $\mathrm{F} _{2}$ पौधों को स्वयं परागित किया और पाया कि $\mathrm{F} _{3}$ और $\mathrm{F} _{4}$ पीढ़ियों में $\mathrm{F} _{2}$ के बौने पौधों ने केवल बौने ही पैदा किए। उसने निष्कर्ष निकाला कि बौनों का जीनोटाइप समयुग्मजी (होमोजाइगस) $\mathbf{t t}$ था। आप क्या सोचते हैं? यदि उसने सभी $F _{2}$ के लंबे पौधों को स्वयं परागित किया होता तो उसे क्या देखने को मिलता?

पिछले अनुच्छेदों (पैराग्राफों) से स्पष्ट है कि गणितीय प्रायिकता के प्रयोग से जीनोटाइप अनुपातों की गणना की जा सकती है, किन्तु केवल प्रभावी विशेषक के फीनोटाइप को देखने भर से जीनोटाइप संरचना का ज्ञान संभव नहीं है जैसे कि $\mathrm{F} _{1}$ या $\mathrm{F} _{2}$ के लंबे पौधे का जीनोटाइप $\mathbf{T T}$ है या $\mathbf{T t}$ इसका भविष्य ज्ञात नहीं हो सकता। इसलिए $\mathrm{F} _{2}$ के लंबे पौधे के जीनोटाइप-निर्धारण के लिए मेंडल ने $\mathrm{F} _{2}$ के लंबे पौधे का बौने पौधे से संकरण किया। इसे उन्होंने परीक्षार्थ संकरण नाम दिया। इस प्रयोग में प्रभावी फीनोटाइप वाले जीव (यहाँ पर मटर का पौधा, जिसका जीनोटाइप मालूम करना है-परीक्षार्थ जीव) का अप्रभावी पौधे से संकरण किया जाता है न कि स्वपरागण, जैसा पिछले प्रयोगों में किया गया था)। परीक्षार्थ जीव के जीनोटाइप निर्धारण के हेतु ऐसे संकरण की संततियों का विश्लेषण किया जा सकता है। चित्र 4.5 में ऐसे संकरण के परिणाम दर्शाए गए हैं। यहाँ पर बैंगनी $(\mathrm{W})$ रंग श्वेत $(\mathrm{w})$ के ऊपर प्रभावी है।

पनेट वर्ग का प्रयोग करके परीक्षार्थ संकरण में संतति के स्वरूप को ज्ञात करने का प्रयास करो। आपको क्या अनुपात मिला?

इस संकरण प्रयोग की जीनोटाइपों का उपयोग करके क्या आप परीक्षार्थ संकर की एक सामान्य परीभाषा दे सकते हैं?

चित्र 4.5 परीक्षार्थ संकर का आरेखी प्रतिरूपण

एक संकर संकरण प्रयोगों के अपने प्रेक्षणों को आधार बनाकर मेंडल ने इनकी वंशागति संबंधी अपनी समझ के सार रूप के दो सामान्य नियम प्रस्तावित किए। आज इन नियमों को वंशागति के नियमों या सिद्धांतों की संज्ञा दी जाती है — प्रथम नियम है - प्रभाविता नियम और द्वितीय है विसंयोजन नियम।

4.2.1 प्रभाविता नियम ( ला ऑफ डोमिनेंस )

(क) लक्षणों का निर्धारण कारक नामक विविक्त ( डिस्क्रीट) इकाइयों द्वारा होते हैं।

(ख) कारक जोड़ों में होते हैं।

(ग) यदि कारक जोड़ों के दो सदस्य असमान हों तो इनमें से एक कारक दूसरे कारक पर प्रभावी हो जाता है अर्थात् एक ‘प्रभावी’ और दूसरा ‘अप्रभावी’ होता है।

$\mathrm{F} _{1}$ में केवल एक जनक लक्षण का प्रकट होना तथा $\mathrm{F} _{2}$ में दोनों जनक लक्षणों का प्रकट होना; प्रभाविता के नियम के द्वारा समझा जा सकता है। इससे यह भी स्पष्ट होता है कि $\mathrm{F} _{2}$ में $3: 1$ का अनुपात क्यों पाया जाता है।

4.2.2 विसंयोजन नियम ( लॉ ऑफ सेग्रीग्रेशन )

इस नियम का आधार यह तथ्य है कि अलील आपस में घुलमिल (सम्मिश्रण) नहीं पाते और $\mathrm{F} _{2}$ पीढ़ी में दोनों लक्षणों की फिर से अभिव्यक्ति हो जाती है, भले ही $\mathrm{F} _{1}$ पीढ़ी में एक प्रकट नहीं होता। यद्यपि जनकों में दोनों अलील विद्यमान होते हैं। युग्मक बनने के समय कारकों के एक जोड़े या अलील के सदस्य विसंयोजित हो जाते हैं और युग्मक को दो में से एक ही कारक प्राप्त होता है। समयुग्मजी जनक द्वारा उत्पन्न सभी युग्मक समान होते हैं जबकि विषमयुग्मजी जनक दो प्रकार के युग्मक उत्पन्न करता है जिनमें समान अनुपात में एक एक अलील होता है।

4.2.2.1 अपूर्ण प्रभाविता (इंकंप्लीट डोमिनेंस )

जब मटर वाले प्रयोग को अन्य विशेषकों के संदर्भ में दोहराया गया तो पता चला कि कभी कभार $F_{1}$ में ऐसा फीनोटाइप आ जाता है जो किसी भी जनक से नहीं मिलता जुलता और इनके बीच का सा लगता है। श्वान पुष्प (स्नेपड्रेगन/एंटीराइनम) में पुष्प रंग की वंशागति अपूर्ण प्रभाविता को समझने के लिए अच्छा उदाहरण है। तद्रूप प्रजननी लाल फूल वाली ( RR) और तद्रूप प्रजननी सफेद फूल वाली ( rr $)$ प्रजाति के संकरण के परिणामस्वरूप $F_{1}$ पीढ़ी गुलाबी फूलों ( $\mathbf{R r}$ ) वाली प्राप्त हुई। (चित्र 4.6) जब इस $F_{1}$ संतति को स्वयं परागित किया गया तो परिणामों का अनुपात $1(\mathbf{R R})$ लाल : $2(\mathbf{R r})$ गुलाबी : $1(\mathbf{r r})$ सफेद था। यहाँ पर जीनोटाइप अनुपात वही था जो किसी भी मेंडलीय एकसंकरण के संकरण में संभावित होता, किन्तु फीनोटाइप अनुपात अर्थात् $3: 1$ प्रभावी : अप्रभावी बदल गया। इस उदाहरण में $\mathbf{R}$ कारक $\mathbf{r}$ कारक पर पूर्णतः प्रभावी नहीं रहा अतः लाल ( $\mathbf{R R})$, सफेद $(\mathbf{r r})$ से गुलाबी $(\mathbf{R r})$ प्राप्त हो गया। प्रभाविता नामक संकल्पना का स्पष्टीकरण - प्रभाविता वास्तव में क्या है? कुछ अलील प्रभावी और कुछ अप्रभावी क्यों होते हैं? इन बातों को समझने के लिए आवश्यक हो जाता है कि जीन का कार्य समझा जाए। आप जानते ही हैं कि जीन में विशेष विशेषक को अभिव्यक्त करने की सूचना चित्र 4.6 श्वान पुष्प नामक पौधों में एकसंकर संकरण के परिणाम यहाँ पर एक अलील दूसरे के ऊपर अपूर्णतः प्रभावी है। निहित रहती है। द्विगुणित जीवों में अलील के जोड़े के रूप में प्रत्येक जीन के दो प्रारूप विद्यमान रहते हैं। यह आवश्यक नहीं है कि अलील के जोड़े हमेशा एक जैसे हों, जैसा कि विषम युग्मज (हैटरोजाइगोट) में होता है। उनमें से एक अलील की भिन्नता का कारण, उसमें आया कोई परिवर्तन हो सकता है (विषय में आप अगले अध्याय में पढ़ंगे) जो अलील में निहित विशेष सूचना को रूपांतरित कर देता है।

चित्र 4.6 श्वान पुष्प नामक पौधों में एकसंकर संकरण के परिणाम यहाँ पर एक अलील दूसरे के ऊपर अपूर्णत: प्रभावी है।

उदाहरणार्थ एक ऐसी जीन को लिया जाए जिसमें एक विशेष एंजाइम उत्पन्न करने की सूचना है। इस जीन के दोनों प्रतिरूप इसके दो अलील रूप हैं। मान लेते हैं कि वह सामान्य अलील ऐसा सामान्य एंजाइम उत्पन्न करता है (जैसा अधिकतर संभव है) जो एक सब्सट्रेट ’ $\mathrm{S}$ ’ के रूपांतरण के लिए आवश्यक है। रूपांतरित अलील सिद्धांततः निम्नलिखित में से किसी एक परिवर्तन के लिए उत्तरदायी हो सकता है।

(क) सामान्य एंजाइम या

(ख) कार्य-अक्षम एंजाइम या

(ग) एंजाइम की अनुपस्थिति

पहले परिवर्तन में रूपांतरित अलील, अरूपांतरित अलील के तुल्य है अर्थात् परिणाम स्वरूप यह भी सब्सट्रेट ’ $\mathrm{S}$ ’ को बदल कर उसी पुराने फीनोटाइप/विशेषक का उत्पादन करेगा। इस प्रकार के एलील युग्मों के अनेक उदाहरण हैं। किन्तु जब अलील कोई भी एंजाइम नहीं उत्पन्न करता या कार्य अक्षम एंजाइम का उत्पादन करता है तो फीनोटाइप प्रभावित हो सकता है। फीनोटाइप/विशेषक अरूपांतरित अलील के कार्य के ऊपर ही निर्भर रहता है। सामान्यतः अरूपांतरित (कार्यकारी) अलील जो मौलिक रूप का प्रतिनिधित्व करती है, प्रभावी होती है तथा रूपांतरित अलील अप्रभावी। इसलिए इस उदाहरण में अप्रभावी अलील के दर्शित होने पर या तो एंजाइम बनता ही नहीं है या बने तो कार्यक्षम नहीं होता है।

4.2.2.2 सह प्रभाविता ( को डोमिनेंस )

अभी तक हम चर्चा कर रहे थे उन संकरणों (क्रॉसों) की जहाँ $\mathrm{F} _{1}$ दो जनकों में से किसी एक से मिलता था प्रभावी (प्रभाविता) या मध्य लक्षणों वाला (अपूर्ण प्रभाविता)। सह प्रभाविता ऐसी घटना है जिसमें $\mathrm{F} _{1}$ पीढ़ी दोनों जनकों से मिलती-जुलती है। इसका एक अच्छा उदाहरण मानवों में $\mathrm{ABO}$ रुधिर वर्गों का निर्धारण करने वाली विभिन्न प्रकार की लाल रुधिर कोशिकाएँ हैं। $\mathrm{ABO}$ रुधिर वर्गों का नियंत्रण जीन ’ $I$ ’ करती है। लाल रुधिर कोशिकाओं की प्लाज्मा झिल्ली में सतह से बाहर निकलते हुए शर्करा बहुलक होते हैं। इस बहुलक का प्रकार क्या होगा यहाँ इस बात का नियंत्रण जीन ’ $I$ ’ से होता है। इस जीन ’ $I^{\text {’ }}$ के तीन अलील $I^{\mathrm{A}}, I^{\mathrm{B}}$ और $\boldsymbol{i}$ होते हैं। अलील $I^{\mathrm{A}}$ और अलील $\boldsymbol{I}^{\mathrm{B}}$ कुछ भिन्न प्रकार की शर्करा का उत्पादन करते हैं और अलील $\boldsymbol{i}$ किसी भी प्रकार की शर्करा का उत्पादन नहीं करती। मानव जीन $(2 n)$ द्विगुणित होता है इसलिए प्रत्येक व्यक्ति में इन तीन में से दो प्रकार के जीन अलील होते हैं। $\mathbf{I}^{\mathrm{A}}$ और $\boldsymbol{I}^{\mathrm{B}}$ तो $\boldsymbol{i}$ के ऊपर पूर्णरूप से प्रभावी होते हैं अर्थात् जब $\boldsymbol{I}^{\mathrm{A}}$ और $\boldsymbol{i}$ विद्यमान हों तो केवल $\boldsymbol{I}^{\mathrm{A}}$ अभिव्यक्त होता है और जब $\boldsymbol{I}^{\mathrm{B}}$ और $i$ विद्यमान हों तो केवल $\boldsymbol{I}^{\mathrm{B}}$ अभिव्यक्त होता है, $\mathrm{i}$ तो शर्करा बनाता ही नहीं। जब $I^{\mathrm{A}}$ और $\boldsymbol{I}^{\mathrm{B}}$ दोनों उपस्थित हों तो ये दोनों अपने-अपने प्रकार की शर्करा की अभिव्यक्ति कर देते हैं। यह घटना ही सह-प्रभाविता है। इसी कारण लाल रुधिर कोशिकाओं में $\mathrm{A}$ और $\mathrm{B}$ दोनों प्रकारों की शर्करा होती है। तीन भिन्न प्रकार के अलील होने के कारण इनके 6 संयोजन संभव हैं। इस प्रकार $\mathrm{ABO}$ रुधिर वर्गो (तालिका 4.2) के 6 विभिन्न जीनोटाइप होंगे। प्रश्न है फीनोटाइप कितने होंगे?

तालिका 4.2 : मानव जनसंख्या में रुधिर वर्गों का आनुवंशिक आधार दर्शाने वाली तालिका

जनक 1
से अलील
जनक 2
से अलील
संतति का
जीनोटाइप
संतति के
रुधिर वर्ग
$I^A$ $I^A$ $I^A I^A$ $\mathrm{~A}$
$I^A$ $I^B$ $I^A I^B$ $\mathrm{AB}$
$I^A$ $i$ $I^A i$ $\mathrm{~A}$
$I^B$ $I^A$ $I^A I^B$ $\mathrm{AB}$
$I^B$ $I^B$ $I^B I^B$ $\mathrm{~B}$
$I^B$ $i$ $I^B i$ $\mathrm{~B}$
$i$ $i$ $i i$ $\mathrm{O}$

आप यह भी समझ गए होंगे कि $\mathrm{ABO}$ रुधिर समूहन बहुअलील (मल्टीपल अलील) का भी अच्छा उदाहरण प्रस्तुत करता है। आप देख सकते हैं कि यहाँ पर दो से अधिक अर्थात् तीन अलील एक ही लक्षण को नियंत्रित करते हैं। क्योंकि एक व्यक्ति में दो ही अलील विद्यमान रह सकते हैं, अतः बहुअलील की क्रियाशीलता समष्टि (जीन संख्या) के अध्ययन में ही दिख सकती है।

कभी-कभी एकल जीन उत्पाद, एक से अधिक प्रभाव छोड़ सकता है। उदाहरण के लिए मटर के बीजों में मंड संश्लेषण का नियंत्रण एक जीन करता है। इसके दो अलील ( $\mathbf{B}$ और $\mathbf{b}$ ) होते हैं। कुशल रूप से मंड संश्लेषण $\mathbf{B B}$ समयुग्मजों से होता है और इस प्रकार विशाल मंड कण उत्पन्न हो जाते हैं। इसके विपरीत $\mathbf{b b}$ समयुग्मजी मंड संश्लेषण में कम कुशल होते हैं और छोटे मंड कणों का उत्पादन कर सकते हैं। पकने पर $\mathbf{B B}$ बीज गोल होते हैं और $\mathbf{b b}$ झुर्रीदार। विषमयुग्मनज गोल बीज पैदा करते हैं इसलिए लगता है कि $\mathbf{B}$ प्रभावी अलील है। $\mathbf{B b}$ बीजों में उत्पन्न मंड कण मझोले आकार के होते हैं। अतएव यदि मंड कण का आकार एक फीनोटाइप मान लिया जाए तो इस दृष्टिकोण से यह अलील अपूर्ण प्रभाविता ही दर्शाता है।

अतएव प्रभाविता न तो किसी जीन का या उसके उत्पाद का स्वायत्त लक्षण है। जिसकी सूचना जीन में निहित है यह उतनी ही निर्भर जीन-उत्पाद पर और उत्पाद द्वारा जनित जीनोटाइप पर होती है जितनी कि हमारे द्वारा परीक्षार्थ चुने गए विशेष जीनोटाइप पर (उस मामले में एक जीन से, एकाधिक जीनोटाइप प्रभावित होते हैं)।

4.3 दो जीनों की वंशागति

मेंडल ने दो लक्षणों में भिन्न मटर के पौधों पर भी संकरण प्रयोग किए जैसे पीले और गोल बीज वाले पौधों का क्रॉस हरे और झुर्रीदार बीज वाले पौधों से किया। (चित्र 4.7) मेंडल ने पाया कि इस प्रकार के जनकों के संकरण से केवल पीले रंग वाले गोल बीज के पौधे ही प्राप्त हुए। आप बतला सकते हैं पीले, हरे रंग तथा गोल, झुर्रीदार आकृति में कौन प्रभावी रहा होगा।

पीला रंग, हरे के ऊपर एवं गोल आकृति झुर्रीदार के ऊपर प्रभावी है। यही निष्कर्ष जब पीले एवं हरे तथा गोल एवं झुर्रीदार बीजों वाले पौधों के बीच एकसंकर संकरण अलग-अलग किया गया तो इनके परिणामों से भी निकलता है।

जीनोटाइप प्रतीक $\mathbf{Y}$ प्रभावी पीले बीज वर्ण तथा $\mathbf{y}$ अप्रभावी हरे बीज वर्ण के लिए, $\mathbf{R}$ गोल बीज और $\mathbf{r}$ झुर्रीदार बीज वालों के लिए प्रयोग करें तो जनकों के जीनोटाइप इस प्रकार लिखे जा सकते हैं RRYY और rryy इनके क्रॉस को चित्र 4.7 की भाँति लिखा जा सकता है जिसमें जनक पौधों के जीनोटाइप दर्शाए गए हैं। निषेचन होने पर युग्मक $\mathbf{R Y}$ और $\mathbf{r y}$ मिल कर $\mathrm{F}_{1}$ संकर $\mathbf{R r} \mathbf{Y y}$ को उत्पन्न करते हैं। जब मेंडल ने इन $\mathrm{F} _{1}$ पौधों को स्वयं संकरित किया तो पाया कि $\mathrm{F} _{2}$ के $3 / 4$ पौधों के बीज पीले और $1 / 4$ के बीज हरे थे। पीला और हरा रंग $3: 1$ के अनुपात में विसंयोजित हुआ। इसी प्रकार गोल और झुर्रीदार बीज की आकृति भी $3: 1$ अनुपात में विसंयोजित हुई, एक संकर क्रॉस की तरह।

चित्र 4.7 द्विसंकर क्रॉस के परिणाम जिनमें जनक दो जोड़े विपरीत विशेषकों में भिन्न थे - जैसे बीज का रंग और बीज की आकृति।

4.3.1 स्वतंत्र अपव्यूहन का नियम

द्विसंकर क्रॉसों में (चित्र 4.7) फीनोटाइप गोल-पीला, झुर्रीदार- हरा, गोल-हरा और झुर्रीदार-हरा $9: 3: 3: 1$ के अनुपात में प्रकट हुए। मेंडल द्वारा अध्ययन किए गए कई लक्षण युग्मों में ऐसा ही अनुपात देखा गया।

$9: 3: 3: 1$ के अनुपात को 3 पीला : 1 हरा के साथ 3 गोल : 1 झुर्रीदार को संयोजन श्रेणी के रूप में व्युत्पन्न किया जा सकता है। इस व्युत्पन्न को इस प्रकार भी लिखा जा सकता है-

( 3 गोल $: 1$ झुर्रीदार) ( 3 पीले $: 1$ हरा) $=9$ गोल-पीले $: 3$ झुर्रीदार-पीले : 3 गोल-हरे : 1 झुर्रीदार -हरे।

द्विसंकर क्रॉसों ( 2 विशेषकों में भिन्न पौधों के क्रॉस) के प्रेक्षणों पर आधारित मेंडल ने एक दूसरा सामान्य नियम प्रस्तावित किया जिसे ‘मेंडल का स्वतंत्र अपव्यूहन नियम’ कहा जाता है। यह नियम कहता है कि जब किसी संकर में लक्षणों के दो जोड़े लिए जाते हैं तो किसी एक जोड़े का लक्षण-विसंयोजन दूसरे जोड़े से स्वतंत्र होता है।

$\operatorname{Rr}$ Yy पौधे में अर्धसूत्रण कोशिका विभाजन स्वरूप अंड और पराग- उत्पादन के समय, जीन के दो जोड़ी के स्वतंत्र विसंजयोजन को समझने के लिए पनेट वर्ग का सफलतापूर्वक प्रयोग किया जा सकता है। जीन की एक जोडी $\mathbf{R}$ और $\mathbf{r}$ के विसंयोजन पर विचार करें तो 50 प्रतिशत युग्मकों में जीन $\mathbf{R}$ विद्यमान है और 50 प्रतिशत में जीन $r$ है। इनमें, $R$ या $r$ होने के साथ-साथ अलील $Y$ या $y$ भी है। $Y y$ का विसंयोजन भी $\mathbf{R r}$ के समान ही होता है। याद रखने लायक महत्त्वपूर्ण बात यह है कि $50 % \mathbf{R}$ और 50 प्रतिशत $\mathbf{r}$ का विसंयोजन, 50 प्रतिशत $\mathbf{Y}$ और 50 प्रतिशत $\mathbf{y}$ के विसंयोजन से स्वतंत्र है। अतएव $\mathbf{R}$ धारी युग्मकों के 50 प्रतिशत में $\mathbf{Y}$ और दूसरे 50 प्रतिशत में $\mathbf{y}$, इसी प्रकार $\mathbf{r}$ धारी युग्मकों में 50 प्रतिशत $\mathbf{Y}$ तथा शेष 50 प्रतिशत में $\mathbf{y}$ जीन है। अतः युग्मकों के 4 जीनोटाइप बन जाते हैं। ( 4 प्रकार के पराग और 4 प्रकार के अंड), ये चार प्रकार हैं $\mathbf{R Y}, \mathbf{R y}, \mathbf{r Y}$ और $\mathbf{r y}$ जिनमें प्रत्येक की संख्या कुल युग्मकों की 25 प्रतिशत : अर्थात् $1 / 4$ है। जब आप पनेट वर्ग के दो पार्श्वों में अंड और पराग लिखेंगे तो उन युग्मनजों के संघटन का पता करना आसान होगा जिनसे $\mathrm{F}_{2}$ पौधे उत्पन्न होते हैं। (चित्र 4.7)। यद्यपि पुनेट आरेख में 16 वर्ग है, किंतु इनमें कितने जीनोटाइप और फीनोटाइप बनते हैं? इसे दिए हुए फार्मेट से ज्ञात करें।

क्या पनेट वर्ग के प्रयोग के आंकड़ों से आप $F_{2}$ अवस्था के जीनोटाइप का पता कर इसे फार्मेट में भर सकते हैं क्या जीनोटाइप अनुपात भी $9: 3: 3: 1$ ही है?

क्रम संख्या $\mathbf{F}_2$ में पाए गए जीनोटाइप इनके अनुमानित फीनोटाइप

4.3.2 वंशागति का क्रोमोसोम सिद्धांत

लक्षणों की वंशागति पर किया गया कार्य 1865 में प्रकाशित हो चुका था परंतु कई कारणों से 1900 तक यह कार्य अज्ञात ही रहा। एक तो आज की तरह उन दिनों संचार की सुविधाएँ अच्छी नहीं थीं जिससे कार्य को प्रचार मिल पाता। दूसरे जीन (या मेंडल के कारक) के लिए ये संकल्पना की, वे लक्षणों के नियंत्रक की स्थायी एवं विविक्त इकाईयों के रूप में हैं तथा इनका नियंत्रक की संकल्पना अर्थात् ऐसे अलील जो एक-दूसरे के साथ सम्मिश्रण नहीं होता, मेंडल के समकालीन वैज्ञानिकों को रास नहीं आयी, क्योंकि ये लोग प्रकृति की विविधता के आभासी सतत् रूप से ही परिचित थे। तीसरे, उस समय के जीव विज्ञानियों को मेंडल का जैव घटना के स्पष्टीकरण के लिए अपनाया गया गणित आधारित रास्ता बिल्कुल नया और कई जीव वैज्ञानिकों द्वारा अस्वीकार्य था। अंत में, भले ही मेंडल का कार्य यह इंगित करता था कि कारक (जीन) विविक्त (असतत्) ईकाईयाँ होती हैं, फिर भी वह इनकी उपस्थिति का भौतिक प्रमाण नहीं दे पाया, न यह बता सका कि वे किस पदार्थ की बनी होती हैं।

1900 में तीन वैज्ञानिकों (डीव्रीज, कॉरेन्स और वॉन शेरमाक) ने स्वतंत्र रूप से लक्षणों की वंशागति संबंधी मेंडल के परिणामों की पुनः खोज की। इस समय माइक्रोस्कोपी (सूक्ष्म-दर्शन) की तकनीक में प्रगति भी होती जा रही थी और वैज्ञानिक सावधानी से कोशिका विभाजन देखने में समर्थ हो चुके थे। कोशिका-केंद्रक में एक संरचना की खोज हो चुकी थी, जो कोशिका-विभाजन के पहले द्विगुणित एवं विभाजित भी हो जाता है। इनको क्रोमोसोम (रंग जाने के गुण के कारण रंगीन काय) कहा गया। 1902 तक अर्धसूत्रणी कोशिका विभाजन के दौरान क्रोमोसोम की गति (संचालन) का ज्ञान हो चुका था। वाल्टर सटन और थियोडोर बोमेरी ने देखा कि क्रोमोसोम का व्यवहार भी जीन जैसा ही है। इन्होंने मेंडल के नियमों (तालिका 4.3) को क्रोमोसोम की गतिविधि (चित्र 4.8) द्वारा समझाया। कोशिका विभाजन की समसूत्रण एवं अधिसूत्रण विधियों में गुणसूत्रों के व्यवहार को ध्यान में रखते हुए इसे समझा जा सकता है। जीन के समान ही गुणसूत्र भी युग्म के रूप में पाये जाते हैं तथा एक एलील के दोनों जीन समजात गुणसूत्रों के समजात स्थान पर विद्यमान रहते हैं।

चित्र 4.8 चार क्रोमोसोम वाली कोशिका में अर्धसूत्रण और जनन कोशिका उत्पादन देख सकते हो कि कैसे ये क्रोमोसोम बनते हैं और जनन कोशिका बनने के दौरान कैसे विसंयोजित होते हैं।

तालिका 4.3 क्रोमोसोम और जीन के व्यवहार में तुलना

A B
जोड़ों में होते हैं। जोड़ों में होते हैं।
युग्मक जनन के दौरान इस प्रकार विसंयोजित होते हैं कि एक युग्मक जोड़े में से केवल एक ही जा पाता है। युग्मक जनन के दौरान विसंयोजित होते हैं और जोड़े में से केवल एक ही युग्मक को प्राप्त होता है।
अलग-अलग जोड़े एक दूसरे से स्वतंत्र विसंयोजित होते हैं। एक जोड़ा, दूसरे से स्वतंत्र विसंयोजित होता है।

क्या आप बतला सकते हैं कि इन दो स्तंभों $\mathrm{A}$ और $\mathrm{B}$ में से कौन सा क्रोमोसोम का और कौन सा जीन का प्रतिनिधित्व करता है? यह निर्णय आपने कैसे किया?

अर्धसूत्रण ’ $I$ ’ की पश्चावस्था में क्रोमोसोम के दो जोड़े मेटाफेस पट्टिका पर एक दूसरे से स्वतंत्र रूप से पंक्तिबद्ध हो सकते हैं (चित्र 4.9)। इसे समझने के लिए दाएँ और बाएँ स्तंभों के चार अलग रंगों के क्रोमोसोम की तुलना करो। बाएँ स्तंभ में (संभावना ’ $I$ ’ ) नारंगी और हरे एक साथ विसंयोजित हैं किंतु दाहिने स्तंभ (संभावना II) में नारंगी क्रामोसोम लाल क्रोमोसोमों के साथ विसंयोजित हो रहा है।

संभावना I

एक लंबा श्वेत तथा छोटा श्वेत क्रोमोसोम और लंबा काला और छोटा काला क्रोमोसोम एक ही ध्रुव पर अर्धसूत्रण I - पश्चावस्था

संभावना II

एक लंबा श्वेत तथा छोटा काला क्रोमोसोम और लंबा काला और छोटा श्वेत क्रोमोसोम एक ही ध्रुव पर

चित्र 4.9 क्रोमोसोमों का स्वतंत्र संव्यूहन

सटन और बोवेरी ने तर्क प्रस्तुत किया कि क्रोमोसोम युग्म का जोड़ा बन जाना या अलग होना अपने में ले जाए जा रहे कारकों के विसंयोजन का कारण बनेगा। सटन ने क्रोमोसोम के विसंयोजन के ज्ञान को मेंडल के सिद्धांतों के साथ जोड़कर “वंशागति का क्रोमोसोमवाद या सिद्धांत” प्रस्तुत किया।

चित्र 4.10 ड्रोसोफिला मेलनोगैस्टर (अ) नर (ब) मादा

इस विचार के विश्लेषणों का अनुपालन करते हुए, थामस हंट मोरगन तथा उसके साथियों ने वंशागति का क्रोमोसोम-वाद या सिद्धांत के प्रयोगात्मक सत्यापन किए और यौन जनन उत्पादन विभेदन के लिए खोज के आधार की नींव डाली। मोरगन ने फल-मक्खियों (फ्रूटफ्लाई - ड्रोसोफिला मेलनोगैस्टर) पर काम किया, जो ये ऐसे अध्ययनों के लिए उपर्युक्त पाई गयी (चित्र 4.10)। इन्हें प्रयोगशाला में सरल कृत्रिम माध्यमों पर रखा जा सकता था। ये अपना पूरा जीवन चक्र दो सप्ताह में पूरा कर सकती थीं और इनमें एकल मैथुन से विशाल संख्या में संतति मक्खियों का उत्पादन संभव था। साथ ही लिंगों का विभेदन स्पष्ट था। नर और मादा की आसानी से पहचान की जा सकती थी। साथ ही इसमें आनुर्वंशिक विविधताओं के अनेक प्रकार थे जो कम क्षमता वाले माइक्रोस्कोप से देखे जा सकते थे।

4.3.3 सहलग्नता और पुनर्योजन

लिंग-सहलग्न जीनों के अध्ययन हेतु मोरगन ने ड्रोसोफिला में कई द्विसंकर क्रॉस किए। ये मेंडल द्वारा मटर में किए गए द्विसंकर-क्रॉसों के समान थे। उदाहरण के लिए मोरगन ने पीले शरीर और श्वेत आँखों वाली मक्खियों का संकरण भूरे शरीर और लाल आँखों वाली मक्खियों के साथ किया और फिर $\mathrm{F} _{1}$ संततियों को आपस में क्रॉस करवाया। उसने देखा कि ये दो जीन जोड़ी एक दूसरे से स्वतंत्र विसंयोजित नहीं हुई और $\mathrm{F} _{2}$ का अनुपात $9: 3: 3: 1$ से काफी भिन्न मिला (दो जीनों के स्वतंत्र कार्य करने पर यही अनुपात अपेक्षित था।)

मोरगन तथा उसके सहयोगी यह जानते थे कि जीन, क्रोमोसोम में स्थित हैं (यह अगले सेक्सन 4.4 में समझाया गया है) और इन्होंने शीघ्र ही यह भी जान लिया कि जब द्विसंकर क्रॉस में दो जीन जोड़ी एक ही क्रोमोसोम में स्थित होती हैं तो जनकीय जीन संयोजनों का अनुपात अजनकीय प्रकार से काफी ऊँचा रहता है। मोरगन ने इसका कारण दो जीनों का भौतिक संयोग या जुड़ा होना बतलाया। मोरगन ने इस घटना के लिए सहलग्नता शब्द दिया जो एक ही क्रोमोसोम की जीन जोड़ियों के साथ होने का दयोतन करता है। साथ ही अजनकीय जीन संयोजनों के उत्पादन को पुनर्योजन (रीकोंबीनेशन) कहा गया (चित्र 4.11) मोरगन तथा उसके दल ने यह भी पता किया कि एक ही क्रोमोसोम में स्थित होने पर भी कुछ जीन जोड़ी में अधिक सहलग्नता थीं अर्थात् पुनर्योजन बहुत कम था (चित्र 4.11 क्रास A)। उदाहरण के लिए उसने पाया कि श्वेत और पीली जीन जोड़ी में सहलग्नता अधिक थीं और इनमें पुर्योजन 1.3 प्रतिशत था जबकि श्वेत और लघुपंख जीन का पुनर्योजन अनुपात 37.2 प्रतिशत था अर्थात् इनमें सहलग्नता कम थी। मोरगन के शिष्य एल्फ्रेड स्टर्टीवेंट ने एक ही क्रोमोसोम के जीन युग्मों की पुनर्योजन-आवृत्ति को जीनों के बीच की दूरी का माप मानकर क्रोमोसोम में इनकी स्थिति के चित्र (रीकोम्बीनेशन मैप) बना दिए। आजकल पूरे जीनोम के अनुक्रम के निर्धारण में आनुवंशिक नक्शे बहुत अधिक काम में लाए जा रहे हैं। ऐसा ही बाद में मानव जीनोम अनुक्रमण परियोजना में भी वर्णित किया गया।

चित्र 4.11 सहलग्नता-मौसम द्वारा किए गए दो द्विसंकर क्रॉसों के परिणाम, क्रॉस $\mathrm{A}$ में जीन $\mathrm{y}$ और $\mathrm{w}$ के बीच संकरण दिखलाया गया है, क्रॉस $\mathrm{B}$ में $\mathrm{w}$ और $\mathrm{m}$ जीनों के बीच का संकरण है। यहाँ प्रभावी वन्य प्रकार के अलील को $(+)$ प्रतीक से दिखाया गया है। नोट कीजिए कि $\mathrm{y}$ और $\mathrm{w}$ के बीच $\mathrm{w}$ और $\mathrm{m}$ की अपेक्षा सहलग्नता अधिक बलवती है।

4.4 बहुजीनी वंशागति

मेंडल के अध्ययन में मुख्यतः उन विशेषकों (लक्षणों) का वर्णन किया गया था जिनके स्पष्ट विकल्पी रूप होते हैं, जैसे कि पुष्प का रंग जो या तो बैंगनी होता है अथवा श्वेत। परंतु, यदि आप अपने आस-पास चारों ओर देखेंगे तो आपको पता चलेगा कि ऐसे अनेक लक्षण हैं जो उतने स्पष्ट नहीं हैं तथा प्रवणता में फैले हुए हैं। उदाहरणतः मनुष्यों में हमें केवल लंबे अथवा बौने लोगों के दो विभक्त स्पष्ट विकल्प दृष्टिगत नहीं होते परंतु हमें ऊँचाई (लंबाई) के सभी संभावित परास मिलते हैं। इसे विशेषक (लक्षण) सामान्यतः तीन अथवा अधिक जीनों द्वारा नियंत्रित करते हैं। अतः इन्हें बहुजीनी लक्षण कहते हैं। अनेक जीनों के शामिल होने के अतिरिक्त बहुजीनी वंशागति में पर्यावरण के प्रभाव को भी परखा जाता है। मानव त्वचा का रंग इसका एक अन्य उदाहरण है। बहुजीनी विशेषक (लक्षण) में फीनोटाइप में प्रत्येक अलील का अपना योगदान होता है, अर्थात् प्रत्येक अलील का प्रभाव योजी होता है। इसे भलीभाँति समझने के लिए आइए, कल्पना करें कि तीन जीन $\mathrm{A}, \mathrm{B}, \mathrm{C}$ मनुष्यों में त्वचा के रंग के लिए उत्तरदायी हैं। प्रभावी स्वरूप (अलील) $\mathrm{A}, \mathrm{B}$ तथा $\mathrm{C}$ त्वचा के गहरे रंग का नियमन करते हैं तथा अप्रभावी कारक $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ त्वचा के उजले रंग के लिए उत्तरदायी हैं। सभी प्रभावी अलील (AABBCC) के जीनोटाइप का रंग सबसे गहरा होगा तथा सारे अप्रभावी अलील (aabbcc) के जीनोटाइप की त्वचा का रंग सबसे हलका होगा। जैसा कि अपेक्षित है, तीन प्रभावी अलील तथा तीन अप्रभावी अलील वाले जीनोटाइप की त्वचा का रंग इनका मध्यवर्ती होगा। इस प्रकार जीनोटाइप में प्रत्येक प्रकार के अलील की उपस्थिति उस व्यक्ति की त्वचा के गहरे अथवा हलके रंग का निर्धारण करेगी।

4.5 बहुप्रभाविता

हमने अब तक एक दृश्य प्रारूप (फीनोटाइप) अथवा अभिलक्षण के प्रभाव के विषय में ही जाना है। परंतु ऐसे भी दृष्टांत हैं जहाँ एक एकल जीन अनेक दृश्य प्रारूप (फीनोटाइप) लक्षणों को प्रकट कर सकता है। ऐसे जीन को बहुप्रभावी जीन कहते हैं। अधिकतर मामलों में बहुप्रभाविता का मुख्य कारण एक जीन का उपापचयी परिपथ पर प्रभाव है जिससे विभिन्न दृश्य प्रारूप (फीनोटाइप) लक्षण उत्पन्न होते हैं। मनुष्य में होने वाली फेनिलकीटोमेह व्याधि इसका एक उदाहरण है। यह रोग फेनिल-ऐलेनीन हाइड्रॉक्सीलेज नामक एंजाइम के लिए उत्तरदायी जीन में उत्परिवर्तन (एकल जीन उत्परिवर्तन) के कारण होता है। यह अनेक दृश्य प्रारूपिक लक्षणों ( फीनोटाइपिक लक्षणों) मानसिक मंदन, बालों के कम होने तथा त्वचीय रंजन द्वारा अभिव्यक्त होता है।

4.6 लिंग निर्धारण

लिंग निर्धारण की क्रिया विधि आनुवंशिक विज्ञानियों के लिए हमेशा एक पहेली ही बनी रही। आनुवंशिक / क्रोमोसोम के द्वारा लिंग निर्धारण के प्रारंभिक संकेत बहुत पूर्व कीटों पर किए गए प्रयोगों से प्राप्त हुए। वास्तव में कीटों पर अनेक कोशिकीय प्रेक्षणों ने लिंग निर्धारण के आनुवंशिक / क्रोमोसोमीय आधार की संकल्पना की ओर इंगित किया। हेंकिंग (1819) ने कुछ कीटों के शुक्रजनन की विभिन्न अवस्थाओं में एक विशेष केंद्रिकीय संरचना का पता लगाया। उन्होंने यह भी देखा कि 50 प्रतिशत शुक्राणुओं में शुक्रजनन के बाद यह संरचना देखी जाती है जबकि शेष 50 प्रतिशत में यह नहीं होती। हेंकिंग ने इस संरचना को ’ $x$ काय’ नाम दिया। लेकिन इसके महत्त्व को वे समझा नहीं पाए। अन्य वैज्ञानिकों ने अगले शोधकार्यों से यह निष्कर्ष निकाला कि हेंकिंग का ’ $\mathrm{X}$ ’ काय वास्तव में क्रोमोसोम ही था। इसीलिए इसे $\mathrm{X}$-क्रोमोसोम कहा गया। यह भी देखा गया कि बहुत से कीटों में लिंग निर्धरण की क्रिया विधि XO प्रकार की होती है अर्थात् सभी अंडों में अन्य क्रोमोसोम (ऑटोसोम) के अलावा एक अतिरिक्त क्रोमोसोम भी होता है। दूसरी ओर कुछ शुक्राणुओं में यह $\mathrm{X}$ - क्रोमोसोम होता है, कुछ में नहीं। X- क्रोमोसोम सहित शुक्राणु द्वारा निषेचित अंडे मादा बन जाते हैं और जो $\mathrm{X}$ - क्रोमोसोम रहित शुक्राणु से निषेचित होते हैं, वे नर बनते हैं। क्या आप सोचते हैं कि नर और मादा दोनों की क्रोमोसोम संख्या बराबर है? इस X- क्रोमोसोम की लिंग निर्धरण में भूमिका होने से इसे लिंग-क्रोमोसोम (सैक्स क्रोमोसोम) नाम दिया गया। शेष क्रोमोसोमों को अलिंग क्रोमोसोम ऑटोसोम नाम दिया गया। टिड्डा XO प्रकार के लिंग निर्धारण का एक उदाहरण है, इसमें नर में अलिंग क्रोमोसोम के अतिरिक्त केवल एक $X$-क्रोमोसोम होता है जब कि मादा में $X$-क्रोमोसोम का एक पूरा जोड़ा होता है।

चित्र 4.12 क्रोमोसोम भिन्नताओं के द्वारा लिंग निर्धारण (अ,ब) मानव तथा ड्रोसोफिला, मादा में $\mathrm{XX}$ क्रोमोसोम (समयुग्मकी) तथा नर में $\mathrm{XY}$ (विषमयुग्मकी) स्थिति। (स) अनेक पक्षियों में मादा में असमान क्रोमोसोम $\mathrm{ZW}$ तथा नर में समान क्रोमोसोम $\mathrm{ZZ}$ ।

इन प्रेक्षणों की प्रेरणा से लिंग-निर्धारण की क्रियाविधि को समझने के लिए अन्य जातियों में भी अन्वेषण प्रेरित किए गए। कई अन्य कीटों तथा मानव समेत स्तनधTरियों में $\mathrm{XY}$ प्रकार का लिंग निर्धारण देखा जाता है जहाँ नर और मादा दोनों में क्रोमोसोम संख्या समान होती है। नर में एक क्रोमोसोम तो $\mathrm{X}$ होता है पर उसका जोड़ीदार स्पष्टतः छोटा होता है और $\mathrm{Y}$ क्रोमोसोम कहलाता है। अलिंग सूत्रों की संख्या नर और मादा में बराबर होती है। दूसरे शब्दों में नर में अलिंग सूत्र के साथ $\mathrm{XY}$ और मादा में अलिंग सूत्र के साथ $\mathrm{XX}$ उदाहरणार्थ मानव तथा ड्रोसोफिला में नर में अलिंग क्रोमोसोम के अलावा एक $\mathrm{X}$ और एक $\mathrm{Y}$ क्रोमोसोम होता है जबकि मादा में अलिंग क्रोमोसोमों के अलावा एक जोड़ा $\mathrm{X}$ क्रोमोसोम का (चित्र 4.12 अ तथा ब)।

ऊपर के विवरण में आपने दो प्रकार के लिंग निर्धारण - अर्थात् $\mathrm{XO}$ प्रकार और $\mathrm{XY}$ प्रकार के विषय में पढ़ा। दोनों में ही नर दो प्रकार के युग्मक पैदा करते हैं जो हैं (क) या तो $\mathrm{X}$ क्रोमोसोम सहित या रहित और (ख) कुछ युग्मकों में $\mathrm{X}$ - क्रोमोसोम, और कुछ में $\mathrm{Y}$ क्रोमोसोम। इस प्रकार की लिंग निर्धारण क्रियाविधि को नर विषमयुग्मकता ( हिटिरोगेमिटी) कहा जाता है। कुछ अन्य जीवों जैसे पक्षियों में दूसरे प्रकार की लिंग निर्धारण क्रियाविधि देखी गयी (चित्र 4.12 स)। इस विधि में क्रोमोसोम की कुल संख्या नर और मादा दोनों में समान होती है किंतु मादा द्वारा लिंग क्रोमोसोम के लिहाज से दो भिन्न प्रकार के युग्मकों का उत्पादन होता है, अर्थात् मादा विषमयुग्मकता ( हिटिरोगेमिटी ) पाई जाती है। पूर्व वर्णित लिंग निर्धारण से भिन्नता प्रदान करने के उद्देश्य से पक्षियों के लिंग क्रोमोसोमों को $\mathrm{Z}$ और $\mathrm{W}$ क्रोमोसोम कह दिया गया है। इन जीवों में मादा में एक $\mathrm{Z}$ और एक $\mathrm{W}$ क्रोमोसोम होता है जबकि नर में अलिंग सूत्रों के अलावा $Z^{-}$क्रोमोसोम का एक जोड़ा होता है।

4.6.1 मानव में लिंग-निर्धारण

जैसाकि पहले समझाया जा चुका है कि मानव का लिंग निर्धारण $\mathrm{XY}$ प्रकार का होता है। कुल 23 जोड़े क्रोमोसोम में से 22 जोड़े नर और मादा में बिल्कुल एक जैसे होते हैं, इन्हें अलिंग क्रोमोसोम कहते हैं। मादा में $\mathrm{X}$ क्रोमोसोमों का एक जोड़ा भी होता है और नर में $\mathrm{X}$ के अतिरिक्त एक क्रोमोसोम $\mathrm{Y}$ होता है जो नर लक्षण का निर्धारक होता है। नर में शुक्रजनन के समय दो प्रकार के युग्मक बनते हैं। कुल उत्पन्न शुक्राणु संख्या का 50 प्रतिशत $\mathrm{X}$ युक्त होता है और शेष 50 प्रतिशत $\mathrm{Y}$ युक्त, इनके साथ अलिंग क्रोमोसोम तो होते ही हैं। मादा में केवल एक ही प्रकार के अंडाणु बनते हैं जिनमें $\mathrm{X}$ - क्रोमोसोम होता है। अंडाणु के $\mathrm{X}$ या $\mathrm{Y}$ धारी क्रोमोसोमों से निषेचित होने की प्रायिकता बराबर-बराबर रहती है। यदि अंडाणु का निषेचन $\mathrm{X}$ धारी शुक्राणु से हो गया तो युग्मनज (जाइगोट) मादा $(\mathrm{XX})$ में परिवर्धित हो जाता है। इसके विपरीत $\mathrm{Y}$ क्रोमोसोम धारी शुक्राणु से निषेचन होने पर नर संतति जन्म लेती है। स्पष्ट है कि शुक्राणु की आनुवंशिक संरचना ही शिशु के लिंग का निर्धारण करती है। यह भी साफ है कि प्रत्येक गर्भावस्था में शिशु के बालक या बालिका होने की प्रायिकता 50 प्रतिशत रहती है। यह हमारा दुर्भाग्य है कि समाज लड़की पैदा करने के लिए माता को दोष देता है। इस गलत धारणा के कारण उनके साथ अनेक दुर्व्यवहार होते आए हैं। पक्षियों में लिंग निर्धारण की विधि भिन्न प्रकार की क्यों है? चूजों की उत्पत्ति के लिए जिम्मेदार कौन है शुक्राणु या अंड?

4.6.2 मधुप ( मधुमक्खी) में लिंग निर्धारण

मधुमक्खी में लिंग निर्धारण उस मधुप द्वारा प्राप्त क्रोमोसोम (गुणसूत्र) समुच्चय की संख्या पर निर्भर करता है। एक शुक्राणु एवं अंड के युग्मन से उत्पन्न संतति एक मादा (रानी तथा श्रमिक मधुप) में विकसित होते हैं, तथा एक अनिषेचित अंड, अनिषेचकजनन (पार्थेनोजिनेसिस) द्वारा शुक्राणु उत्पादित करते हैं (चित्र 4.13)। उनके पिता नहीं पुंमधुप (नर-ड्रोन) में विकसित होते हैं। इसका अर्थ यह है कि नर (पुंमधुप) में क्रोमोसोम की संख्या मादा मधुप की अपेक्षा आधी होती है। मादा मधुप द्विगुणित होती है जिसमें 32 क्रोमोसोम होते हैं तथा पुंमधुप अगुणित अर्थात् 16 क्रोमोसोम से युक्त होते हैं, इसे अगुणित-द्विगुणिता लिंग निर्धारण प्रणाली कहते हैं तथा इसके विशिष्ट अभिलक्षण होते हैं। जैसे कि नर समसूत्री विभाजन द्वारा होते। अतः उनके पुत्र (नर संतति) नहीं हो सकते हैं परन्तु उनके दादा होते हैं तथा पोते हो सकते हैं।

पक्षियों में लिंग-निर्धारण तंत्र किस प्रकार भिन्न है? क्या चूजों के लिंग के लिए शुक्राणु या अंडाणु जिम्मेदार है?

चित्र 4.13 मधुमक्खी में लिंग निर्धारण।

4.7 उत्परिवर्तन ( म्यूटेशन )

उत्परिवर्तन वह क्रिया है जो डीएनए अनुक्रम में बदलाव ला देती है इसके परिणामस्वरुप जीव के जीनोटाइप और फीनोटाइप में परिवर्तन आ जाता है। पुनर्योजन के अतिरिक्त उत्परिवर्तन एक दूसरी क्रिया है जो डीएनए में विविधता लाती है।

अगले अध्याय में आप पढ़ेंगे कि प्रत्येक क्रोमैटिड में एक सिरे से दूसरे सिरे तक अति कुंडलित रूप में एक डीएनए का कुंडल विद्यमान रहता है। अतएव डीएनए खंड की कमी (हट जाना) या बढ़त (जुड़ना,/द्विगुणन) क्रोमोसोमों में बदलाव ला देते हैं। क्योंकि जीन क्रोमोसोम में स्थित मानी जाती हैं, इसलिए क्रोमोसोमों के रूपान्तर असामान्यताओं तथा विपथनों, को जन्म देते हैं। ऐसे क्रोमोसोमीय विपथन कैंसर कोशिकाओं में सामान्यत: देखे जाते हैं। इसके अतिरिक्त डीएनए के एकल क्षार युग्म (बेस पेयर) के परिवर्तन भी उत्परिवर्तन को जन्म देते हैं। इसे बिंदु उत्परिवर्तन (पॉइंट म्यूटेशन) कहते हैं। इस प्रकार के उत्परिवर्तन का जाना माना उदाहरण दात्र कोशिका अरक्तता (सिकल सेल ऐनिमिया) नामक रोग है। डीएनए के क्षार युग्मों के घटने-बढ़ने से फ्रेम शिफ्ट उत्परिवर्तजन उत्पन्न करते हैं (अगले अध्याय में वर्णित)।

इस स्तर पर उत्परिवर्तन की क्रियाविधि की चर्चा विषय परास के बाहर है)। उत्परिवर्तनों का जन्म अनेक रासायनिक और भौतिक कारकों द्वारा होता है। इन्हें उत्परिवर्तजन ( म्यूटाजन ) नाम दिया गया है। पराबैंगनी विकिरण, जीवों में उत्परिवर्तन पैदा कर देते हैं। ये उत्परिवर्तजन ही हैं।

4.8 आनुवंशिक विकार

4.8.1 वंशावली विश्लेषण ( पेडीग्री एनालेसिस )

मानव समाज में वंशागत विकारों की बात पुराने समय से चली आ रही है। इसका आधार था, कुछ परिवारों में विशेष लक्षणों के वंशबद्ध रहने की अवधारणा। मेंडल के कार्य की पुनः खोज के बाद मानव के लक्षण प्रतिरूपों की वंशागति के विश्लेषण की बात प्रारंभ हुई। यह स्पष्ट है कि मटर के पौधे और अन्य जीवों में किए गए तुलनार्थ संकर प्रयोग मानव में संभव नहीं है। इसलिए यही विकल्प रह जाता है कि विशेष लक्षण की वंशागति के संबध में वंश के इतिहास का अध्ययन किया जाए। कई पीढ़ियों तक जारी लक्षणों के ऐसे विश्लेषण को वंशावली विश्लेषण कहते हैं। इस प्रक्रिया में वंश वृक्ष (फैमिली ट्री) में एक विशेष लक्षण का पीढ़ी दर पीढ़ी विश्लेषण किया जाता है।

मानव आनुवंशिकी में वंशावली अध्ययन एक महत्त्वपूर्ण उपकरण होता है जिसका उपयोग विशेष लक्षण, अपसामान्यता या रोग का पता लगाने में किया जाता है। वंशावली विश्लेषण में प्रयुक्त कुछ महत्त्वपूर्ण मानक प्रतीकों को चित्र 4.14 में दर्शाया गया है।

चित्र 4.14 मानव वंशावली विश्लेषण में प्रयुक्त प्रतीक

जैसा कि आप इस अध्याय में पढ़ चुके हैं किसी जीव का प्रत्येक लक्षण क्रोमोसोम में विद्यमान डीएनए पर स्थित जीन में निहित होता है। डीएनए ही आनुवंशिक सूचना का वाहक है और यह बिना किसी परिवर्तन के एक से दूसरी पीढ़ी में स्थानांतरित होता जाता है। हाँ यदा-कदा परिवर्तन/रूपांतरण भी होते रहते हैं। इस प्रकार के परिवर्तन या रूपांतरण को उत्परिवर्तन (म्यूटेशन) कहा जाता है। मानव में कई विकार ऐसे पाए गए हैं, जिनका संबंध क्रोमोसोम या जीन के परिवर्तन रूपांतरण से जोड़ा जा सकता है।

4.8.2 मेंडलीय विकार

मोटे तौर पर विकारों को दो श्रेणियों में रखा जा सकता है- मेंडलीय विकार और क्रोमोसोमीय विकार। मेंडलीय विकार वे होते हैं जो एकल जीन के रूपांतरण या उत्परिवर्तन से मुख्यतया निर्धारित हो जाते हैं। ये विकार उसी विधि से संतति में पहुँचते हैं जिनका अध्ययन वंशागति के सिद्धांतों के साथ किया जा चुका है। इस प्रकार के मेंडलीय विकारों की वंशागति के उदाहरण को किसी परिवार में वंशावली विश्लेषण द्वारा खोजा जा सकता है। मेंडलीय विकारों के सर्वविदित उदाहरण हीमोफीलिया, सिस्टिक फ्राइब्रोसिस, दात्र कोशिका अरक्तता, वर्णांधता (कलर ब्लाइंडनेस), फीनाइल कीटोन्यूरिया, थैलेसीमिया इत्यादि हैं। यहाँ यह भी बताना महत्त्वपूर्ण है कि ये मेंडलीय विकार प्रभावी अथवा अप्रभावी हो सकते हैं, साथ ही जैसाकि हीमोफीलिया में होता है। यह लक्षण लिंग क्रोमोसोम-आधारित भी हो सकता है। यह सुस्पष्ट है कि $\mathrm{X}$ - लग्न अप्रभावी लक्षण, वाहक मादा (कैरियर मदर) से नर संतति को प्राप्त होता है। इस वंशावली का नमूना चित्र 4.15 पर प्रस्तुत है जिसमें प्रभावी और अप्रभावी लक्षण दिखलाए गए हैं। अपने अध्यापक से चर्चा करें और अलिंग तथा लिंग क्रोमोसोम से लग्न लक्षणों वाला वंशावली नक्शा बनाएँ।

चित्र 4.15 प्रतीकात्मक वंशावली विश्लेषण (अ) अलिंगी क्रोमोसोम पर प्रभावी विशेषक जैसे मायोटोनिक दुष्पोषण (डिस्ट्रोफी), (ब) आलंगी-क्रोमोसोम पर-अप्रभावी विशेषक जैसे दात्र कोशिका अरक्तता (सिकल सेल एनिमिया)

वर्णांधता: यह लिंग सहलग्न अप्रभावी विकार है। यह विकार लाल अथवा हरे वर्ण संवेदी शंकु के त्रुटिपूर्ण होने के कारण होता है। परिणामतः व्यक्ति लाल एवं हरे वर्ण (रंग) में विभेद नहीं कर पाता। यह विकार $\mathrm{X}$-क्रोमोसोम पर स्थित कुछ जीनों में उत्परिवर्तन के कारण आता है। लगभग $8 %$ पुरुषों एवं मात्र $0.4 %$ नारियों में यह विकार पाया जाता है। इसका कारण है, लाल-हरी वर्णांधता के लिए उत्तरदायी जीनों का $\mathrm{X}$-क्रोमोसोम पर उपस्थित होना। नर (पुरुष) की कोशिकाओं में केवल एक $\mathrm{X}$-क्रोमोसोम होता है, परंतु नारियों में दो $\mathrm{X}$ क्रोमोसोम होते हैं। किसी ऐसे जीन की वाहक नारी के पुत्र के वर्णांध होने की संभावना $50 %$ है क्योंक $\mathrm{X}$-संलग्न जीन अप्रभावी है। अतः विषमयुग्मजी जननी स्वयं वर्णाध नहीं होती है। इसका अर्थ यह है कि इसका प्रभाव दूसरे विकल्पी अलील के प्रभावी होने के कारण निरुद्ध हो जाता है। पुत्री (मादा संतति) सामान्यतः वर्णांध नहीं होगी, जब तक कि माँ वाहक एवं पिता वर्णांध न हो।

हीमोफीलिया- इस लिंग सहलग्न रोग का व्यापक अध्ययन हो चुका है। इसमें प्रभाव रहित वाहक नारी से नर-संतति को रोग का संचार होता है इस रोग में रुधिर के थक्का बनने से संबद्ध एकल प्रोटीन प्रभावित होता है। यह एकल प्रोटीन एक प्रोटीन शृंखला का अंशमात्र होता है। इसके कारण आहत व्यक्ति के शरीर की एक छोटी सी चोट से भी रुधिर का निकलना बंद ही नहीं होता। विषमयुग्मजी नारी (वाहक) से यह रोग पुत्रों में जाता है। नारी की रोगग्रस्त होने की संभावना विरल होती है; क्योंकि इस प्रकार की नारी की माता को कम से कम वाहक और पिता को हीमोफीलिया से ग्रस्त होना आवश्यक होता है। (जो अधिक वय तक जीवित नहीं रह पाता) महारानी विक्टोरिया की वंशावली में अनेक हीमोफीलिया ग्रस्त वंशज थे और रानी स्वयं रोग की वाहक थी।

दात्र कोशिका -अरक्तता (सिकल सेल एनिमिया) - यह अलिंग क्रामोसोम लग्न अप्रभावी लक्षण है जो जनकों से संतति में तभी प्रवेश करता है जबकि दोनों जनक जीन के वाहक होते हैं (विषमयुग्मजी)। इस रोग का नियंत्रण अलील का एकल जोड़ा $\mathrm{Hb}^{\mathrm{A}}$ और $\mathrm{Hb}^{\mathrm{s}}$ करता है। रोग का लक्षण (फीनोटाइप) तीन संभव जीनोटाइपों में से केवल $\mathrm{Hb}^{\mathrm{s}}\left(\mathrm{Hb}^{\mathrm{s}} \mathrm{Hb}^{\mathrm{s}}\right)$ वाले समयुग्मकी व्यक्तियों में दर्शित होता है। विषमयुग्मकी $\left(\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{s}}\right)$ व्यक्ति रोग मुक्त होते हैं परंतु वे रोग के वाहक होते हैं। उत्परिवर्तित जीन के संतति में पहुँचने की 50 प्रतिशत संभावना (अर्थात् दात्र कोशिका के लक्षण आने की) होती है (चित्र 4.16)। इस विकार का कारण हीमोग्लोबिन अणु की बीटा ग्लोबिनशृंखला की छठी स्थिति में एक अमीनों अम्ल ग्लूटैमिक अम्ल (Glu) का वैलीन द्वारा प्रतिस्थापन है। ग्लोबिन प्रोटीन में एमीनो अम्ल का यह प्रतिस्थापन बीटा ग्लोबिन जीन के छठे कोडोन में GAG का GUG द्वारा प्रतिस्थापन के कारण होता है। निम्न ऑक्सीजन तनाव में उत्परिवर्तित हीमोग्लोबिन अणु में बहुलकीकरण हो जाता है जिसके कारण $\mathrm{RBC}$ का आकार द्वि-अवतल बिंब से बदलकर दात्राकार (हँसिए के आकार जैसा) हो जाता है।

चित्र 4.16 हीमोग्लोबिन की $\mathrm{B}$ शृंखला के संगत अंशों के अमीनो अम्ल संघटन और लाल रुधिर कोशिका के सूक्ष्म-आरेख (अ) सामान्य व्यक्ति से (ब) दात्र कोशिका अरक्तता के रोगी से

फीनाइल कीटोनूरिया- यह जन्मजात उपापचयी त्रुटि भी अलिंग क्रोमोसोम अप्रभावी लक्षण की भाँति ही वंशागति प्रदर्शित करती है। रोगी व्यक्ति में फीनाइल ऐलेनीन अमीनो अम्ल को टाइरोसीन अमीनो अम्ल में बदलने के लिए आवश्यक एक एंजाइम की कमी हो जाती है। परिणामस्वरुप फीनाइल ऐलेनीन एकत्रित होता जाता है और फीनाइलपाइरूविक अम्ल तथा अन्य व्युत्पन्नों में बदलता जाता है। इनके एकत्रीकरण से मानसिक दुर्बलता आ जाती है। वृक्क द्वारा कम अवशोषित हो सकने के कारण ये मूत्र के साथ उत्सर्जित हो जाते हैं।

थैलेसीमिया: यह भी एक अलिंग क्रोमोसोम संलग्न अप्रभावी जीन रक्त विकार है जो जनकों से संतति को वंशानुगत प्राप्त होता है, जबकि जनक युगल के दोनों सदस्य अप्रभावी जीन के वाहक (अथवा विषम युग्मजी) होने के कारण अप्रभावित रहते हैं। यह विकार या तो उत्परिवर्तन अथवा विलोपन के परिणामस्वरूप उत्पन्न होता है जिसमें हीमोग्लोबिन बनाने वाले ग्लोबिन की किसी एक शृंखला $(\alpha$ एवं $\beta)$ की संश्लेषण दर में कमी आ जाती है। परिणामतः विकृत हीमोग्लोबिन का संश्लेषण होता है तथा रक्ताल्पता (एनीमिया) हो जाती है जो इस रोग का अभिलक्षण है। थैलेसीमिया रोग का वर्गीकरण इस आधार पर किया जाता है कि हीमोग्लोबिन अणु की कौन-सी शृंखला प्रभावित हुई है। $\alpha$ थैलेसीमिया में $\alpha$-ग्लोबिन श्रृंखला का उत्पादन प्रभावित होता है जबकि $\beta$-थैलेसीमिया में $\beta$-ग्लोबिन भृंखला प्रभावित होती है। $\alpha$-थैलेसीमिया रोग का नियंत्रण प्रत्येक जनक के क्रोमोसोम 16 पर दो सन्निकट लग्न जीन HBA1 एवं HBA2 द्वारा नियंत्रित होता है तथा यह चार विकल्पी एलील (जीनों) में से किसी एक अथवा अधिक जीनों के उत्परिवर्तन अथवा विलोपन (हट जाने) के कारण अभिलक्षित होता है। जितने अधिक जीन प्रभावित होंगे, उतनी ही कम मात्रा में अल्फा-ग्लोबिन संश्लेषित होगा; जबकि $\beta$-थैलेसीमिया प्रत्येक जनक के क्रोमोसोम 11 स्थित एकल जीन द्वारा नियंत्रित होता है तथा यह रोग एक अथवा दोनों जीनों के उत्परिवर्तन के कारण होता है। थैलेसीमिया विकार, दात्र कोशिका अरक्तता (सिकल सेल एनीमिया रोग से इस रूप में भिन्न है कि पहले वाला रोग एक परिमाणात्मक समस्या है जिसमें ग्लोबिन अणु अत्यल्प मात्रा में संश्लेषित होते हैं जबकि दूसरा विकृत ग्लोबिन संश्लेषण की गुणात्मक समस्या है।

4.6.3. क्रोमोसोमीय विकार

दूसरी तरफ एक या अधिक क्रोमोसोमों की अनुपस्थिति, अधिकता या असामान्य विन्यास क्रोमोसोमीय विकारों के कारण होते हैं। कोशिका विभाजन के समय क्रोमेटेड के विसंयोजन की अनुपस्थिति के कारण एक क्रोमोसोम की अधिकता या हानि हो जाती है इसे असुगुणिता (एन्युप्लोइडी) कहते हैं। जैसे 21 वें गुणसूत्र की एक प्रति की अधिकता से डाउन सिंड्रोम हो जाता है। इसी प्रकार एक $\mathrm{X}$ गुणसूत्र की हानि से नारियों में टर्नर सिंड्रोम हो जाता है। कोशिका द्रव्य विभाजन न हो सकने के कारण क्रोमोसोम का एक पूरा समुच्य अधिक हो जाता है इसे बहुगुणिता (पालीप्लोइडी) कहते हैं। यह अवस्था प्रायः पौधों में पाई जाती है।

मानव में क्रोमोसोमों की कुल संख्या 46 ( 23 जोड़े) हैं। इनमें से 22 जोड़े अलिंग सूत्र होते हैं और एक जोड़ा लिंग सूत्रों का। कभी-कभी, विरले ही सही, व्यक्ति में क्रोमोसोम का एक अतिरिक्त जोड़ा शामिल हो जाता है या कभी एक जोड़े क्रोमोसोम की कमी हो जाती है। इन स्थितियों को क्रमशः क्रोमोसोम की द्विअधिसूत्री ( टेट्रासोमी) या द्विन्यूनसूत्री ( नलसोमी) कहा जाता है। ऐसी स्थिति के प्रभाव से व्यक्ति में गंभीर रोग हो जाता है। क्रोमोसोमीय विकारों का उदाहरण डाउन सिंड्रोम, टर्नर सिंड्रोम, क्लाइनफैल्टर सिंड्रोम है।

चित्र 4.17 निरूपक चित्र जिसमें डाउन सिंड्रोम का रोगी तथा उस व्यक्ति के तदनुरूप क्रोमोसोम दर्शाए गए हैं।

डाउन सिंड्रोम - इस आनुवंशिक विकार का कारण 21 वें क्रोमोसोम की एक अतिरिक्त प्रति का आ जाना ( 21 की त्रिसूत्रता) है। इस विकार को सर्वप्रथम लैन्गडम डाउन ने (1866) खोजा था। रोगी व्यक्ति छोटे कद और छोटे गोल सिर का होता है, जीभ में खाँच होता है और मुँह आंशिक रूप से खुला रहता है (चित्र 4.17), चौड़ी हथेली में अभिलाक्षणिक पॉल्म कीज होती है। शारीरिक, मनः प्रेरक (साइकोमोटर) और मानसिक विकास अवरूद्ध रहता है।

क्लाइनफेल्टर सिंड्रोम - इस आनुवंशिक विकार का कारण $\mathrm{X}$ क्रोमोसोम की एक अतिरिक्त प्रतिलिपि है; जिसके कारण केंद्रक में 47 , क्रोमोसोम (XXY) हो जाते हैं। ऐसे व्यक्ति समग्र रूप से तो पुंप्रधान होते हैं, किंतु मादा लक्षण (गाइनीकोमैस्टिजि अर्थात् स्त्रीवत् पुरुष वक्ष का वर्धन) भी व्यक्त हो जाते हैं (चित्र 4.18 अ) ऐसे व्यक्ति बाँझ होते हैं।

चित्र 4.18 मानव में सेक्स क्रोमोसोमों की बनावट के कारण उत्पन्न आनुवंशिक विकारों का आरेखीय निरूपण (अ) क्लाइन फेल्टर विकार (ब) टर्नर विकार

टर्नर सिंड्रोम - इस विकार का कारण एक $\mathrm{X}$ क्रोमोसोम का अभाव होता है, अर्थात् 45 क्रोमोसोम की (XO) स्थिति। ऐसी नारी बाँझ होती है; क्योंकि अंडाशय अल्पवधि ‘त होते हैं और द्वितियक लैंगिक लक्षणों का अभाव होता है (चित्र 4.18 ब)।

सारांश

आनुवंशिकी या आनुवंशिक विज्ञान, जीव विज्ञान की वह शाखा है जो वंशागति के व्यवहार और सिद्धांतों का अध्ययन करती है। यह तथ्य कि, संतति अपने जनकों से आकृतिक और शरीर क्रियात्मक लक्षणों में मिलती जुलती है अनेक जीव विज्ञानियों का ध्यान आकृष्ट करता रहा। इस घटना का क्रमबद्ध अध्ययन करने वाला सर्वप्रथम वैज्ञानिक मेंडल था। मटर के पौधों में विपरीत लक्षणों की वंशागति के प्रतिरूपों का अध्ययन करते हुए मेंडल ने उन सिद्धांतों को प्रस्तावित किया जो आज वंशागति के ‘मेंडल के नियम’ के नाम से जाने जाते हैं। उसने प्रस्ताव किया कि लक्षणों के नियामक ‘कारक’ (बाद में जीन नाम वाले) जोड़े में पाए जाते हैं; जिन्हें अलील कहा गया। उसने देखा कि संतति में लक्षणों की अभिव्यक्ति भिन्न प्रथम पीढ़ी $(\mathrm{F} 1)$, द्वितीय पीढ़ी $(\mathrm{F} 2)$ तथा अगली पीढ़ियों में एक निश्चित प्रकार से होती है। कुछ लक्षण दूसरे के ऊपर प्रभावी होते हैं। प्रभावी लक्षणों की अभिव्यक्ति तभी होती है जब कारक विषम युग्मजी अवस्था में भी विद्यमान रहते हैं (‘प्रभाविता नियम’)। अप्रभावी लक्षणों की अभिव्यक्ति केवल समयुग्मजी अवस्था में ही होती है। एक अप्रभावी गुण जो विषमयुग्मजी अवस्था में अभिव्यक्त नहीं होता उसकी समयुग्मजी अवस्था में अभिव्यक्ति हो जाती है। अतएव युग्मकों के उत्पादन के दौरान लक्षणों का विसंयोजन हो जाता है।

सभी लक्षण वास्तविक प्रभाविता नहीं दर्शाते। कुछ लक्षण अपूर्ण प्रभाविता तथा कुछ सह-प्रभाविता दिखलाते हैं। जब मेंडल ने दो जोड़े लक्षणों की वंशागति का अध्ययन किया तो पाया गया कि कारक स्वतंत्र रूप से अपव्यूहित होते हैं और यह सभी संभाव्य विकल्पों के साथ होता है। (स्वतंत्र अपव्यूहन नियम) पनेट वर्ग नामक वर्ग तालिका में युग्मकों के विभिन्न संयोजनों का सैद्धांतिक प्रतिरूपण किया गया है। क्रोमोसोम में स्थित कारक (अब जीन) जो लक्षणों का नियमन करते हैं ‘जीनोटाइप’ कहे जाते हैं और शारीरिक रूप से व्यक्त लक्षणों को फीनोटाइप कहा जाता है।

जब यह जानकारी प्राप्त होने के बाद कि जीन क्रोमोसोमों में स्थित होते हैं, मेंडल के नियमों और अर्धसूत्रण के दौरान होने वाली क्रोमोसोमों के विसंयोजन और अपव्यूहन के बीच सहसंबंध स्थापित किया जा सका। मेंडल नियमों को विस्तार देकर ‘वंशागति का क्रोमोसोम-वाद’ कहा जाने लगा। बाद में पता चला कि यदि जीन एक ही क्रोमोसोम में स्थित हों तो मेंडल का ‘स्वतंत्र अपव्यूहन’ नियम लागू नहीं होता। ऐसी जीन को ‘सहलग्न’ कहा गया। आस पास स्थित जीन एक साथ रहकर ही अपव्यूहित हुई और दूरस्थ जीनों ने पुनर्संयोजित होकर स्वतंत्र अपव्यूहन प्रदर्शित किया। सहलग्नता- मानचित्र (क्रोमोसोम-मैप) वास्तव में, एक ही क्रोमोसोम में स्थित जीनों के विन्यास से संबद्ध होते हैं।

अनेक जीन केवल मादा में प्रकट होती है और लिंग सहलग्न जीन कहलाती है। दो लिंगों (नर और नारी) में क्रोमोसोमों का एक सेट बिल्कुल समान होता है और दूसरा सेट भिन्न होता है। जो कि भिन्न थे, वे लिंग क्रोमोसोम कहलाते हैं। शेष सेट को अलिंग सूत्र (ऑटोसोम) कहा गया। सामान्य नारी में 22 जोड़े अलिंग क्रोमोसोम के और एक जोड़ा सेक्स क्रोमोसोम (XX) का होता है। नर में अलिंग सूत्र के 22 जोड़े तो होते ही हैं, एक जोड़ा लिंग सूत्रों का $(\mathrm{XY})$ भी होता है। नर कुक्कुट में लिंग सूत्र $\mathrm{ZZ}$ तथा मादा में $\mathrm{ZW}$ होते हैं।

आनुवंशिक द्रव्य के परिवर्तन को म्यूटेशन (उत्परिवर्तन) कहते हैं। डी एन ए के एकल क्षारक युग्म का परिवर्तन ‘बिन्दु-उत्परिवर्तन’ कहलाता है। दात्र कोशिका अरक्तता रोग का कारण हीमोग्लोबिन की बीटा-श्रृंखला का संकेतन (कोडिंग) करने वाली जीन के एक क्षारक में परिवर्तन है। वंशागत उत्परिवर्तनों का अध्ययन वंशवृक्ष बनाकर किया जा सकता है। कुछ उत्परिवर्तन पूरे क्रोमोसोम समुच्चय के परिवर्तन से बहुगुणिता या अपूर्ण समुच्चय से (असुगुणितता) संबद्ध हो सकता है। आनुवंशिक विकारों के उत्परिवर्तनी आधार को समझने में इससे सहायता मिलती है। डाउन सिंड्रोम का कारण क्रोमोसोम 21 की त्रिसूत्रता अर्थात् एक अतिरिक्त 21 क्रोमोसोम का पाया जाना है, जिसके फलस्वरूप कुल क्रोमोसोम संख्या 47 हो जाती है। टर्नर सिंड्रोम में एक $\mathrm{X}$ क्रोमोसोम गायब हो जाता है और लिंग क्रोमोसोम $\mathrm{XO}$ हो जाते हैं, क्लाइन फेल्टर सिंड्रोम में अवस्था $\mathrm{XXY}$ प्रदर्शित होती है। ये केंद्रक-प्ररूपों (कैरियोटाइपों) के अध्ययन से आसानी से समझा जा सकता है।

अभ्यास

1. मेंडल द्वारा प्रयोगों के लिए मटर के पौधे चुनने से क्या लाभ हुए?

Show Answer

Answer

#/missing

2. निम्न में भेद करो -

(क) प्रभाविता और अप्रभाविता

(ख) समयुग्मजी और विषमयुग्मजी

(ग) एकसंकर और द्विसंकर।

Show Answer

Answer

#/missing

3. कोई द्विगुणित जीन 6 स्थलों के लिए विषमयुग्मजी हैं, कितने प्रकार के युग्मकों का उत्पादन संभव है?

Show Answer

Answer

#/missing

4. एकसंकर क्रॉस का प्रयोग करते हुए, प्रभाविता नियम की व्याख्या करो।

Show Answer

Answer

#/missing

5. परीक्षार्थ संकरण की परिभाषा लिखो और चित्र बनाओ।

Show Answer

Answer

#/missing

6. एक ही जीन स्थल वाले समयुग्मजी मादा और विषमयुग्मजी नर के संकरण से प्राप्त प्रथम संतति पीढ़ी के फीनोटाइप वितरण का पनेट वर्ग बनाकर प्रदर्शन करो।

Show Answer

Answer

#/missing

7. पीले बीज वाले लंबे पौधों (Yy Tt) का संकरण हरे बीज वाले लंबे $(\mathrm{yy} \mathrm{Tt})$ पौधे से करने पर निम्न में से किस प्रकार के फीनोटाइप संतति की आशा की जा सकती है

(क) लंबे-हरे

(ख) बौने हरे।

Show Answer

Answer

#/missing

8. दो विषमयुग्मजी जनकों का क्रॉस $\sigma$ और 9 किया गया। मान लें दो स्थल (loci) सहलग्न है, तो द्विसंकर क्रॉस में $\mathrm{F}_{1}$ पीढ़ी के फीनोटाइप के लक्षणों का वितरण क्या होगा?

Show Answer

Answer

#/missing

9. आनुवंशिकी में टी.एच मौरगन के योगदान का संक्षेप में उल्लेख करें।

Show Answer

Answer

#/missing

10. वंशावली विश्लेषण क्या है? यह विश्लेषण किस प्रकार उपयोगी है?

Show Answer

Answer

#/missing

11. मानव में लिंग-निर्धारण कैसे होता है?

Show Answer

Answer

#/missing

12. शिशु का रुधिर वर्ग $\mathrm{O}$ है। पिता का रुधिर वर्ग $\mathrm{A}$ और माता का $\mathrm{B}$ है। जनकों के जीनोटाइप मालूम करें और अन्य संतति में प्रत्याशित जीनोटाइपों की जानकारी प्राप्त करें।

Show Answer

Answer

#/missing

13. निम्न शब्दों को उदाहरण समेत समझाएँ (अ) सह प्रभाविता, (ब) अपूर्ण प्रभाविता

Show Answer

Answer

#/missing

14. बिंदु-उत्परिवर्तन क्या है? एक उदाहरण दें।

Show Answer

Answer

#/missing

15. वंशागति के क्रोमोसोम वाद को किसने प्रस्तावित किया?

Show Answer

Answer

#/missing

16. किन्हीं दो अलिंग सूत्री आनुवंशिक विकारों का उनके लक्षणों सहित उल्लेख करो।

Show Answer

Answer

#/missing



Table of Contents