Chapter-14 Ecosystem

An ecosystem can be visualised as a functional unit of nature, where living organisms interact among themselves and also with the surrounding physical environment. Ecosystem varies greatly in size from a small pond to a large forest or a sea. Many ecologists regard the entire biosphere as a global ecosystem, as a composite of all local ecosystems on Earth. Since this system is too much big and complex to be studied at one time, it is convenient to divide it into two basic categories, namely the terrestrial and the aquatic. Forest, grassland and desert are some examples of terrestrial ecosystems; pond, lake, wetland, river and estuary are some examples of aquatic ecosystems. Crop fields and an aquarium may also be considered as man-made ecosystems.

We will first look at the structure of the ecosystem, in order to appreciate the input (productivity), transfer of energy (food chain/web, nutrient cycling) and the output (degradation and energy loss). We will also look at the relationships - cycles, chains, webs - that are created as a result of these energy flows within the system and their inter- relationship.

14.1 ECOSYSTEM - STRUCTURE AND FUNCTION

In chapter 13, you have looked at the various components of the environment- abiotic and biotic. You studied how the individual biotic and abiotic factors affected each other and their surrounding. Let us look at these components in a more integrated manner and see how the flow of energy takes place within these components of the ecosystem.

Interaction of biotic and abiotic components result in a physical structure that is characteristic for each type of ecosystem. Identification and enumeration of plant and animal species of an ecosystem gives its species composition. Vertical distribution of different species occupying different levels is called stratification. For example, trees occupy top vertical strata or layer of a forest, shrubs the second and herbs and grasses occupy the bottom layers.

The components of the ecosystem are seen to function as a unit when you consider the following aspects:

(i) Productivity;

(ii) Decomposition;

(iii) Energy flow; and

(iv) Nutrient cycling.

To understand the ethos of an aquatic ecosystem let us take a small pond as an example. This is fairly a self-sustainable unit and rather simple example that explain even the complex interactions that exist in an aquatic ecosystem. A pond is a shallow water body in which all the above mentioned four basic components of an ecosystem are well exhibited. The abiotic component is the water with all the dissolved inorganic and organic substances and the rich soil deposit at the bottom of the pond. The solar input, the cycle of temperature, day-length and other climatic conditions regulate the rate of function of the entire pond. The autotrophic components include the phytoplankton, some algae and the floating, submerged and marginal plants found at the edges. The consumers are represented by the zooplankton, the free swimming and bottom dwelling forms. The decomposers are the fungi, bacteria and flagellates especially abundant in the bottom of the pond. This system performs all the functions of any ecosystem and of the biosphere as a whole, i.e., conversion of inorganic into organic material with the help of the radiant energy of the sun by the autotrophs; consumption of the autotrophs by heterotrophs; decomposition and mineralisation of the dead matter to release them back for reuse by the autotrophs, these event are repeated over and over again. There is unidirectional movement of energy towards the higher trophic levels and its dissipation and loss as heat to the environment.

14.2 PRODUCTIVITY

A constant input of solar energy is the basic requirement for any ecosystem to function and sustain. Primary production is defined as the amount of biomass or organic matter produced per unit area over a time period by plants during photosynthesis. It is expressed in terms of weight (g m-2) or energy (kcal m-2). The rate of biomass production is called productivity. It is expressed in terms of gm-2 yr-1 or (kcal m-2) yr-1 to compare the productivity of different ecosystems. It can be divided into gross primary productivity (GPP) and net primary productivity (NPP). Gross primary productivity of an ecosystem is the rate of production of organic matter during photosynthesis. A considerable amount of GPP is utilised by plants in respiration. Gross primary productivity minus respiration losses (R), is the net primary productivity (NPP).

GPP - R = NPP

Net primary productivity is the available biomass for the consumption to heterotrophs (herbiviores and decomposers). Secondary productivity is defined as the rate of formation of new organic matter by consumers.

Primary productivity depends on the plant species inhabiting a particular area. It also depends on a variety of environmental factors, availability of nutrients and photosynthetic capacity of plants. Therefore, it varies in different types of ecosystems. The annual net primary productivity of the whole biosphere is approximately 170 billion tons (dry weight) of organic matter. Of this, despite occupying about 70 per cent of the surface, the productivity of the oceans are only 55 billion tons. Rest of course, is on land. Discuss the main reason for the low productivity of ocean with your teacher.

14.3 DECOMPOSITION

You may have heard of the earthworm being referred to as the farmer’s ‘friend’. This is so because they help in the breakdown of complex organic matter as well as in loosening of the soil. Similarly, decomposers break down complex organic matter into inorganic substances like carbon dioxide, water and nutrients and the process is called decomposition. Dead plant remains such as leaves, bark, flowers and dead remains of animals, including fecal matter, constitute detritus, which is the raw material for decomposition. The important steps in the process of decomposition are fragmentation, leaching, catabolism, humification and mineralisation.

Detritivores (e.g., earthworm) break down detritus into smaller particles. This process is called fragmentation. By the process of leaching, watersoluble inorganic utrients go down into the soil horizon and get precipitated as unavailable salts. Bacterial and fungal enzymes degrade detritus into simpler inorganic substances. This process is called as catabolism.

Figure 14.1 Diagrammatic representation of decomposition cycle in a terrestrial ecosystem

It is important to note that all the above steps in decomposition operate simultaneously on the detritus (Figure 14.1). Humification and mineralisation occur during decomposition in the soil. Humification leads to accumulation of a dark coloured amorphous substance called humus that is highly resistant to microbial action and undergoes decomposition at an extremely slow rate. Being colloidal in nature it serves as a reservoir of nutrients. The humus is further degraded by some microbes and release of inorganic nutrients occur by the process known as mineralisation.

Decomposition is largely an oxygen-requiring process. The rate of decomposition is controlled by chemical composition of detritus and climatic factors. In a particular climatic condition, decomposition rate is slower if detritus is rich in lignin and chitin, and quicker, if detritus is rich in nitrogen and water-soluble substances like sugars. Temperature and soil moisture are the most important climatic factors that regulate decomposition through their effects on the activities of soil microbes. Warm and moist environment favour decomposition whereas low temperature and anaerobiosis inhibit decomposition resulting in build up of organic materials.

14.4 ENERGY FLOW

Except for the deep sea hydro-thermal ecosystem, sun is the only source of energy for all ecosystems on Earth. Of the incident solar radiation less than 50 per cent of it is photosynthetically active radiation (PAR). We know that plants and photosynthetic bacteria (autotrophs), fix Sun’s radiant energy to make food from simple inorganic materials. Plants capture only 2-10 per cent of the PAR and this small amount of energy sustains the entire living world. So, it is very important to know how the solar energy captured by plants flows through different organisms of an ecosystem. All organisms are dependent for their food on producers, either directly or indirectly. So you find unidirectional flow of energy from the sun to producers and then to consumers. Is this in keeping with the first law of thermodynamics?

Further, ecosystems are not exempt from the Second Law of thermodynamics. They need a constant supply of energy to synthesise the molecules they require, to counteract the universal tendency toward increasing disorderliness.

The green plant in the ecosystem are called producers. In a terrestrial ecosystem, major producers are herbaceous and woody plants. Likewise, producers in an aquatic ecosystem are various species like phytoplankton, algae and higher plants.

You have read about the food chains and webs that exist in nature. Starting from the plants (or producers) food chains or rather webs are formed such that an animal feeds on a plant or on another animal and in turn is food for another. The chain or web is formed because of this interdependency. No energy that is trapped into an organism remains in it for ever. The energy trapped by the producer, hence, is either passed on to a consumer or the organism dies. Death of organism is the beginning of the detritus food chain/web.

All animals depend on plants (directly or indirectly) for their food needs. They are hence called consumers and also heterotrophs. If they feed on the producers, the plants, they are called primary consumers, and if the animals eat other animals which in turn eat the plants (or their produce) they are called secondary consumers. Likewise, you could have tertiary consumers too. Obviously the primary consumers will be herbivores. Some common herbivores are insects, birds and mammals in terrestrial ecosystem and molluscs in aquatic ecosystem.

The consumers that feed on these herbivores are carnivores, or more correctly primary carnivores (though secondary consumers). Those animals that depend on the primary carnivores for food are labelled secondary carnivores. A simple grazing food chain (GFC) is depicted below:

$\begin{aligned} & \text { Grass }—-\rightarrow \ & \text { Goat }—–\rightarrow \quad \text { Man }—–\rightarrow \\ & \text { (Producer) } \ & \text { (Primary Consumer) } \ & \text { (Secondary consumer) } \ & \end{aligned}$

The detritus food chain (DFC) begins with dead organic matter. It is made up of decomposers which are heterotrophic organisms, mainly fungi and bacteria. They meet their energy and nutrient requirements by degrading dead organic matter or detritus. These are also known as saprotrophs (sapro: to decompose). Decomposers secrete digestive enzymes that breakdown dead and waste materials into simple, inorganic materials, which are subsequently absorbed by them.

In an aquatic ecosystem, GFC is the major conduit for energy flow. As against this, in a terrestrial ecosystem, a much larger fraction of energy flows through the detritus food chain than through the GFC. Detritus food chain may be connected with the grazing food chain at some levels: some of the organisms of DFC are prey to the GFC animals, and in a natural ecosystem, some animals like cockroaches, crows, etc., are omnivores. These natural interconnection of food chains make it a food web. How would you classify human beings!

Organisms occupy a place in the natural surroundings or in a community according to their feeding relationship with other organisms. Based on the source of their nutrition or food, organisms occupy a specific place in the food chain that is known as their trophic level. Producers belong to the first trophic level, herbivores (primary consumer) to the second and carnivores (secondary consumer) to the third (Figure 14.2).

Figure 14.2 Diagrammatic representation of trophic levels in an ecosystem

The important point to note is that the amount of energy decreases at successive trophic levels. When any organism dies it is converted to detritus or dead biomass that serves as an energy source for decomposers. Organisms at each trophic level depend on those at the lower trophic level for their energy demands.

Each trophic level has a certain mass of living material at a particular time called as the standing crop. The standing crop is measured as the mass of living organisms (biomass) or the number in a unit area. The biomass of a species is expressed in terms of fresh or dry weight. Measurement of biomass in terms of dry weight is more accurate. Why? The number of trophic levels in the grazing food chain is restricted as the transfer of energy follows 10 per cent law - only 10 per cent of the energy is transferred to each trophic level from the lower trophic level. In nature, it is possible to have so many levels - producer, herbivore, primary carnivore, secondary carnivore in the grazing food chain (Figure 14.3) . Do you think there is any such limitation in a detritus food chain?

Figure 14.3 Energy flow through different trophic levels

14.5 ECOLOGICAL PYRAMIDS

You must be familiar with the shape of a pyramid. The base of a pyramid is broad and it narrows towards the apex. One gets a similar shape, whether you express the food or energy relationship between organisms at different trophic levels. This, relationship is expressed in terms of number, biomass or energy. The base of each pyramid represents the producers or the first trophic level while the apex represents tertiary or top level consumer. The three types of ecological pyramids that are usually studied are (a) pyramid of number; (b) pyramid of biomass and (c) pyramid of energy. For detail (see Figure 14.4 a, b, c and d).

Figure 14.4 (a) Pyramid of numbers in a grassland ecosystem. Only three top-carnivores are supported in an ecosystem based on production of nearly 6 millions plants

Figure 14.4 (b) Pyramid of biomass shows a sharp decrease in biomass at higher trophic levels

Figure 14.4 (c) Inverted pyramid of biomass-small standing crop of phytoplankton supports large standing crop of zooplankton

Figure 14.4 (d) An ideal pyramid of energy. Observe that primary producers convert only 1% of nthe energy in the sunlight available to them into NPP

Any calculations of energy content, biomass or numbers, has to include all organisms at that trophic level. No generalisations we make will be true if we take only a few individuals at any trophic level into account. Also a given organism may occupy more than one trophic level simultaneously. One must remember that the trophic level represents a functional level, not a species as such. A given species may occupy more than one trophic level in the same ecosystem at the same time; for example, a sparrow is a primary consumer when it eats seeds, fruits, peas, and a secondary consumer when it eats insects and worms. Can you work out how many trophic levels human beings function at in a food chain?

In most ecosystems, all the pyramids, of number, of energy and biomass are upright, i.e., producers are more in number and biomass than the herbivores, and herbivores are more in number and biomass than the carnivores. Also energy at a lower trophic level is always more than at a higher level.

There are exceptions to this generalisation: If you were to count the number of insects feeding on a big tree what kind of pyramid would you get? Now add an estimate of the number of small birds depending on the insects, as also the number of larger birds eating the smaller. Draw the shape you would get.

The pyramid of biomass in sea is generally inverted because the biomass of fishes far exceeds that of phytoplankton. Isn’t that a paradox? How would you explain this?

Pyramid of energy is always upright, can never be inverted, because when energy flows from a particular trophic level to the next trophic level, some energy is always lost as heat at each step. Each bar in the energy pyramid indicates the amount of energy present at each trophic level in a given time or annually per unit area.

However, there are certain limitations of ecological pyramids such as it does not take into account the same species belonging to two or more trophic levels. It assumes a simple food chain, something that almost never exists in nature; it does not accommodate a food web. Moreover, saprophytes are not given any place in ecological pyramids even though they play a vital role in the ecosystem.

Summary

An ecosystem is a structural and functional unit of nature and it comprises abiotic and biotic components. Abiotic components are inorganic materials- air, water and soil, whereas biotic components are producers, consumers and decomposers. Each ecosystem has characteristic physical structure resulting from interaction amongst abiotic and biotic components. Species composition and stratification are the two main structural features of an ecosystem. Based on source of nutrition every organism occupies a place in an ecosystem.

Productivity, decomposition, energy flow, and nutrient cycling are the four important components of an ecosystem. Primary productivity is the rate of capture of solar energy or biomass production of the producers. It is divided into two types: gross primary productivity (GPP) and net primary productivity (NPP). Rate of capture of solar energy or total production of organic matter is called as GPP. NPP is the remaining biomass or the energy left after utilisation of producers. Secondary productivity is the rate of assimilation of food energy by the consumers. In decomposition, complex organic compounds of detritus are converted to carbon dioxide, water and inorganic nutrients by the decomposers. Decomposition involves three processes, namely fragmentation of detritus, leaching and catabolism.

Energy flow is unidirectional. First, plants capture solar energy and then, food is transferred from the producers to decomposers. Organisms of different trophic levels in nature are connected to each other for food or energy relationship forming a food chain. The storage and movement of nutrient elements through the various components of the ecosystem is called nutrient cycling; nutrients are repeatedly used through this process. Nutrient cycling is of two types—gaseous and sedimentary. Atmosphere or hydrosphere is the reservoir for the gaseous type of cycle (carbon), whereas Earth’s crust is the reservoir for sedimentary type (phosphorus). Products of ecosystem processes are named as ecosystem services, e.g., purification of air and water by forests.

EXERCISES

1. Fill in the blanks.

(a) Plants are called as_________because they fix carbon dioxide.

(b) In an ecosystem dominated by trees, the pyramid (of numbers) is_________type.

(c) In aquatic ecosystems, the limiting factor for the productivity is_________.

(d) Common detritivores in our ecosystem are_________.

(e) The major reservoir of carbon on earth is_________.

Show Answer

Answer

(a) Plants are called as $\xrightarrow{\text { autotrophs }}$ because they fix carbon dioxide.

(b) In an ecosystem dominated by trees, the pyramid (of numbers) is of $\xrightarrow{\text { inverted }}$ type.

(c) In aquatic ecosystems, the limiting factor for productivity is $\xrightarrow{\text { light }}$.

(d) Common detritivores in our ecosystem are $\xrightarrow{\text { earthworms }}$

(e) A major reservoir of carbon on Earth is oceans

2. Which one of the following has the largest population in a food chain?

(a) Producers

(b) Primary consumers

(c) Secondary consumers

(d) Decomposers

Show Answer

Answer

(d) Decomposers

Decomposers include micro-organisms such as bacteria and fungi. They form the largest population in a food chain and obtain nutrients by breaking down the remains of dead plants and animals.

3. The second trophic level in a lake is

(a) Phytoplankton

(b) Zooplankton

(c) Benthos

(d) Fishes

Show Answer

Answer

(b) Zooplankton

Zooplankton are primary consumers in aquatic food chains that feed upon phytoplankton. Therefore, they are present at the second trophic level in a lake.

4. Secondary producers are

(a) Herbivores

(b) Producers

(c) Carnivores

(d) None of the above

Show Answer

Answer

(d) None of the above

Plants are the only producers. Thus, they are called primary producers. There are no other producers in a food chain.

5. What is the percentage of photosynthetically active radiation (PAR) in the incident solar radiation?

(a) 100%

(b) 50 %

(c) 1-5%

(d) 2-10%

Show Answer

Answer

(b) $50 %$

6. Distinguish between

(a) Grazing food chain and detritus food chain

(b) Production and decomposition

(c) Upright and inverted pyramid

(d) Food chain and Food web

(e) Litter and detritus

(f) Primary and secondary productivity

Show Answer

Answer

(a) Grazing food chain and detritus food chain

Grazing Food Chain Detritus Food Chain
Energy is derived from the sun Energy is derived from organic matter produced in trophic levels of the grazing food chain
It typically entails a large population It is comparatively smaller
Starts with producers at the first trophic level. The plant biomass is then consumed by herbivores which in turn are consumed by different carnivores Starts with detritus such as dead bodies of fallen leaves and animals that are consumed by detritivores or decomposers which in turn are consumed by predators.

(b) Production and decomposition

Production Decomposition
Rate of producing food (organic matter) by producers is known as production Disintegration of complex organic matter from the bodies of dead animals and plants with the help of decomposers into organic raw material, namely water, carbon dioxide, and other nutrients, is decomposition.
For primary production, sunlight is required Decomposition does not require sunlight
Dependent on the photosynthetic capacity of producers Takes place with the help of decomposers

(c) Upright and inverted pyramid

Upright pyramid Inverted pyramid
Pyramid of energy is always upright Pyramid of numbers and biomass can be
inverted
At the producer level of an ecosystem, this
pyramid has the highest number and
biomass of organisms which declines at
each trophic level in a food chain
At the producer level of an ecosystem, this
pyramid has the lowest number and biomass
of organisms which rises at each increasing
tropic level in a food chain

(d) Food chain and Food web

Food chain Food web
Constitutes for a single linear sequence of
entities
Consists of a number of interconnected
food chains
Members inhabiting higher trophic levels feed
only on one type of entity
Any given individual has alternate
options for food sources

(e) Litter and detritus

Litter Detritus
Comprises of all kinds of wastes above the
ground level
Comprises of residues of dead animals
and plants
Consists of biodegradable and non-
biodegradable substances
Consists of biodegradable substances
only

(f) Primary and secondary productivity

Primary productivity Secondary productivity
It is the amount of organic matter generated by
producers per unit area over a specific span of
time
It is the rate of generating organic
matter by consumers over a span of
time

7. Describe the components of an ecosystem.

Show Answer

Answer

An ecosystem is defined as an interacting unit that includes both the biological community as well as the non-living components of an area. The living and the non-living components of an ecosystem interact amongst themselves and function as a unit, which gets evident during the processes of nutrient cycling, energy flow, decomposition, and productivity. There are many ecosystems such as ponds, forests, grasslands, etc.

The two components of an ecosystem are:

(a) Biotic component: It is the living component of an ecosystem that includes biotic factors such as producers, consumers, decomposers, etc. Producers include plants and algae. They contain chlorophyll pigment, which helps them carry out the process of photosynthesis in the presence of light. Thus, they are also called converters or transducers. Consumers or heterotrophs are organisms that are directly (primary consumers) or indirectly (secondary and tertiary consumers) dependent on producers for their food.

Decomposers include micro-organisms such as bacteria and fungi. They form the largest population in a food chain and obtain nutrients by breaking down the remains of dead plants and animals.

(b) Abiotic component: They are the non-living component of an ecosystem such as light, temperature, water, soil, air, inorganic nutrients, etc.

8. Define ecological pyramids and describe with examples, pyramids of number and biomass.

Show Answer

Answer

An ecological pyramid is a graphical representation of various ecological parameters such as the number of individuals present at each trophic level, the amount of energy, or the biomass present at each trophic level.

Ecological pyramids represent producers at the base, while the apex represents the top level consumers present in the ecosystem. There are three types of pyramids:

(a) Pyramid of numbers

(b) Pyramid of energy

(c) Pyramid of biomass

Pyramid of numbers:It is a graphical representation of the number of individuals present at each trophic level in a food chain of an ecosystem. The pyramid of numbers can be upright or inverted depending on the number of producers. For example, in a grassland ecosystem, the pyramid of numbers is upright. In this type of a food chain, the number of producers (plants) is followed by the number of herbivores (mice), which in turn is followed by the number of secondary consumers (snakes) and tertiary carnivores (eagles). Hence, the number of individuals at the producer level will be the maximum, while the number of individuals present at top carnivores will be least.

On the other hand, in a parasitic food chain, the pyramid of numbers is inverted. In this type of a food chain, a single tree (producer) provides food to several fruit eating birds, which in turn support several insect species.

Pyramid of biomass

A pyramid of biomass is a graphical representation of the total amount of living matter present at each trophic level of an ecosystem. It can be upright or inverted. It is upright in grasslands and forest ecosystems as the amount of biomass present at the producer level is higher than at the top carnivore level. The pyramid of biomass is inverted in a pond ecosystem as the biomass of fishes far exceeds the biomass of zooplankton (upon which they feed).

9. What is primary productivity? Give brief description of factors that affect primary productivity.

Show Answer

Answer

It is defined as the amount of organic matter or biomass produced by producers per unit area over a period of time.

Primary productivity of an ecosystem depends on the variety of environmental factors such as light, temperature, water, precipitation, etc. It also depends on the availability of nutrients and the availability of plants to carry out photosynthesis.

10. Define decomposition and describe the processes and products of decomposition.

Show Answer

Answer

Decomposition is the process that involves the breakdown of complex organic matter or biomass from the body of dead plants and animals with the help of decomposers into inorganic raw materials such as carbon dioxide, water, and other nutrients. The various processes involved in decomposition are as follows:

(1) Fragmentation: It is the first step in the process of decomposition. It involves the breakdown of detritus into smaller pieces by the action of detritivores such as earthworms.

(2) Leaching: It is a process where the water soluble nutrients go down into the soil layers and get locked as unavailable salts.

(3) Catabolism: It is a process in which bacteria and fungi degrade detritus through various enzymes into smaller pieces.

(4) Humification: The next step is humification which leads to the formation of a dark-coloured colloidal substance called humus, which acts as reservoir of nutrients for plants.

(5) Mineralization: The humus is further degraded by the action of microbes, which finally leads to the release of inorganic nutrients into the soil. This process of releasing inorganic nutrients from the humus is known as mineralization.

Decomposition produces a dark coloured, nutrient-rich substance called humus. Humus finally degrades and releases inorganic raw materials such as $\mathrm{CO}_{2}$, water, and other nutrient in the soil.

11. Give an account of energy flow in an ecosystem.

Show Answer

Answer

Energy enters an ecosystem from the Sun. Solar radiations pass through the atmosphere and are absorbed by the Earth’s surface. These radiations help plants in carrying out the process of photosynthesis. Also, they help maintain the Earth’s temperature for the survival of living organisms. Some solar radiations are reflected by the Earth’s surface. Only 2-10 percent of solar energy is captured by green plants (producers) during photosynthesis to be converted into food. The rate at which the biomass is produced by plants during photosynthesis is termed as ‘gross primary productivity’. When these green plants are consumed by herbivores, only $10 %$ of the stored energy from producers is transferred to herbivores. The remaining $90 %$ of this energy is used by plants for various processes such as respiration, growth, and reproduction. Similarly, only $10 %$ of the energy of herbivores is transferred to carnivores. This is known as ten percent law of energy flow.

पारितंत्र को प्रकृति की एक क्रियाशील ईकाई के रूप में देखा जाता है, जहाँ पर जीवधारी आपस में तथा आस पास के भौतिक पर्यावरण के साथ परस्पर क्रिया करते हैं। पारितंत्र का आकार एक छोटे से तालाब से लेकर एक विशाल जंगल या महासागर तक हो सकता है। कई पारिस्थितिकी वैज्ञानिक संपूर्ण जीवमंडल को विश्व (ग्लोबी) पारितंत्र के रूप में देखते हैं, जिसमें पृथ्वी के सभी स्थानीय पारितंत्र समाहित होते हैं। चूँकि यह तंत्र बहुत विशाल एवं जटिल है अतः अध्ययन की सुविधा की दृष्टि से इसे दो आधारभूत श्रेणियों- मुख्यतः स्थलीय एवं जलीय में बाँटा गया है। जंगल, घास के मैदान तथा मरूस्थल आदि कुछ स्थलीय पारितंत्र तथा झीलें, तालाब, दलदली क्षेत्र, नदियाँ एवं ज्वार नदमुख (एस्टुअरी) आदि कुछ जलीय पारितंत्र के उदाहरण हैं। मानव निर्मित पारितंत्र के रूप में शस्यभूमि एवं जलजीवशाला को माना जा सकता है।

हम सबसे पहले, पारितंत्र की संरचना को देखेंगे ताकि निवेश (उत्पादकता), ऊर्जा का स्थानांतरण (आहार श्रृंखला / जाल, पोषण चक्र) तथा निर्गम (निम्नीकरण एवं ऊर्जा क्षति) का अवगमन (अवबोध) कर सकें। इसके साथ ही हम चक्रों, शृंखलाओं, जाल तंत्रों के संबंधों को भी देखेंगे-जोकि तंत्र के अंतर्गत प्रवाहित इन ऊर्जाओं के परिणामस्वरूप पैदा हुए हैं।

12.1 पारितंत्र संरचना एवं क्रियाशीलता

अध्याय 13 में आपने पर्यावरण के विभिन्न घटकों के बारे में अध्ययन किया, जिसमें दोनों जैविक एवं अजैविक घटक शामिल हैं। आपने पढ़ा है कि किस प्रकार से जैविक एवं अजैविक घटक व्यक्तिगत रूप से एक-दूसरे को तथा अपने आस पास के वातावरण को प्रभावित करते हैं। आइए! अब इन घटकों को और अधिक समेकित (संयुक्त) रूप से देखें तथा यह जाने कि पारितंत्र के इन घटकों के अंतर्गत ऊर्जा प्रवाह कैसे संपन्न होता है।

जैविक एवं अजैविक घटकों की परस्पर क्रियाओं के फलस्वरूप एक भौतिक संरचना विकसित होती है, जो प्रत्येक प्रकार के पारितंत्र की विशिष्टता है। एक पारितंत्र की पादप एवं प्राणि प्रजातियों की पहचान एवं गणना इसकी प्रजातियों के संघटन (कंपोजीशन) को प्रकट करता है। विभिन्न स्तरों पर विभिन्न प्रजातियों के ऊर्ध्वाधर वितरण को स्तरविन्यास कहते हैं। उदाहरणार्थ एक जंगल में वृक्ष सर्वोपरि ऊर्ध्वाधर स्तर, झाड़ियाँ द्वितीयक स्तर तथा जड़ी-बूटियाँ एवं घास निचले (धरातलीय) स्तर पर निवास करते हैं।

पारिस्थितिक तंत्र में सारे घटक एक इकाई के रूप में तब क्रियाशील दिखते हैं; जब आप निम्न पहलुओं पर दृष्टि डालते हैं-

(क) उत्पादकता

(ख) अपघटन

(ग) ऊर्जाप्रवाह और

(घ) पोषण चक्र।

एक जलीय पारितंत्र के गुण धर्म (प्रकृति) को समझने के लिए आइए एक छोटे तालाब को उदाहरण स्वरूप लेते हैं। यह एक औचित्यपूर्ण स्वपोषी और अपेक्षित रूप से सरल उदाहरण है जो हमें एक जलीय पारितंत्र में यहाँ तक की जटिल-पारस्परिकता (अन्योन्यक्रियाओं) को समझने में सहायक है। एक तालाब उथले पानी वाला एक जल-निकाय है जिसमें एक पारितंत्र के सभी मूलभूत घटक बेहतर ढंग से प्रदर्शित होते हैं। पानी एक अजैविक घटक है जिसमें कार्बनिक एवं अकार्बनिक तत्त्व तथा प्रचुर मृदा निक्षेप तालाब की तली में जमा होते हैं। सौर निवेश, ताप का चक्र, दिन की अवधि ( लंबाई) तथा अन्य जलवायुवीय परिस्थितियाँ समूचे तालाब की क्रियाशीलता की दर को नियमित करते हैं। स्वपोषी घटक जैसे पादप लवक, कुछ काई (शैवाल) तथा प्लवक एवं निमग्न तथा किनारों पर सीमांत पादप तालाब के किनारों पर पाए जाते हैं। उपभोक्ताओं का प्रतिनिधित्व प्राणिप्लवक तथा स्वतंत्र प्लवी एवं तलीय वासी जीव स्वरूपों द्वारा पारितंत्र किया जाता है। अपघटक के उदाहरण कवक एवं जीवाणु हैं जो विशेष रूप से तालाब की तली में प्रचुरता से पाए जाते हैं। यह तंत्र किसी भी पारितंत्र (और कुल मिलाकर जीवमंडल) की सभी प्रक्रियाओं को निष्पादित करते हैं अर्थात् स्वपोषियों द्वारा सूर्य की विकिरण ऊर्जा के उपभोग से अकार्बनिक तत्त्वों को कार्बनिक तत्त्वों में बदलना, विभिन्न स्तरों के परपोषितों द्वारा स्वपोषकों का भक्षण, मृत जीवों की सामग्रियों का अपघटन एवं खनिजीकरण कर स्वपोषकों के लिए मुक्त करना इस घटना की पुनरावृत्ति बारंबार होती रहती है। ऊर्जा की एकदिशीय गतिशीलता उच्च पोषी स्तरों की ओर तथा पर्यावरण में इसका अपव्यय और ऊष्मा के रूप में हानि होती है।

12.2 उत्पादकता

किसी भी पारितंत्र की क्रियाशीलता एवं उसके स्थायी रहने के लिए सौर ऊर्जा के निरंतर निवेश (इनपुट) की आधारभूत आवश्यकता है। प्राथमिक उत्पादन प्रकाश संश्लेषण के दौरान पादपों द्वारा एक निश्चित समयावधि में प्रति ईकाई क्षेत्र द्वारा उत्पन्न किए गए जैव मात्रा या कार्बनिक सामग्री की मात्रा है। इसे भार $\left(\mathrm{g}^{-2}\right)$ या ऊर्जा $\left(\mathrm{K} \mathrm{cal} \mathrm{m}^{-2}\right)$ के रूप में व्यक्त किया जा सकता है। जैव मात्रा के उत्पादन की दर को उत्पादकता कहते हैं। इसे $\mathrm{g}^{-2} \mathrm{yr}^{1}$ या $\left(\mathrm{K} \mathrm{cal} \mathrm{m}^{-2}\right) \mathrm{yr}^{-1}$ (ऊर्जा) के रूप में व्यक्त किया जा सकता है, जिससे विभिन्न पारितंत्रों की उत्पादकता की तुलना की जा सकती है। इसे सकल या कुल प्राथमिक उत्पादकता तथा नेट प्राथमिक उत्पादकता में विभाजित किया जा सकता है। एक पारिस्थितिक तंत्र की सकल प्राथमिक उत्पादकता प्रकाश संश्लेषण के दौरान कार्बनिक तत्त्व की उत्पादन दर होती है। सकल प्राथमिक उत्पादकता की एक महत्त्वपूर्ण मात्रा पादपों में श्वसन द्वारा उपयोग की जाती है। यदि हम सकल प्राथमिक उत्पादकता से श्वसन के दौरान हुई क्षति को घटा देते हैं तो हमें नेट प्राथमिक उत्पादकता प्राप्त होती है।

जी.पी.पी - आर = एन.पी.पी.

नेट प्राथमिक उत्पादकता परपोषितों की खपत (शाकभक्षी या अपघटक के रूप में) के लिए उपलब्ध जैव मात्रा होती है। द्वितीयक उत्पादकता को उपभोक्ताओं ने नए कार्बनिक तत्त्वों के निर्माण की दर के रूप में परिभाषित किया है।

प्राथमिक उत्पादकता एक सुनिश्चित क्षेत्र में पादप प्रजातियों के निवास पर निर्भर करती है। ये विभिन्न प्रकार के पर्यावरणीय कारकों, पोषकों की उपलब्धता तथा पादपों की प्रकाश संश्लेषण क्षमता पर भी निर्भर करती है। इसलिए ये विभिन्न प्रकार के पारितंत्रों में भिन्न-भिन्न होती है। संपूर्ण जीव मंडल की वार्षिक कुल प्राथमिक उत्पादकता का भार कार्बनिक तत्त्व (शुष्क भार) के रूप में लगभग 170 बिलियन टन आँका गया है। यद्यपि पृथ्वी के धरातल का लगभग 70 प्रतिशत भाग समुद्रों द्वारा ढका हुआ है, फिर भी बावजूद इनकी उत्पादकता केवल 55 बिलियन टन है। शेष मात्रा भूमि पर उत्पन्न होती है। अपने शिक्षक के साथ महासागरों की निम्न उत्पादकता के प्रमुख कारणों के बारे में चर्चा कीजिए।

12.3 अपघटन

आपने शायद सुना होगा कि केंचुओं को किसान के मित्र के रूप में संबोधित किया जाता है। ऐसा इसलिए है; क्योंकि ये जटिल कार्बनिक पदार्थों खंडन करने के साथ-साथ भूमि को भुरभुरा बनाने में मदद करते हैं। उसी प्रकार अपघटक जटिल कार्बनिक सामग्री को अकार्बनिक तत्त्वों जैसे- कार्बन डाईऑक्साइड, जल एवं पोषकों में खंडित करने में सहायता करते हैं और इस प्रक्रिया को अपघटन कहते हैं। पादपों के मृत अवशेष -जैसे पत्तियाँ, छाल, फूल तथा प्राणियों (पशुओं) के मृत अवशेष, मलादि सहित अपरद (डेट्राइटस) बनाते हैं, जोकि अपघटन के लिए कच्चे पदार्थों का काम करते हैं। अपघटन की प्रक्रिया के महत्त्वपूर्ण चरण खंडन, निक्षालन, अपचयन, ह्यूमस भवन (बनना), खनिजी भवन हैं।

अपरदाहारी (जैसे कि केंचुए) अपरद को छोटे-छोटे कणों में खंडित कर देते हैं। इस प्रक्रिया को खंडन कहते हैं। निक्षालन प्रक्रिया के अंतर्गत जल-विलेय अकार्बनिक पोषक भूमि मृदासंस्तर में प्रविष्ट कर जाते हैं और अनुपलब्ध लवण के रूप में अवक्षेपित हो जाते हैं। बैक्टीरियल (जीवाणुवीय) एवं कवकीय एंजाइंस अपरदों को सरल अकार्बनिक तत्त्वों में तोड़ देते हैं। इस प्रक्रिया को अपचय कहते हैं।

चित्र 12.1 एक स्थलीय पारितंत्र में अपघटन चक्र का आरेखीय निरूपण

यह समझना महत्त्वपूर्ण हैं कि उपर्युक्त अपघटन की समस्त प्रक्रियाएँ अपरद पर समानांतर रूप से लगातार चलती रहती हैं। (चित्र 12.1) ह्यूमीफिकेशन और मिनरेलाइजेशन की प्रक्रिया अपघटन के दौरान मृदा में संपन्न होती है। ह्यूमीफिकेशन के द्वारा एक गहरे रंग के क्रिसटल रहित तत्त्व का निर्माण होता है जिसे ह्यूमस कहते हैं जोकि सूक्ष्मजैविक क्रिया के लिए उच्च प्रतिरोधी होता है और इसका अपघटन बहुत ही धीमी गति से चलता है। स्वभाव (प्रकृति) में कोलाइडल होने के कारण यह पोषक के भंडार का काम करता है। ह्यूमस पुनः कुछ सूक्ष्मजीवों द्वारा खंडित होता है और जो खनिजीकरण नामक प्रक्रिया द्वारा अकार्बनिक पोषक उत्पन्न होते हैं उन्हें मुक्त करता है।

अपघटन एक प्रक्रिया है जिसमें ऑक्सीजन की आवश्यकता होती है। अपघटन की दर जलवायुवीय घटकों तथा अपरद के रासायनिक संघटनों द्वारा निर्धारित होती है। एक विशिष्ट जलवायुवीय परिस्थिति में; यदि अपरद काइटिन तथा लिग्निन से भरपूर होता है तब अपघटन दर धीमी होती हैं, यदि अपरद नाइट्रोजन तथा जलविलेय तत्त्वों जैसे चीनी आदि से भरपूर होता है तब यह तेज होती है। ताप एवं मृदा की नमी बहुत ही महत्त्वपूर्ण जलवायुवीय घटक है जो मृदा के सूक्ष्मजीवों की क्रियाओं द्वारा अपघटन की गति को नियमित करते हैं। गरम एवं आर्द्र पर्यावरण में अपघटन की गति तेज होती है जबकि निम्न ताप एवं अवायुजीवन अपघटन की गति को धीमा करती है जिसके परिणाम स्वरूप कार्बनिक पदार्थों का भंडार जमा हो जाता है।

12.4 ऊर्जा प्रवाह

गहरे समुद्र के जलतापीय पारितंत्र को छोड़कर पृथ्वी पर सभी पारिस्थितिक तंत्रों के लिए एक मात्र ऊर्जा स्रोत सूर्य है। आपतित सौर विकिरण का 50 प्रतिशत से कम भाग प्रकाश संश्लेषणात्मक सक्रिय विकिरण में प्रयुक्त होता है। हम जानते हैं कि पादप एवं प्रकाश संश्लेषण सक्षम जीवाणु (स्वपोषी) सूर्य की विकरित ऊर्जा को सरल अकार्बनिक पदार्थों से आहार तैयार करने में लगाते हैं। पादप केवल 2-10 प्रतिशत प्रकाश संश्लेषणात्मक सक्रिय विकिरण का प्रग्रहण करते हैं और यही आंशिक मात्रा की ऊर्जा संपूर्ण विश्व का संपोषण करती है। अतः यह जानना अत्यंत महत्त्वपूर्ण है कि पादपों द्वारा संग्रहण की गई सौर ऊर्जा एक पारिस्थितिक तंत्र के विभिन्न जीवों के माध्यम से किस प्रकार प्रवाहित होती है। पृथ्वी के सभी जीव आहार के लिए प्रत्यक्ष या अप्रत्यक्ष रूप से उत्पादकों पर निर्भर रहते हैं। अतः आप पायेंगे कि सूर्य से उत्पादकों की ओर और फिर उपभोक्ता की ओर ऊर्जा का प्रवाह एकदिशीय होता है। क्या इसमें ऊष्मा गतिक का प्रथम सिद्धांत निहित है?

पारिस्थितिक तंत्र ऊष्मा गतिक के दूसरे सिद्धांत से अवमुक्त नहीं हैं। उन्हें निरंतर ऊर्जा की आपूर्ति की आवश्यकता होती है ताकि वे अपेक्षित अणुओं को संश्लेषित कर बढ़ती हुई अव्यवस्थापन के प्रति सर्व-व्यापी प्रवृत्ति से संघर्ष कर सकें।

पारिस्थितिक तंत्र की शब्दावली में हरे पादप को उत्पादक कहा जाता है। स्थलीय पारिस्थितिक तंत्र में शाकी एवं काष्ठीय पादप प्रमुख उत्पादक हैं। इसी प्रकार विभिन्न प्रजातियाँ जैसे-पादपप्लवक, काई और बड़े पादप जलीय पारिस्थित तंत्र के प्राथमिक उत्पादक हैं।

आपने खाद्य भृंखलाओं तथा जालों (बेब्स) के बारे में पढ़ा है जो कि प्रकृति में विद्यमान हैं। पादप (या उत्पादक) से प्रारंभ होकर खाद्य शृंखला या जाल इस प्रकार से बने होते हैं कि प्रत्येक प्राणी जो एक पादप से आहार ग्रहण करता है या अन्य प्राणी पर निर्भर करता है और बदले में वह किसी अन्य के लिए आहार बनाता है। इस परस्पर अंतर निर्भरता के कारण श्रृंखला जाल (वेब) की रचना होती है। किसी भी जीव द्वारा आबद्ध (ग्रहण) की गई ऊर्जा सदैव के लिए संचित नहीं रहती है। उत्पादक द्वारा आबद्ध की गई ऊर्जा या तो उपभोक्ता को भंज दी जाती है या वह जीव मृत हो जाती है। एक जीव की मृत्यु अपरद खाद्य श्रृंखला / जाल की शरुआत होती है।

सभी जीव अपनी आहार आवश्यकता के लिए (प्रत्यक्ष या अप्रत्यक्ष रूप से) पादपों पर निर्भर करते हैं। अतः इन्हें उपभोक्ता तथा परपोषित भी कहा जाता है और यदि वे उत्पादक, पादपों से आहारपूर्ति करते हैं तब उन्हें प्राथमिक उपभोक्ता कहा जाता है और अगर एक पशु दूसरे पशु (वह पशु जो पेड़ों को या उसके उत्पाद को खाता है) को खाता है, उसे द्वितीयक उपभोक्ता कहा जाता है। ठीक उसी प्रकार से आप तृतीयक उपभोक्ता भी हो सकते हैं। निश्चित ही प्राथमिक उपभोक्ता शाकाहारी या शाकभक्षी होंगे। स्थलीय पारिस्थितिक तंत्र में कुछ सामान्य शाकाहारी, कीट-पतंगे, पक्षी तथा स्तनधारी पशु तथा जलीय पारिस्थितिक तंत्र में मृदकवची (मोलस्क) होते हैं।

वे उपभोक्ता, जो शाकाहारी जीवों से आहारपूर्ति करते हैं, वे मांसाहारी या मांसभक्षी होते हैं या इन्हें प्राथमिक मांसभक्षी कहना अधिक उपयुक्त होगा (यद्यपि द्वितीयक उपभोक्ता)। वे पशु, जो आहार हेतु प्राथमिक मांसभक्षियों पर निर्भर करते हैं उन्हें द्वितीयक मांसभक्षी के रूप में नामित किया गया है। एक साधारण खाद्य शृंखला यहाँ दिखाई गई है -

$\begin{aligned} & \text { घास }—-\rightarrow \ & \text { बकरी }—–\rightarrow \quad \text { मनुष्य }—–\rightarrow \\ & \text { (उत्पादक) } \ & \text { (प्राथमिक उपभोक्ता) } \ & \text { (द्वितीयक उपभोक्ता) } \ & \end{aligned}$

एक अन्य प्रकार की खाद्य शृंखला को अपरद खाद्य शृंखला के नाम से जाना जाता है जो मृत कार्बनिक सामग्री से प्रारंभ होती है। यह अपघटकों से बना होता है जोकि मुख्यतः कवक एवं बैक्टीरिया के रूप में परपोषित जीव होते हैं। ये मृत कार्बनिक सामग्री या अपरदों के खंडन द्वारा अपेक्षित ऊर्जा एवं पोषण प्राप्त करते हैं। इन्हें मृतपोषी या पूर्तिजीवी (मृतः अपघटन) के नाम से भी जाना जाता है। अपघटक पाचक एंजाइम्स स्रवित करते हैं, जो मृत जीवों तथा व्यर्थ सामग्री को साधारण, अकार्बनिक पदार्थों में तोड़ डालते हैं, जो बाद में उन्हीं के द्वारा अवशोषित कर लिए जाते हैं।

जलीय पारितंत्र में चारण खाद्य शृंखला ऊर्जा प्रवाह का महत्त्वपूर्ण साधन है। इसके विरुद्ध, स्थलीय पारिस्थितिक तंत्र में जी एफ सी की तुलना में अपरद खाद्य श्रृंखला द्वारा कहीं अधिक ऊर्जा प्रवाहित होती है। कुछ स्तरों पर अपरद खाद्य श्रृंखला को चारण ( चराई) खाद्य शृंखला से जोड़ा जा सकता है। अपरद खाद्य श्रृंखला के कुछ जीव, चारण खाद्य भृंखला-पशुओं के शिकार बन जाते हैं और एक प्राकृतिक पारिस्थितिक तंत्र में कुछ जीव-जंतु जैसे काकरोच (तिलचट्टे) एवं कौवे आदि सर्वभक्षी होते हैं। खाद्य शृंखलाओं का यह प्राकृतिक अंतरसंबंध एक आहार जाल ( फूडवेब) का निर्माण करता है।

आहारपूर्ति संबंधों के अनुसार सभी जीवों का प्राकृतिक वातावरण या एक समुदाय में अन्य जीवों के साथ एक स्थान होता है। सभी जीव अपने पोषण या आहार के स्रोत के आधार पर आहार शृंखला में एक विशेष स्थान ग्रहण करते हैं, जिसे (ट्राफिक लेवेल) पोषण स्तर के नाम से जाना जाता है। उत्पादक प्रथम पोषण स्तर में आते हैं, शाकाहारी ( प्राथमिक उपभोक्ता) दूसरी एवं मांसाहारी (द्वितीयक उपभोक्ता) तीसरे पोषण स्तर से संबद्ध होते हैं (चित्र 12.2)।

चित्र 12.2 एक पारिस्थितिक तंत्र में पोषण स्तर का आरेखीय निरूपण

यहाँ पर ध्यान देने योग्य महत्त्वपूर्ण बात यह है कि उत्तरोत्तर पोषण स्तरों पर ऊर्जा की मात्रा घटती जाती है। जब कोई जीव मरता है तो वह अपरद या मृत जैवमात्रा में बदल जाता है जो अपघटकों के लिए एक ऊर्जा स्रोत के रूप में काम करता है। प्रत्येक पोषण स्तर पर जीव अपनी ऊर्जा की आवश्यकता के लिए निम्न पोषण स्तर पर निर्भर रहता है।

एक विशिष्ट समय पर प्रत्येक पोषण स्तर का जीवित पदार्थ की कुछ खास मात्रा होती है, जिसे स्थित शस्य या खड़ी फसल कहा जाता है। स्थित शस्य को जीवित जैविकों की मात्रा ( जैवमात्रा) या इकाई क्षेत्र में संख्या से मापा जाता है। एक प्रजाति की जैवमात्रा को ताजे या शुष्क भार के रूप में व्यक्त किया जाता है। एक जैवमात्रा का मापन शुष्क भार के शब्दों में किया जाय तो वह अधिक विशुद्ध होगा। क्यों? चारण खाद्य शृंखला में पोषण स्तरों की संख्या प्रतिबंधित होती है इस तरह से ऊर्जा प्रवाह का स्थानांतरण 10 प्रतिशत कम होता है और प्रत्येक निम्न पोषण स्तर से ऊपर का पोषण स्तर पर केवल 10 प्रतिशत ऊर्जा प्रवाहित होती है। प्रकृति में यह संभव है कि कई स्तर हों जैसे कि चरण खाद्य शृंखला में उत्पादक, शाकभक्षी, प्राथमिक मांसभक्षी, द्वितीयक मांसभक्षी आदि (चित्र 12.3)। क्या आप सोच सकते हैं कि इस प्रकार अपरद खाद्य शृंखला की कोई सीमा है?

चित्र 12.3 विभिन्न पोषण स्तरों में से होता हुआ ऊर्जा का प्रवाह

12.5 पारिस्थितिक पिरैमिड ( सूची स्तंभ )

आप पिरैमिड के आकार से निश्चित ही परिचित होंगे। पिरैमिड का आधार चौड़ा (विस्तृत) एवं शिखाग्र की ओर सँकरा होता जाता है। विभिन्न पोषण रीतियों पर जीवों के बीच चाहे आप एक खाद्य या ऊर्जा संबंध जोड़े तो आपको पिरैमिड के समान आकार मिलेगा। इस संबंध को संख्या, जैव मात्रा या ऊर्जा के रूप में व्यक्त किया जा सकता है। प्रत्येक पिरैमिड के आधार का प्रतिनिधित्व उत्पादक या पहली पोषण स्तर करता है जबकि शिखर का प्रतिनिधित्व तृतीयक पोषण स्तर या सर्वोच्च उपभोक्ता करता है। तीन पारिस्थितिक पिरैमिड जिनका आमतौर पर अध्ययन किया जाता है, वे हैं (क) संख्या का पिरैमिड (ख) जैवमात्रा का पिरैमिड और (ग) ऊर्जा का पिरैमिड। विस्तृत जानकारी के लिए चित्र 12.4 अ, ब, स और द देखें।

चित्र 12.4 (अ) एक घास के मैदान की पारिस्थितिक तंत्र का पिरैमिड लगभग 6 मिलियन पादपों के उत्पादन पर आधारित पारिस्थितिक तंत्र में समर्थित केवल 3 मांसाहारी जीव हैं।

चित्र 12.4 (ब) एक जैव मात्रा का पिरैमिड शीर्ष पोषण स्तर पर एक तीव्र गिरावट दर्शाता है। एक दलदली पारिस्थितिक तंत्र से आंकड़े

चित्र 12.4 ( स ) जैव मात्रा का उल्टा पिरैमिड प्राणीप्लवक की व्यापक खड़ी फसल को समर्थित करती पादप प्लवक की छोटी खड़ी फसल।

चित्र 12.4 ( द ) ऊर्जा का एक आदर्श पिरैमिड चित्र 14.4-अ-ब पारिस्थितिक पिरैमिड (P) उत्पादक, (PC) प्राथमिक उपभोक्ता (SC) द्वितीयक उपभोक्ता, (TC) तृतीयक उपभोक्ता

ऊर्जा, मात्रा या अंश, जैवमात्रा या संख्याओं की किसी भी गणना में पोषण स्तर के सभी जीवों को शामिल किया जाना चाहिए। यदि हम किसी पोषण स्तर के कुछ व्यष्टियों को ही गणना में लेते हैं तो हमारे द्वारा किया गया कोई भी व्यापकीकरण सत्य नहीं होगा। इसके साथ ही एक प्रदत्त जीव एक ही समय एक से अधिक पोषणरीतियों में अधिष्ठित हो जाएगा। हमें यह अवश्य ध्यान में रखना चाहिए कि पोषण स्तर एक क्रियात्मक स्तर का प्रतिनिधित्व करता है न कि किसी प्रजाति का। एक प्रदत्त प्रजाति, एक ही समय पर एक ही पारिस्थितिक तंत्र में एक से अधिक पोषण रीतियों में अधिष्ठित हो सकती है; उदाहरण के लिए एक गौरेया जब बीज, फल व मटर खाती है तो वह प्राथमिक उपभोक्ता है किंतु जब वह कीटों एवं केंचुओं को खाती है, तब वह द्वितीयक उपभोक्ता होती है। क्या आप यह विवरण दे सकते हैं कि एक खाद्यशंखला में मनुष्य कितनी पोषणरीतियों का प्रयोग करता है?

अधिकतर पारिस्थितिक तंत्रों में संख्याओं, ऊर्जा तथा जैव मात्रा के सभी पिरैमिड आधार से ऊपर की ओर होते हैं। अर्थात् शाकाहारियों की अपेक्षा उत्पादकों की संख्या एवं जैव मात्रा अधिक होती है और इसी तरह से शाकाहारियों की संख्या एवं जैव मात्रा मांसाहारियों की अपेक्षा अधिक होती है। इसी प्रकार से निम्न पोषण स्तर में ऊर्जा की मात्रा ऊपरी पोषण स्तर से अधिक होती है।

इस व्यापकीकरण में कुछ अपवाद हैं; यदि आप एक बड़े वृक्ष पर आहार प्राप्त करने वाले कीटों की संख्या की गणना करें तो आपको कैसा पिरैमिड प्राप्त हो सकता है। अब उसमें उन छोटे कीटों पर निर्भर छोटे पक्षियों की गणना करें, इसके साथ ही कीटभक्षी पक्षियों पर निर्भर बड़े पक्षियों की गणना करें। अब आप प्राप्त आंकड़ों पर चित्र बनाएँ।

समुद्र में जैव मात्रा (भार) के पिरैमिड भी प्रायः उल्टे होते हैं, क्योंकि मछलियों की जैवमात्रा पादपप्लवकों की जैव मात्रा से बहुत अधिक होती है। क्या यह एक विरोधाभास नहीं है? आप इसकी व्याख्या कैसे करेंगे?

ऊर्जा पिरैमिड सदैव खड़ी अवस्था में होता है, कभी उल्टा नहीं हो सकता, क्योंकि जब ऊर्जा किसी विशेष पोषण स्तर से अग्र पोषण स्तर में पहुँचती है, तो हर स्तर पर ऊष्मा के रूप में ऊर्जा का ह्रास होता है। ऊर्जा पिरैमिड का प्रत्येक स्तंभ उस पोषण स्तर में किसी विशेष समय पर अथवा प्रति इकाई क्षेत्र वार्षिक ऊर्जा का द्योतक है।

यद्यपि, पारिस्थितिकी पिरैमिड की कुछ सीमाएँ हैं, जैसे कि पिरैमिड में ऐसी जातियों का समावेश भी होता है, जोकि दो या अधिक भोजन स्तरों से संबंधित हो सकता है। इससे एक साधारण आहार श्रृंखला बनती है, जो कि प्रकृति में विद्यमान नहीं होती है, इसमें आहार जाल का समावेश नहीं है। पारिस्थितिकी तंत्र में एक प्रमुख भूमिका निभाने के अतिरिक्त मृत जीवियों को पारिस्थितिकी पिरामिड में कोई स्थान प्राप्त नहीं है।

सारांश

पारितंत्र प्रकृति की एक क्रियाशील ईकाई है और उसमें निर्जीव एवं सजीव घटक समाहित हैं। अजीवीय घटकों के अंतर्गत अकार्बनिक सामग्री जैसे हवा, पानी, एवं मिट्टी जबकि सजीव घटकों के अंतर्गत उत्पादक, उपभोक्ता एवं अपघटक आते हैं। प्रत्येक पारितंत्र की एक विशिष्ट भौतिक संरचना होती है जो निर्जीव एवं सजीवों के बीच परस्पर क्रिया का परिणाम है। एक पारितंत्र की दो महत्त्वपूर्ण विशिष्टताएँ- प्रजाति संघटन एवं स्तर विन्यास होती हैं। सभी जीवों का पारितंत्र में अपने पोषण स्रोत के आधार पर एक स्थान निश्चित होता है।

उत्पादकता, अपघटन, ऊर्जा प्रवाह तथा पोषक चक्र एक पारितंत्र की चार महत्त्वपूर्ण क्रियाएँ होती हैं। प्राथमिक उत्पादकता, उत्पादक की जैव मात्रा, उत्पादन या सौर ऊर्जा की ग्रहण की दर होती है। इसके दो प्रकार हैं- ग्रास प्राथमिक उत्पादकता तथा नेट प्राथमिक उत्पादकता। जैविक पदार्थ की कुल उत्पादकता या सौर ऊर्जा संग्रहण की दर को ग्रास प्राथमिक उत्पादकता कहते है। इसके साथ ही उत्पादकता के उपयोग के पश्चात् शेष बची जैव मात्रा या ऊर्जा को नेट प्राथमिक उत्पादकता (एन.पी.पी.) कहते हैं। द्वितीयक उत्पादकता उपभोक्ता द्वारा खाद्य ऊर्जा के सर्वांगीकरण की दर होती है। अपघटन में, अपरद के जटिल कार्बनिक घटकों को अपघटकों द्वारा कार्बन डाईऑक्साइड, जल तथा अकार्बनिक पोषकों में द्वारा बदला जाता है। अपघटन में तीन प्रक्रियाएँ सम्मिलित होती हैं जोकि मुख्यतः अपरदों का खंडन, निक्षालन एवं अपचय हैं।

ऊर्जा प्रवाह एकदिशीय होता है। पहले, पादप सौर ऊर्जा को ग्रहण करते हैं इसके बाद आहार उत्पादक से अपघटक को स्थानांतरित किया जाता है। प्रकृति में भिन्न पोषण स्तर के जीव आहार या ऊर्जा संबंधों हेतु एक दूसरे से परस्पर जुड़कर खाद्य शृंखला का गठन करते हैं। पारिस्थितिक तंत्र के विभिन्न घटकों के माध्यम से पोषक तत्त्वों की गतिशीलता एवं भंडारण को पोषक चक्र कहते हैं। इस प्रक्रिया द्वारा पोषकों का बार- बार उपयोग होता है। पोषक चक्र दो प्रकार के होते हैं: गैसीय एवं अवसादी। गैसीय प्रकार के चक्र (कार्बन) हेतु भंडार वायुमंडल या जलमंडल होता है, जबकि पृथ्वी की पटल (पपड़ी) अवसादी प्रकार के (फॉस्फोरस) पोषक का भंडार होती है। पारितंत्रीय प्रक्रिया के उत्पादों को पारितंत्र सेवा का नाम दिया गया है। जैसेकि जंगलों द्वारा वायु एवं जल का शुद्धीकरण।

अभ्यास

1. रिक्त स्थानों को भरो।

(क) पादपों को ……….. कहते हैं; क्योंकि कार्बन डाईऑक्साइड का स्थिरीकरण करते हैं।

(ख) पादप द्वारा प्रमुख पारितंत्र का पिरैमिड (सं० का) (………..) प्रकार का है।

(ग) एक जलीय पारितंत्र में, उत्पादकता का सीमा कारक ……….. है।

(घ) हमारे पारितंत्र में सामान्य अपरदन ……….. हैं।

(च) पृथ्वी पर कार्बन का प्रमुख भंडार ……….. है।

Show Answer

Answer

#/msissing

2. एक खाद्य श्रृंखला में निम्नलिखित में सर्वाधिक संख्या किसकी होती है-

(क) उत्पादक

(ख) प्राथमिक उपभोक्ता

(ग) द्वितीयक उपभोक्ता

(घ) अपघटक

Show Answer

Answer

#/msissing

3. एक झील में द्वितीय (दूसरी) पोषण स्तर होता है-

(क) पादपप्लवक

(ख) प्राणिप्ल्वक

(ग) नितलक (बैनथॉस)

(घ) मछलियाँ

Show Answer

Answer

#/msissing

4. द्वितीयक उत्पादक हैं-

(क) शाकाहारी (शाकभक्षी)

(ख) उत्पादक

( ग) मांसाहारी ( मांसभक्षी)

(घ) उपरोक्त कोई भी नहीं

Show Answer

Answer

#/msissing

5. प्रासंगिक सौर विकिरण में प्रकाश संश्लेषणात्मक सक्रिय विकिरण का क्या प्रतिशत होता है?

(क) $100 \%$

( ग) $50 \%$

(ग) $1-5 \%$

(घ) $2-10 \%$

Show Answer

Answer

#/msissing

6. निम्नलिखित में अंतर स्पष्ट करें -

(क) चारण खाद्य श्रृंखला एवं अपरद खाद्य श्रृंखला

(ख) उत्पादन एवं अपघटन

(ग) ऊर्ध्ववर्ती (शिखरांश) व अधोवर्ती पिरैमिड

(घ) खाद्य शृंखला तथा खाद्य जाल (बेब)

(ङ) लिटर (कर्कट) एवं अपरद

(च) प्राथमिक एवं द्वितीयक उत्पादकता

Show Answer

Answer

#/msissing

7. पारिस्थितिक तंत्र के घटकों की व्याख्या करें।

Show Answer

Answer

#/msissing

8. पारिस्थितिकी पिरैमिड को परिभाषित करें तथा जैवमात्रा या जैवभार तथा संख्या के पिरैमिडों की उदाहरण सहित व्याख्या करें।

Show Answer

Answer

#/msissing

9. प्राथमिक उत्पादकता क्या है? उन कारकों की संक्षेप में चर्चा करें जो प्राथमिक उत्पादकता को प्रभावित करते हैं।

Show Answer

Answer

#/msissing

10. अपघटन की परिभाषा दें तथा अपघटन की प्रक्रिया एवं उसके उत्पादों की व्याख्या करें।

Show Answer

Answer

#/msissing

11. एक पारिस्थितिक तंत्र में ऊर्जा प्रवाह का वर्णन करें।

Show Answer

Answer

#/msissing



Table of Contents