Chapter-08 Electromagnetic Waves
8.1 Introduction
In Chapter 4, we learnt that an electric current produces magnetic field and that two current-carrying wires exert a magnetic force on each other. Further, in Chapter 6, we have seen that a magnetic field changing with time gives rise to an electric field. Is the converse also true? Does an electric field changing with time give rise to a magnetic field? James Clerk Maxwell (1831-1879), argued that this was indeed the case - not only an electric current but also a time-varying electric field generates magnetic field. While applying the Ampere’s circuital law to find magnetic field at a point outside a capacitor connected to a time-varying current, Maxwell noticed an inconsistency in the Ampere’s circuital law. He suggested the existence of an additional current, called by him, the displacement current to remove this inconsistency.
Maxwell formulated a set of equations involving electric and magnetic fields, and their sources, the charge and current densities. These equations are known as Maxwell’s equations. Together with the Lorentz force formula (Chapter 4), they mathematically express all the basic laws of electromagnetism.
The most important prediction to emerge from Maxwell’s equations is the existence of electromagnetic waves, which are (coupled) timevarying electric and magnetic fields that propagate in space. The speed of the waves, according to these equations, turned out to be very close to
the speed of light $(3 \times 10^{8} \mathrm{~m} / \mathrm{s})$, obtained from optical measurements. This led to the remarkable conclusion that light is an electromagnetic wave. Maxwell’s work thus unified the domain of electricity, magnetism and light. Hertz, in 1885, experimentally demonstrated the existence of electromagnetic waves. Its technological use by Marconi and others led in due course to the revolution in communication that we are witnessing today.
In this chapter, we first discuss the need for displacement current and its consequences. Then we present a descriptive account of electromagnetic waves. The broad spectrum of electromagnetic waves, stretching from $\gamma$ rays (wavelength $\sim 10^{-12} \mathrm{~m}$ ) to long radio waves (wavelength $\sim 10^{6} \mathrm{~m}$ ) is described.
8.2 Displacement Current
We have seen in Chapter 4 that an electrical current produces a magnetic field around it. Maxwell showed that for logical consistency, a changing electric field must also produce a magnetic field. This effect is of great importance because it explains the existence of radio waves, gamma rays and visible light, as well as all other forms of electromagnetic waves.
To see how a changing electric field gives rise to a magnetic field, let us consider the process of charging of a capacitor and apply Ampere’s circuital law given by (Chapter 4)
$$ \begin{equation*} \oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu_{0} i(t) \tag{8.1} \end{equation*} $$
to find magnetic field at a point outside the capacitor. Figure 8.1(a) shows a parallel plate capacitor $C$ which is a part of circuit through which a time-dependent current $i(t)$ flows . Let us find the magnetic field at a point such as $\mathrm{P}$, in a region outside the parallel plate capacitor. For this, we consider a plane circular loop of radius $r$ whose plane is perpendicular to the direction of the current-carrying wire, and which is centred symmetrically with respect to the wire [Fig. 8.1(a)]. From symmetry, the magnetic field is directed along the circumference of the circular loop and is the same in magnitude at all points on the loop so that if $B$ is the magnitude of the field, the left side of Eq. (8.1) is $B(2 \pi r)$. So we have
$$ \begin{equation*} B(2 \pi r)=\mu_{0} i(t) \tag{8.2} \end{equation*} $$
James Clerk Maxwell (1831 – 1879) Born in Edinburgh, Scotland, was among the greatest physicists of the nineteenth century. He derived the thermal velocity distribution of molecules in a gas and was among the first to obtain reliable estimates of molecular parameters from measurable quantities like viscosity, etc. Maxwell’s greatest acheivement was the unification of the laws of electricity and magnetism (discovered by Coulomb, Oersted, Ampere and Faraday) into a consistent set of equations now called Maxwell’s equations. From these he arrived at the most important conclusion that light is an electromagnetic wave. Interestingly, Maxwell did not agree with the idea (strongly suggested by the Faraday’s laws of electrolysis) that electricity was particulate in nature.
FIGURE 8.1 A parallel plate capacitor $C$, as part of a circuit through which a time dependent current $i(t)$ flows, (a) a loop of radius $r$, to determine magnetic field at a point $\mathrm{P}$ on the loop; (b) a pot-shaped surface passing through the interior between the capacitor plates with the loop shown in (a) as its rim; (c) a tiffinshaped surface with the circular loop as its rim and a flat circular bottom $S$ between the capacitor plates. The arrows show uniform electric field between the capacitor plates.
Now, consider a different surface, which has the same boundary. This is a pot like surface [Fig. 8.1(b)] which nowhere touches the current, but has its bottom between the capacitor plates; its mouth is the circular loop mentioned above. Another such surface is shaped like a tiffin box (without the lid) [Fig. 8.1(c)]. On applying Ampere’s circuital law to such surfaces with the same perimeter, we find that the left hand side of Eq. (8.1) has not changed but the right hand side is zero and not $\mu_{0} i$, since no current passes through the surface of Fig. 8.1(b) and (c). So we have a contradiction; calculated one way, there is a magnetic field at a point $\mathrm{P}$; calculated another way, the magnetic field at $\mathrm{P}$ is zero.
Since the contradiction arises from our use of Ampere’s circuital law, this law must be missing something. The missing term must be such that one gets the same magnetic field at point $P$, no matter what surface is used.
We can actually guess the missing term by looking carefully at Fig. 8.1(c). Is there anything passing through the surface $\mathrm{S}$ between the plates of the capacitor? Yes, of course, the electric field! If the plates of the capacitor have an area $A$, and a total charge $Q$, the magnitude of the electric field $\mathbf{E}$ between the plates is $(Q / A) / \varepsilon_{0}$ (see Eq. 2.41). The field is perpendicular to the surface $S$ of Fig. 8.1(c). It has the same magnitude over the area $A$ of the capacitor plates, and vanishes outside it. So what is the electric flux $\Phi_{E}$ through the surface $S$ ? Using Gauss’s law, it is
$$ \begin{equation*} \Phi_{\mathrm{E}}=|\mathbf{E}| A=\frac{1}{\varepsilon_{0}} \frac{Q}{A} A=\frac{Q}{\varepsilon_{0}} \tag{8.3} \end{equation*} $$
Now if the charge $Q$ on the capacitor plates changes with time, there is a current $i=(\mathrm{d} Q / \mathrm{d} t)$, so that using Eq. (8.3), we have
$$ \frac{\mathrm{d} \Phi_{E}}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t} \frac{Q}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}} \frac{\mathrm{d} Q}{\mathrm{~d} t} $$
This implies that for consistency,
$$ \begin{equation*} \varepsilon_{0} \frac{\mathrm{d} \Phi_{E}}{\mathrm{~d} t}=i \tag{8.4} \end{equation*} $$
This is the missing term in Ampere’s circuital law. If we generalise this law by adding to the total current carried by conductors through the surface, another term which is $\varepsilon_{0}$ times the rate of change of electric flux through the same surface, the total has the same value of current $i$ for all surfaces. If this is done, there is no contradiction in the value of $B$ obtained anywhere using the generalised Ampere’s law. $B$ at the point $P$ is non-zero no matter which surface is used for calculating it. $B$ at a point $\mathrm{P}$ outside the plates [Fig. 8.1(a)] is the same as at a point $\mathrm{M}$ just inside, as it should be. The current carried by conductors due to flow of charges is called conduction current. The current, given by Eq. (8.4), is a new term, and is due to changing electric field (or electric displacement, an old term still used sometimes). It is, therefore, called displacement current or Maxwell’s displacement current. Figure 8.2 shows the electric and magnetic fields inside the parallel plate capacitor discussed above.
FIGURE 8.2 (a) The electric and magnetic fields $\mathbf{E}$ and $\mathbf{B}$ between the capacitor plates, at the point M. (b) A cross sectional view of Fig. (a).
The generalisation made by Maxwell then is the following. The source of a magnetic field is not just the conduction electric current due to flowing charges, but also the time rate of change of electric field. More precisely, the total current $i$ is the sum of the conduction current denoted by $i_{c}$, and the displacement current denoted by $i_{\mathrm{d}}\left(=\varepsilon_{0}\left(\mathrm{~d} \Phi_{E} /\right.\right.$ $\mathrm{d} t))$ . So we have
$$ \begin{equation*} i=i_{c}+i_{d}=i_{c}+\varepsilon_{0} \frac{\mathrm{d} \Phi_{E}}{\mathrm{~d} t} \tag{8.5} \end{equation*} $$
In explicit terms, this means that outside the capacitor plates, we have only conduction current $i_{\mathrm{c}}=i$, and no displacement current, i.e., $i_{d}=0$. On the other hand, inside the capacitor, there is no conduction current, i.e., $i_{\mathrm{c}}=0$, and there is only displacement current, so that $i_{d}=i$.
The generalised (and correct) Ampere’s circuital law has the same form as Eq. (8.1), with one difference: “the total current passing through any surface of which the closed loop is the perimeter” is the sum of the conduction current and the displacement current. The generalised law is and is known as Ampere-Maxwell law.
$$ \begin{equation*} \int \mathbf{B} \mathrm{d} \mathbf{l}=\mu_{0} i_{c}+\mu_{0} \varepsilon_{0} \frac{\mathrm{d} \Phi_{E}}{\mathrm{~d} t} \tag{8.6} \end{equation*} $$
In all respects, the displacement current has the same physical effects as the conduction current. In some cases, for example, steady electric fields in a conducting wire, the displacement current may be zero since the electric field $\mathbf{E}$ does not change with time. In other cases, for example, the charging capacitor above, both conduction and displacement currents may be present in different regions of space. In most of the cases, they both may be present in the same region of space, as there exist no perfectly conducting or perfectly insulating medium. Most interestingly, there may be large regions of space where there is no conduction current, but there is only a displacement current due to time-varying electric fields. In such a region, we expect a magnetic field, though there is no (conduction) current source nearby! The prediction of such a displacement current can be verified experimentally. For example, a magnetic field (say at point M) between the plates of the capacitor in Fig. 8.2(a) can be measured and is seen to be the same as that just outside (at P).
The displacement current has (literally) far reaching consequences. One thing we immediately notice is that the laws of electricity and magnetism are now more symmetrical*. Faraday’s law of induction states that there is an induced emf equal to the rate of change of magnetic flux. Now, since the emf between two points 1 and 2 is the work done per unit charge in taking it from 1 to 2 , the existence of an emf implies the existence of an electric field. So, we can rephrase Faraday’s law of electromagnetic induction by saying that a magnetic field, changing with time, gives rise to an electric field. Then, the fact that an electric field changing with time gives rise to a magnetic field, is the symmetrical counterpart, and is a consequence of the displacement current being a source of a magnetic field. Thus, time- dependent electric and magnetic fields give rise to each other! Faraday’s law of electromagnetic induction and Ampere-Maxwell law give a quantitative expression of this statement, with the current being the total current, as in Eq. (8.5). One very important consequence of this symmetry is the existence of electromagnetic waves, which we discuss qualitatively in the next section.
- They are still not perfectly symmetrical; there are no known sources of magnetic field (magnetic monopoles) analogous to electric charges which are sources of electric field.
MAXWELL’s EQUATIONS IN VACUUM
1. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=G / \varepsilon_0$ (Gauss’s Law for electricity)
2. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{A}=0$ (Gauss’s Law for magnetism)
3. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{1}=\frac{-\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{d} t}$ (Faraday’s Law)
4. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu _0 \mathrm{i} _{\mathrm{c}}+\mu _0 \varepsilon _0 \frac{\mathbf{d} \boldsymbol{\Phi} _{\mathrm{E}}}{\mathrm{d} t}$ (Ampere-Maxwell Law)
8.3 ELECTROMAGNETIC WAVES
8.3.1 Sources of electromagnetic waves
How are electromagnetic waves produced? Neither stationary charges nor charges in uniform motion (steady currents) can be sources of electromagnetic waves. The former produces only electrostatic fields, while the latter produces magnetic fields that, however, do not vary with time. It is an important result of Maxwell’s theory that accelerated charges radiate electromagnetic waves. The proof of this basic result is beyond the scope of this book, but we can accept it on the basis of rough, qualitative reasoning. Consider a charge oscillating with some frequency. (An oscillating charge is an example of accelerating charge.) This produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field, and so on. The oscillating electric and magnetic fields thus regenerate each other, so to speak, as the wave propagates through the space. The frequency of the electromagnetic wave naturally equals the frequency of oscillation of the charge. The energy associated with the propagating wave comes at the expense of the energy of the source - the accelerated charge.
From the preceding discussion, it might appear easy to test the prediction that light is an electromagnetic wave. We might think that all we needed to do was to set up an ac circuit in which the current oscillate at the frequency of visible light, say, yellow light. But, alas, that is not possible. The frequency of yellow light is about $6 \times 10^{14} \mathrm{~Hz}$, while the frequency that we get even with modern electronic circuits is hardly about $10^{11} \mathrm{~Hz}$. This is why the experimental demonstration of electromagnetic wave had to come in the low frequency region (the radio wave region), as in the Hertz’s experiment (1887).
Hertz’s successful experimental test of Maxwell’s theory created a sensation and sparked off other important works in this field. Two important achievements in this connection deserve mention. Seven years after Hertz, Jagdish Chandra Bose, working at Calcutta (now Kolkata), succeeded in producing and observing electromagnetic waves of much shorter wavelength ( $25 \mathrm{~mm}$ to $5 \mathrm{~mm}$ ). His experiment, like that of Hertz’s, was confined to the laboratory.
At around the same time, Guglielmo Marconi in Italy followed Hertz’s work and succeeded in transmitting electromagnetic waves over distances of many kilometres. Marconi’s experiment marks the beginning of the field of communication using electromagnetic waves.
8.3.2 Nature of electromagnetic waves
Heinrich Rudolf Hertz (1857 – 1894) German physicist who was the first to broadcast and receive radio waves. He produced electro- magnetic waves, sent them through space, and measured their wave- length and speed. He showed that the nature of their vibration, reflection and refraction was the same as that of light and heat waves, establishing their identity for the first time. He also pioneered research on discharge of electricity through gases, and discovered the photoelectric effect.
It can be shown from Maxwell’s equations that electric and magnetic fields in an electromagnetic wave are perpendicular to each other, and to the direction of propagation. It appears reasonable, say from our discussion of the displacement current. Consider Fig. 8.2. The electric field inside the plates of the capacitor is directed perpendicular to the plates. The magnetic field this gives rise to via the displacement current is along the perimeter of a circle parallel to the capacitor plates. So $\mathbf{B}$ and $\mathbf{E}$ are perpendicular in this case. This is a general feature.
FIGURE 8.3 A linearly polarised electromagnetic wave, propagating in the z-direction with the oscillating electric field E along the x-direction and the oscillating magnetic field B along the y-direction.
In Fig. 8.3, we show a typical example of a plane electromagnetic wave propagating along the $z$ direction (the fields are shown as a function of the $z$ coordinate, at a given time $t$ ). The electric field $E_{x}$ is along the $x$-axis, and varies sinusoidally with $z$, at a given time. The magnetic field $B_{y}$ is along the $y$-axis, and again varies sinusoidally with $z$. The electric and magnetic fields $E_{x}$ and $B_{y}$ are perpendicular to each other, and to the direction $Z$ of propagation. We can write $E_{x}$ and $B_{y}$ as follows:
$$ \begin{array}{ll} E_{x}=E_{0} \sin (k z-\omega t) & {[8.7(\mathrm{a})]} \\ B_{y}=B_{0} \sin (k z-\omega t) & {[8.7(\mathrm{~b})]} \end{array} $$
Here $k$ is related to the wave length $\lambda$ of the wave by the usual equation
$$ \begin{equation*} k=\frac{2 \pi}{\lambda} \tag{8.8} \end{equation*} $$
and $\omega$ is the angular frequency. $k$ is the magnitude of the wave vector (or propagation vector) $\mathbf{k}$ and its direction describes the direction of propagation of the wave. The speed of propagation of the wave is $(\omega / k)$. Using Eqs. [8.7(a) and (b)] for $E_{x}$ and $B_{y}$ and Maxwell’s equations, one finds that
$$ \begin{equation*} \omega=c k \text {, where, } \mathrm{c}=1 / \sqrt{\mu_{0} \varepsilon_{0}} \tag{8.9 a} \end{equation*} $$
The relation $\omega=c k$ is the standard one for waves (see for example, Section 15.4 of class XI Physics textbook). This relation is often written in terms of frequency, $v(=\omega / 2 \pi)$ and wavelength, $\lambda(=2 \pi / k)$ as
$$ \begin{align*} & 2 \pi \nu=c \frac{2 \pi}{\lambda} \quad \text { or } \\ & v \lambda=c \tag{8.9 b} \end{align*} $$
It is also seen from Maxwell’s equations that the magnitude of the electric and the magnetic fields in an electromagnetic wave are related as
$$ \begin{equation*} B_{0}=\left(E_{0} / c\right) \tag{8.10} \end{equation*} $$
We here make remarks on some features of electromagnetic waves. They are self-sustaining oscillations of electric and magnetic fields in free space, or vacuum. They differ from all the other waves we have studied so far, in respect that no material medium is involved in the vibrations of the electric and magnetic fields.
But what if a material medium is actually there? We know that light, an electromagnetic wave, does propagate through glass, for example. We have seen earlier that the total electric and magnetic fields inside a medium are described in terms of a permittivity $\varepsilon$ and a magnetic permeability $\mu$ (these describe the factors by which the total fields differ from the external fields). These replace $\varepsilon_{0}$ and $\mu_{0}$ in the description to electric and magnetic fields in Maxwell’s equations with the result that in a material medium of permittivity $\varepsilon$ and magnetic permeability $\mu$, the velocity of light becomes,
$$ \begin{equation*} v=\frac{1}{\sqrt{\mu \varepsilon}} \tag{8.11} \end{equation*} $$
Thus, the velocity of light depends on electric and magnetic properties of the medium. We shall see in the next chapter that the refractive index of one medium with respect to the other is equal to the ratio of velocities of light in the two media.
The velocity of electromagnetic waves in free space or vacuum is an important fundamental constant. It has been shown by experiments on electromagnetic waves of different wavelengths that this velocity is the same (independent of wavelength) to within a few metres per second, out of a value of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The constancy of the velocity of em waves in vacuum is so strongly supported by experiments and the actual value is so well known now that this is used to define a standard of length.
The great technological importance of electromagnetic waves stems from their capability to carry energy from one place to another. The radio and TV signals from broadcasting stations carry energy. Light carries energy from the sun to the earth, thus making life possible on the earth.
Example 8.1 A plane electromagnetic wave of frequency $25 \mathrm{MHz}$ travels in free space along the $x$-direction. At a particular point in space and time, $\mathbf{E}=6.3 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$. What is $\mathbf{B}$ at this point?
Solution
Using Eq. (8.10), the magnitude of $\mathbf{B}$ is
$$ \begin{aligned} B & =\frac{E}{c} \\ & =\frac{6.3 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.1 \times 10^{-8} \mathrm{~T} \end{aligned} $$
To find the direction, we note that $\mathbf{E}$ is along $y$-direction and the wave propagates along $x$-axis. Therefore, B should be in a direction perpendicular to both $x$ - and $y$-axes. Using vector algebra, $\mathbf{E} \times \mathbf{B}$ should be along $x$-direction. Since, $(+\hat{\mathbf{j}}) \times(+\hat{\mathbf{k}})=\hat{\mathbf{i}}, \mathbf{B}$ is along the $z$-direction. Thus,
$$ \mathbf{B}=2.1 \times 10^{-8} \hat{\mathbf{k}} \mathrm{T} $$
Example 8.2 The magnetic field in a plane electromagnetic wave is given by $B_{y}=\left(2 \times 10^{-7}\right) \mathrm{T} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)$.
(a) What is the wavelength and frequency of the wave?
(b) Write an expression for the electric field.
Solution
(a) Comparing the given equation with
$$ B_{y}=B_{0} \sin 2 \pi \frac{x}{\lambda}+\frac{t}{T} $$
We get,
$$\lambda=\frac{2 \pi}{0.5 \times 10^{3}} \mathrm{~m}=1.26 \mathrm{~cm}$$
$$ \text { and } \quad \frac{1}{T}=\nu=\left(1.5 \times 10^{11}\right) / 2 \pi=23.9 \mathrm{GHz} $$
(b) $E_{0}=B_{0} c=2 \times 10^{-7} \mathrm{~T} \times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=6 \times 10^{1} \mathrm{~V} / \mathrm{m}$
The electric field component is perpendicular to the direction of propagation and the direction of magnetic field. Therefore, the electric field component along the $\mathrm{z}$-axis is obtained as $E_{z}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \mathrm{V} / \mathrm{m}$
8.4 Electromagnetic Spectrum
At the time Maxwell predicted the existence of electromagnetic waves, the only familiar electromagnetic waves were the visible light waves. The existence of ultraviolet and infrared waves was barely established. By the end of the nineteenth century, X-rays and gamma rays had also been discovered. We now know that, electromagnetic waves include visible light waves, X-rays, gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The classification of em waves according to frequency is the electromagnetic spectrum (Fig. 8.5). There is no sharp division between one kind of wave and the next. The classification is based roughly on how the waves are produced and/or detected.
We briefly describe these different types of electromagnetic waves, in order of decreasing wavelengths.
FIGURE 8.5 The electromagnetic spectrum, with common names for various part of it. The various regions do not have sharply defined boundaries.
8.4.1 Radio waves
Radio waves are produced by the accelerated motion of charges in conducting wires. They are used in radio and television communication systems. They are generally in the frequency range from $500 \mathrm{kHz}$ to about $1000 \mathrm{MHz}$. The AM (amplitude modulated) band is from $530 \mathrm{kHz}$ to $1710 \mathrm{kHz}$. Higher frequencies upto $54 \mathrm{MHz}$ are used for short wave bands. TV waves range from $54 \mathrm{MHz}$ to $890 \mathrm{MHz}$. The FM (frequency modulated) radio band extends from $88 \mathrm{MHz}$ to $108 \mathrm{MHz}$. Cellular phones use radio waves to transmit voice communication in the ultrahigh frequency (UHF) band. How these waves are transmitted and received is described in Chapter 15.
8.4.2 Microwaves
Microwaves (short-wavelength radio waves), with frequencies in the gigahertz $(\mathrm{GHz})$ range, are produced by special vacuum tubes (called klystrons, magnetrons and Gunn diodes). Due to their short wavelengths, they are suitable for the radar systems used in aircraft navigation. Radar also provides the basis for the speed guns used to time fast balls, tennisserves, and automobiles. Microwave ovens are an interesting domestic application of these waves. In such ovens, the frequency of the microwaves is selected to match the resonant frequency of water molecules so that energy from the waves is transferred efficiently to the kinetic energy of the molecules. This raises the temperature of any food containing water.
8.4.3 Infrared waves
Infrared waves are produced by hot bodies and molecules. This band lies adjacent to the low-frequency or long-wave length end of the visible spectrum. Infrared waves are sometimes referred to as heat waves. This is because water molecules present in most materials readily absorb infrared waves (many other molecules, for example, $\mathrm{CO_2}, \mathrm{NH_3}$, also absorb infrared waves). After absorption, their thermal motion increases, that is, they heat up and heat their surroundings. Infrared lamps are used in physical therapy. Infrared radiation also plays an important role in maintaining the earth’s warmth or average temperature through the greenhouse effect. Incoming visible light (which passes relatively easily through the atmosphere) is absorbed by the earth’s surface and reradiated as infrared (longer wavelength) radiations. This radiation is trapped by greenhouse gases such as carbon dioxide and water vapour. Infrared detectors are used in Earth satellites, both for military purposes and to observe growth of crops. Electronic devices (for example semiconductor light emitting diodes) also emit infrared and are widely used in the remote switches of household electronic systems such as TV sets, video recorders and hi-fi systems.
8.4.4 Visible rays
It is the most familiar form of electromagnetic waves. It is the part of the spectrum that is detected by the human eye. It runs from about $4 \times 10^{14} \mathrm{~Hz}$ to about $7 \times 10^{14} \mathrm{~Hz}$ or a wavelength range of about $700-$ $400 \mathrm{~nm}$. Visible light emitted or reflected from objects around us provides us information about the world. Our eyes are sensitive to this range of wavelengths. Different animals are sensitive to different range of wavelengths. For example, snakes can detect infrared waves, and the ‘visible’ range of many insects extends well into the utraviolet.
8.4.5 Ultraviolet rays
It covers wavelengths ranging from about $4 \times 10^{-7} \mathrm{~m}(400 \mathrm{~nm})$ down to $6 \times 10^{-10} \mathrm{~m}(0.6 \mathrm{~nm})$. Ultraviolet (UV) radiation is produced by special lamps and very hot bodies. The sun is an important source of ultraviolet light. But fortunately, most of it is absorbed in the ozone layer in the atmosphere at an altitude of about $40-50 \mathrm{~km}$. UV light in large quantities has harmful effects on humans. Exposure to UV radiation induces the production of more melanin, causing tanning of the skin. UV radiation is absorbed by ordinary glass. Hence, one cannot get tanned or sunburn through glass windows.
Welders wear special glass goggles or face masks with glass windows to protect their eyes from large amount of UV produced by welding arcs. Due to its shorter wavelengths, UV radiations can be focussed into very narrow beams for high precision applications such as LASIK (Laserassisted in situ keratomileusis) eye surgery. UV lamps are used to kill germs in water purifiers.
Ozone layer in the atmosphere plays a protective role, and hence its depletion by chlorofluorocarbons (CFCs) gas (such as freon) is a matter of international concern.
8.4.6 X-rays
Beyond the UV region of the electromagnetic spectrum lies the X-ray region. We are familiar with $\mathrm{X}$-rays because of its medical applications. It covers wavelengths from about $10^{-8} \mathrm{~m}(10 \mathrm{~nm})$ down to $10^{-13} \mathrm{~m}$ $\left(10^{-4} \mathrm{~nm}\right)$. One common way to generate X-rays is to bombard a metal target by high energy electrons. X-rays are used as a diagnostic tool in medicine and as a treatment for certain forms of cancer. Because X-rays damage or destroy living tissues and organisms, care must be taken to avoid unnecessary or over exposure.
8.4.7 Gamma rays
They lie in the upper frequency range of the electromagnetic spectrum and have wavelengths of from about $10^{-10} \mathrm{~m}$ to less than $10^{-14} \mathrm{~m}$. This high frequency radiation is produced in nuclear reactions and also emitted by radioactive nuclei. They are used in medicine to destroy cancer cells.
Table 8.1 summarises different types of electromagnetic waves, their production and detections. As mentioned earlier, the demarcation between different regions is not sharp and there are overlaps.
Table 8.1 Different types of electromagnetic waves
Type | Wavelength range | Production | Detection |
---|---|---|---|
Radio | $>0.1 \mathrm{~m}$ | Rapid acceleration and decelerations of electrons in aerials |
Receiver’s aerials |
Microwave | $0.1 \mathrm{~m}$ to $1 \mathrm{~mm}$ | Klystron valve or magnetron valve |
Point contact diodes |
Infra-red | $1 \mathrm{~mm}$ to $700 \mathrm{n}$ | Vibration of atoms and molecules |
Thermopiles Bolometer, Infrared photographic film |
Light | $700 \mathrm{~nm}$ to $400 \mathrm{~nm}$ | Electrons in atoms emit light when they move from one energy level to a lower energy level |
The eye Photocells Photographic film |
Ultraviolet | $400 \mathrm{~nm}$ to $1 \mathrm{~nm}$ | Inner shell electrons in atoms moving from one energy level to a lower level |
Photocells Photographic film |
X-rays | $1 \mathrm{~nm}$ to $10^{-3} \mathrm{~nm}$ | X-ray tubes or inner shell electrons |
Photographic film Geiger tubes Ionisation chamber |
Gamma rays | $<10^{-3} \mathrm{~nm}$ | Radioactive decay of the nucleus |
-do- |
SUMMARY
1. Maxwell found an inconsistency in the Ampere’s law and suggested the existence of an additional current, called displacement current, to remove this inconsistency. This displacement current is due to time-varying electric field and is given by
$i_{d}=\varepsilon_{0} \frac{\mathrm{d} \Phi_{\mathrm{E}}}{\mathrm{d} t}$
and acts as a source of magnetic field in exactly the same way as conduction current.
2. An accelerating charge produces electromagnetic waves. An electric charge oscillating harmonically with frequency $v$, produces electromagnetic waves of the same frequency $v$. An electric dipole is a basic source of electromagnetic waves.
3. Electromagnetic waves with wavelength of the order of a few metres were first produced and detected in the laboratory by Hertz in 1887. He thus verified a basic prediction of Maxwell’s equations.
4. Electric and magnetic fields oscillate sinusoidally in space and time in an electromagnetic wave. The oscillating electric and magnetic fields, $\mathbf{E}$ and B are perpendicular to each other, and to the direction of propagation of the electromagnetic wave. For a wave of frequency $v$, wavelength $\lambda$, propagating along $z$-direction, we have
$$ \begin{aligned} E & =E_{x}(t)=E_{0} \sin (k z-\omega t) \\ & =E_{0} \sin \quad 2 \pi \frac{z}{\lambda}-v t=E_{0} \sin 2 \pi \frac{z}{\lambda}-\frac{t}{T} \\ B & =B_{y}(t)=B_{0} \sin (k z-\omega t) \\ & =B_{0} \sin 2 \pi \frac{z}{\lambda}-v t=B_{0} \sin 2 \pi \frac{z}{\lambda}-\frac{t}{T} \end{aligned} $$
They are related by $E_{0} / B_{0}=c$.
5. The speed $c$ of electromagnetic wave in vacuum is related to $\mu_{0}$ and $\varepsilon_{0}$ (the free space permeability and permittivity constants) as follows: $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$. The value of $c$ equals the speed of light obtained from optical measurements.
Light is an electromagnetic wave; c is, therefore, also the speed of light. Electromagnetic waves other than light also have the same velocity $\mathrm{c}$ in free space.
The speed of light, or of electromagnetic waves in a material medium is given by $v=1 / \sqrt{\mu \varepsilon}$ where $\mu$ is the permeability of the medium and $\varepsilon$ its permittivity.
6. The spectrum of electromagnetic waves stretches, in principle, over an infinite range of wavelengths. Different regions are known by different names; $\gamma$-rays, X-rays, ultraviolet rays, visible rays, infrared rays, microwaves and radio waves in order of increasing wavelength from $10^{-2} \mathring{A}$ or $10^{-12} \mathrm{~m}$ to $10^{6} \mathrm{~m}$.
They interact with matter via their electric and magnetic fields which set in oscillation charges present in all matter. The detailed interaction and so the mechanism of absorption, scattering, etc., depend on the wavelength of the electromagnetic wave, and the nature of the atoms and molecules in the medium.
POINTS TO PONDER
1. The basic difference between various types of electromagnetic waves lies in their wavelengths or frequencies since all of them travel through vacuum with the same speed. Consequently, the waves differ considerably in their mode of interaction with matter.
2. Accelerated charged particles radiate electromagnetic waves. The wavelength of the electromagnetic wave is often correlated with the characteristic size of the system that radiates. Thus, gamma radiation, having wavelength of $10^{-14} \mathrm{~m}$ to $10^{-15} \mathrm{~m}$, typically originate from an atomic nucleus. X-rays are emitted from heavy atoms. Radio waves are produced by accelerating electrons in a circuit. A transmitting antenna can most efficiently radiate waves having a wavelength of about the same size as the antenna. Visible radiation emitted by atoms is, however, much longer in wavelength than atomic size.
3. Infrared waves, with frequencies lower than those of visible light, vibrate not only the electrons, but entire atoms or molecules of a substance. This vibration increases the internal energy and consequently, the temperature of the substance. This is why infrared waves are often called heat waves.
4. The centre of sensitivity of our eyes coincides with the centre of the wavelength distribution of the sun. It is because humans have evolved with visions most sensitive to the strongest wavelengths from the sun.
Exercises
8.1 Figure 8.5 shows a capacitor made of two circular plates each of radius $12 \mathrm{~cm}$, and separated by $5.0 \mathrm{~cm}$. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15A.
(a) Calculate the capacitance and the rate of change of potential difference between the plates.
(b) Obtain the displacement current across the plates.
(c) Is Kirchhoffs first rule (junction rule) valid at each plate of the capacitor? Explain.
FIGURE 8.5
Show Answer
Answer
Radius of each circular plate, $r=12 \mathrm{~cm}=12 \times 10^{-2} \mathrm{~m}$
Distance between the plates, $d=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$
Charging current, $I=0.15 \mathrm{~A}$
Permittivity of free space, $\varepsilon_{0}=8.85 \times 10^{-12} C^{2} N^{-1} m^{-2}$
(a) Capacitance between the two plates is given by the relation,
$A=$ Area of each plate $=\pi r^{2}$
$C=\frac{\varepsilon_{0} \pi r^{2}}{d}$
$=\frac{8.85 \times 10^{-12} \times 3.14 \times\left(12 \times 10^{-2}\right)^{2}}{5 \times 10^{-2}}$
$C=8.0032 \times 10^{-12} F=8 p F$
Charge on each plate, $q=C V$
Where,
$\mathrm{V}=$ Potential difference across the plates
Differentiation on both sides with respect to time $(t)$ gives:
$\frac{d q}{d t}=C \frac{d V}{d t}$
But, $\frac{d q}{d t}=$ current $(I)$
$\therefore \frac{d V}{d t}=\frac{I}{C}$
$\Rightarrow \frac{0.15}{80.032 \times 10^{-12}}=1.87 \times 10^{9} \mathrm{~V} / \mathrm{s}$
Therefore, the change in potential difference between the plates is $1.87 \times 10^{9} \mathrm{~V} / \mathrm{s}$.
(b) The displacement current across the plates is the same as the conduction current. Hence, the displacement current, id is $0.15 \mathrm{~A}$.
(c) Yes
Kirchhoff’s first rule is valid at each plate of the capacitor since displacement current is equal to conduction current.
8.2 A parallel plate capacitor (Fig. 8.6) made of circular plates each of radius $R=6.0 \mathrm{~cm}$ has a capacitance $C=100 \mathrm{pF}$. The capacitor is connected to a $230 \mathrm{~V}$ ac supply with a (angular) frequency of $300 \mathrm{rad} \mathrm{s}^{-1}$. (a) What is the rms value of the conduction current?
(b) Is the conduction current equal to the displacement current?
(c) Determine the amplitude of $\mathbf{B}$ at a point $3.0 \mathrm{~cm}$ from the axis between the plates.
FIGURE 8.6
Show Answer
Answer Radius of each circular plate, $R=6.0 \mathrm{~cm}=0.06 \mathrm{~m}$
Capacitance of a parallel plate capacitor, $C=100 \mathrm{pF}=100 \times 10^{-12} \mathrm{~F}$
Supply voltage, $V=230 \mathrm{~V}$
Angular frequency, $\omega=300 \mathrm{rad}_{s^{-1}}$
(a) Rms value of conduction current, $I_{r m s}=\frac{V_{r m s}}{X_{c}}$
Where,
$X_{C}=$ Capacitive reactance
$=\frac{1}{\omega C}$
$\therefore I=V_{r m s} \times \omega C$
$=230 \times 300 \times 100 \times 10^{-12}$
$=6.9 \times 10^{-6} \mathrm{~A}$
$=6.9 \mu \mathrm{A}$
Hence, the rms value of conduction current is $6.9 \mu \mathrm{A}$.
(b) Yes, conduction current is equal to displacement current.
(c) Magnetic field is given as:
$B=\frac{\mu_{o} r}{2 \pi R^{2}} I_{o}$
Where,
$\mu_{0}=$ Free space permeability $=4 \pi \times 10^{-7} \mathrm{NA}^{-2}$
$I 0=$ Maximum value of current $=\sqrt{2} l$ $r=$ Distance between the plates from the axis $=3.0 \mathrm{~cm}=0.03 \mathrm{~m}$
$B=\frac{\mu_{0} I_{0} r}{2 \pi R^{2}}=\frac{\mu_{0} I_{r m s} \sqrt{2} r}{2 \pi R^{2}}$
$\therefore B=\frac{4 \pi \times 10^{-7} \times 0.03 \times \sqrt{2} \times 6.9 \times 10^{-6}}{2 \pi \times(0.06)^{2}}$
$=1.63 \times 10^{-11} \mathrm{~T}$ Hence, the magnetic field at that point is $1.63 \times 10^{-11} \mathrm{~T}$.
8.3 What physical quantity is the same for X-rays of wavelength $10^{-10} \mathrm{~m}$, red light of wavelength $6800 \mathring{A}$ and radiowaves of wavelength $500 \mathrm{~m}$ ?
Show Answer
# Content Missing8.4 A plane electromagnetic wave travels in vacuum along $z$-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is $30 \mathrm{MHz}$, what is its wavelength?
Show Answer
# Content Missing8.5 A radio can tune in to any station in the $7.5 \mathrm{MHz}$ to $12 \mathrm{MHz}$ band. What is the corresponding wavelength band?
Show Answer
Answer
The electromagnetic wave travels in a vacuum along the z-direction. The electric field $(E)$ and the magnetic field $(H)$ are in the $x-y$ plane. They are mutually perpendicular.
Frequency of the wave, $v=30 \mathrm{MHz}=30 \times 10^{6} \mathrm{~s}^{-1}$
Speed of light in a vacuum, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Wavelength of a wave is given as:
$$ \begin{aligned} & \lambda=\frac{c}{v} \\ & =\frac{3 \times 10^{8}}{30 \times 10^{6}}=10 \mathrm{~m} \end{aligned} $$
8.6 A charged particle oscillates about its mean equilibrium position with a frequency of $10^{9} \mathrm{~Hz}$. What is the frequency of the electromagnetic waves produced by the oscillator?
Show Answer
Answer
The frequency of an electromagnetic wave produced by the oscillator is the same as that of a charged particle oscillating about its mean position i.e., $10^{9} \mathrm{~Hz}$.
8.7 The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is $B_{0}=510 \mathrm{nT}$. What is the amplitude of the electric field part of the wave?
Show Answer
Answer
Amplitude of magnetic field of an electromagnetic wave in a vacuum,
$B 0=510 \mathrm{nT}=510 \times 10^{-9} \mathrm{~T}$
Speed of light in a vacuum, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Amplitude of electric field of the electromagnetic wave is given by the relation,
$c=\frac{E_{0}}{B_{0}}$
$E_{0}=c B_{0}$
$=3 \times 10^{8} \times 510 \times 10^{-9}=153 \mathrm{~N} / \mathrm{C}$
Therefore, the electric field part of the wave is $153 \mathrm{~N} / \mathrm{C}$.
8.8 Suppose that the electric field amplitude of an electromagnetic wave is $E_{0}=120 \mathrm{~N} / \mathrm{C}$ and that its frequency is $v=50.0 \mathrm{MHz}$. (a) Determine, $B_{0}, \omega, k$, and $\lambda$. (b) Find expressions for $\mathbf{E}$ and $\mathbf{B}$.
Show Answer
Answer
Electric field amplitude, $E_{0}=120 \mathrm{~N} / \mathrm{C}$
Frequency of source, $v=50.0 \mathrm{MHz}=50 \times 10^{6} \mathrm{~Hz}$
Speed of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(a) Magnitude of magnetic field strength is given as:
$B_{0}=\frac{E_{0}}{c}$
$=\frac{120}{3 \times 10^{8}}$
$=4 \times 10^{-7} \mathrm{~T}=400 \mathrm{nT}$
Angular frequency of source is given as:
$\omega=2 n v=2 \pi \times 50 \times 10^{6}$
$=3.14 \times 10^{8} \mathrm{rad} / \mathrm{s}$
Propagation constant is given as: $k=\frac{2 \pi \nu}{c}=\frac{\omega}{c}$
$=\frac{3.14 \times 10^{8}}{3 \times 10^{8}}=1.05 \mathrm{rad} / \mathrm{m}$
Wavelength of wave is given as:
$\lambda=\frac{c}{v}$
$=\frac{3 \times 10^{8}}{50 \times 10^{6}}=6.0 \mathrm{~m}$
(b) Suppose the wave is propagating in the positive $x$ direction. Then, the electric field vector will be in the positive $y$ direction and the magnetic field vector will be in the positive $z$ direction. This is because all three vectors are mutually perpendicular.
Equation of electric field vector is given as:
$E=E_{0} \operatorname{Sin}(k x-\omega t) \hat{j}$
$\vec{E}=120 \operatorname{Sin}\left(1.05 x-3.14 \times 10^{8} t\right) \hat{j} N / C$
And, magnetic field vector is given as:
$B=B_{0} \operatorname{Sin}(k x-\omega t) \hat{k}$
$\vec{B}=\left(4 \times 10^{-7}\right) \operatorname{Sin}\left(1.05 x-3.14 \times 10^{8} t\right) \hat{k}$ Tesla
8.9 The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula $E=h v$ (for energy of a quantum of radiation: photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Show Answer
Answer
Energy of a photon is given as: $E=h v=\frac{h c}{\lambda}$
Where,
$h=$ Planck’s constant $=6.6 \times 10^{-34} \mathrm{Js}$
$c=$ Speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\lambda=$ Wavelength of radiation
$\therefore E=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}=\frac{19.8 \times 10^{-26}}{\lambda}$
$=\frac{19.8 \times 10^{-26}}{\lambda \times 1.6 \times 10^{-19}}=\frac{12.375 \times 10^{-7}}{\lambda} \mathrm{eV}$
The given table lists the photon energies for different parts of an electromagnetic spectrum for different $\lambda$.
$\lambda(\mathrm{m})$ | 103 | 1 | $10^{-3}$ | $10^{-6}$ | $10^{-8}$ | $10^{-10}$ | $10^{-12}$ |
---|---|---|---|---|---|---|---|
$E(\mathrm{eV})$ | $12.375 \times 10^{-10}$ | $12.375 \times 10^{-7}$ | $12.375 \times 10^{-4}$ | $12.375 \times 10^{-1}$ | $12.375 \times 10^{2}$ | $12.375 \times 10^{3}$ | $12.375 \times 10^{5}$ |
The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source.
8.10 In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{~V} \mathrm{~m}^{-1}$.
(a) What is the wavelength of the wave?
(b) What is the amplitude of the oscillating magnetic field?
(c) Show that the average energy density of the $\mathbf{E}$ field equals the average energy density of the $\mathbf{B}$ field. [$c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$].
Show Answer
Answer
Frequency of the electromagnetic wave, $v=$ $$ 2 \times 10^{10} \mathrm{~Hz} $$
Electric field amplitude, $$ E_0=48 \mathrm{Vm}^{-1} $$
Speed of light, $c=$ $$ 3 \times 10^8 \mathrm{~m} / \mathrm{s} $$
(a) Wavelength of a wave is given as: $$ \begin{aligned} & \lambda=\frac{c}{v} \ & = \ & \frac{3 \times 10^8}{2 \times 10^{10}}=0.015 \mathrm{~m} \end{aligned} $$ (b) Magnetic field strength is given as: $$ \begin{aligned} & B_0=\frac{E_0}{c} \ & = \ & \frac{48}{3 \times 10^8}=1.6 \times 10^{-7} \mathrm{~T} \end{aligned} $$ (c) Energy density of the electric field is given as: $$ U_E=\frac{1}{2} \epsilon_0 E^2 $$
And the energy density of the magnetic field is given as: $$ U_B=\frac{1}{2 \mu_0} B^2 $$
Where, $\epsilon_0$ $=$ Permittivity of free space
$\mu_0$ $=$ Permeability of free space $$ \mathrm{E}=\mathrm{CB} $$
Where, $$ c=\frac{1}{\sqrt{\epsilon_0 \mu_0}} \quad \quad (….2)$$
Putting equation (2) in equation (1), we get $$ E=\frac{1}{\sqrt{\epsilon_0 \mu_0}} B $$
Squaring on both sides, we get $$ \begin{aligned} & E^2=\frac{1}{\epsilon_0 \mu_0} B^2 \ & \epsilon_0 E^2=\frac{B^2}{\mu_0} \ & \frac{1}{2} \epsilon_0 E^2=\frac{1}{2} \frac{B^2}{\mu_0} \ & => \ & U_E=U_B \end{aligned} $$
8.1 भूमिका
अध्याय 4 में हमने सीखा है कि विद्युत धारा चुंबकीय क्षेत्र उत्पन्न करती है तथा दो धारावाही तार परस्पर एक-दूसरे पर चुंबकीय बल आरोपित करते हैं। इसके अतिरिक्त, अध्याय 6 में हम यह देख चुके हैं कि समय के साथ परिवर्तनशील चुंबकीय क्षेत्र विद्युत क्षेत्र उत्पन्न करता है। परंतु, क्या इसका विलोम भी सत्य है? क्या समय के साथ परिवर्तित होता हुआ विद्युत क्षेत्र चुंबकीय क्षेत्र को उत्पन्न करता है? जेम्स क्लार्क मैक्सवेल (1831-1879) ने यह तर्क प्रस्तुत किया कि वास्तव में ऐसा ही होता है। न केवल विद्युत धारा वरन समय के साथ परिवर्तनशील विद्युत क्षेत्र भी चुंबकीय क्षेत्र उत्पन्न करता है। समय के साथ परिवर्तनशील धारा से जुड़े संधारित्र के बाहर किसी बिंदु पर चुंबकीय क्षेत्र ज्ञात करने के लिए ऐम्पियर का नियम लगाते समय, मैक्सवेल का ध्यान इस नियम संबंधी एक असंगति की ओर गया। इस असंगति को दूर करने के लिए उन्होंने एक अतिरिक्त धारा के अस्तित्व का सुझाव दिया जिसको उन्होंने विस्थापन धारा नाम दिया।
उन्होंने विद्युत व चुंबकीय क्षेत्रों तथा उनके स्रोतों-आवेश एवं धारा-घनत्व को सम्मिलित कर, समीकरणों का एक समुच्चय सूत्रबद्ध किया। इन समीकरणों को मैक्सवेल समीकरण कहते हैं। लोरेंज का बल सूत्र (अध्याय 4) और मिला लें तो ये समीकरण विद्युत-चुंबकत्व के सभी आधारभूत नियमों को गणितीय रूप में व्यक्त करते हैं।
मैक्सवेल के समीकरणों से उभरने वाली सबसे महत्वपूर्ण प्रागुक्ति वैद्युतचुंबकीय तरंगों का अस्तित्व होना है जो अंतरिक्ष में संचरित समय के साथ बदलते (युग्मित) विद्युतीय एवं चुंबकीय क्षेत्र हैं। मैक्सवेल के समीकरणों के अनुसार, इन तरंगों की चाल, प्रकाशीय मापन द्वारा प्राप्त प्रकाश
की चाल $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ के लगभग बराबर होती है। इससे हम इस महत्वपूर्ण निष्कर्ष पर पहुँचे कि प्रकाश एक वैद्युतचुंबकीय तरंग है। इस प्रकार, मैक्सवेल के कार्य ने विद्युत, चुंबकत्व एवं प्रकाश के क्षेत्रों को एकीकृत कर दिया। 1885 में, हर्ट्ज़ ने प्रयोग द्वारा वैद्युतचुंबकीय तरंगों के अस्तित्व को प्रदर्शित किया। मार्कोनी एवं अन्य आविष्कर्ताओं ने यथासमय, इसके तकनीकी उपयोग में संचार के क्षेत्र में जो क्रांति की, उसके आज हम प्रत्यक्षदर्शी हैं।
इस अध्याय में, पहले हम विस्थापन धारा की आवश्यकता एवं उसके परिणामों के विषय में चर्चा करेंगे। फिर हम वैद्युतचुंबकीय तरंगों का एक विवरणात्मक चित्र प्रस्तुत करेंगे। वैद्युतचुंबकीय तरंगों का संपूर्ण वर्णक्रम, जो गामा किरणों (तरंगदैर्घ्य $10^{-12} \mathrm{~m}$ ) से दीर्घ रेडियो तरंगों (तरंगदैर्घ्य $~ 10^{6} \mathrm{~m}$ ) तक फैला है, उसके विषय में चर्चा की जाएगी।
8.2 विस्थापन धारा
अध्याय 4 में हम देख चुके हैं कि विद्युत धारा अपने चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करती है। मैक्सवेल ने दर्शाया कि तार्किक संगति के लिए यह आवश्यक है कि परिवर्तनशील विद्युत क्षेत्र भी चुंबकीय क्षेत्र उत्पन्न करे। यह प्रभाव बहुत ही महत्त्व का है, क्योंकि यह रेडियो तरंगों, गामा किरणों, एवं दृश्य प्रकाश के अतिरिक्त भी अन्य सभी वैद्युतचुंबकीय तरंगों के अस्तित्व की व्याख्या करता है।
यह देखने के लिए कि परिवर्तनशील विद्युत क्षेत्र किस प्रकार चुंबकीय क्षेत्र के उद्भव का कारण बनता है। आइए हम किसी संधारित्र के आवेशन की प्रक्रिया पर विचार करें और संधारित्र के बाहर किसी बिंदु पर चुंबकीय क्षेत्र ज्ञात करने के लिए ऐम्पियर के परिपथीय नियम (अध्याय 4)
$$ \begin{equation*} \oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu _{0} i(t) \tag{8.1} \end{equation*} $$
का उपयोग करें। [चित्र 8.1(a)] में एक समांतर प्लेट संधारित्र $C$ दर्शाया गया है जो एक ऐसे परिपथ का भाग है जिसमें समय के साथ परिवर्तनशील धारा $i(t)$ प्रवाहित हो रही है। आइए, समांतर प्लेट संधारित्र के बाह्य क्षेत्र में स्थित किसी बिंदु जैसे कि $\mathrm{P}$ पर चुंबकीय क्षेत्र ज्ञात करें। इसके लिए, हम $r$ त्रिज्या का एक समतल वृत्ताकार लूप लेते हैं जिसका तल धारावाही तार की दिशा के लंबवत है और जिसका केंद्र तार के ऊपर है [चित्र 8.1(a)]। सममिति के आधार पर हम कह सकते हैं कि चुंबकीय क्षेत्र की दिशा वृत्ताकार लूप की परिधि के अनुदिश है और लूप के प्रत्येक बिंदु पर इसका परिमाण समान है। इस कारण, यदि क्षेत्र का परिमाण $B$ है तो समीकरण (8.1) का वाम पक्ष $B(2 \pi r)$ है।
$$ \begin{equation*} B(2 \pi r)=\mu _{0} i(t) \tag{8.2} \end{equation*} $$
जेम्स क्लार्क मैक्सवेल (1831 - 1879) स्कॉटलैंड के एडिनबर्ग में जन्मे, उन्नीसवीं शती के महानतम भौतिकविदों में से एक। उन्होंने गैस के अणुओं की तापीय गतियों के वितरण के लिए व्यंजक व्युत्पन्न किया और वे उन पहले लोगों में से एक थे जिन्होंने श्यानता आदि मापन योग्य राशियों का उपयोग कर आण्विक प्राचलों के विश्वसनीय आकलन प्राप्त किए। मैक्सवेल की सबसे बड़ी उपलब्धि, विद्युत एवं चुंबकत्व के (कूलॉम, ऑर्स्टेड, ऐम्पियर एवं फैराडे द्वारा खोजे गए) नियमों के एकीकरण द्वारा संगत समीकरणों का एक समुच्चय प्रस्तुत करना था, जिन्हें आज हम मैक्सवेल के समीकरणों के नाम से जानते हैं। इनके आधार पर वे इस सर्वाधिक महत्वपूर्ण निष्कर्ष पर पहुँचे कि प्रकाश, वैद्युतचुंबकीय तरंग ही है। मजे की बात यह है कि मैक्सवेल, फैराडे के वैद्युत अपघटन के नियमों से उत्पन्न इस विचार से सहमत नहीं थे कि विद्युत की प्रकृति कण रूप में है।
चित्र 8.1 एक समांतर प्लेट संधारित्र $C$, जो एक ऐसे परिपथ का भाग है जिसमें समय के साथ परिवर्तनशील धारा $i(t)$ प्रवाहित हो रही है; तथा, (a) में $r$ त्रिज्या का एक लूप दर्शाया गया है जो लूप पर स्थित $\mathrm{P}$ बिंदु पर चुंबकीय क्षेत्र ज्ञात करने के लिए बनाया गया है; (b) में एक घट-आकार, सतह दर्शायी गई है जो संधारित्र के अंदर इसकी प्लेटों के बीच से गुजरती है एवं (a) में दर्शाया गया लूप इसका रिम है; (c) में (टिफिन की आकृति की) एक अन्य सतह दर्शायी गई है, वृत्ताकार लूप जिसका रिम है एवं समतल वृत्ताकार तली $S$ संधारित्र की प्लेटों के बीच में है। तीर संधारित्र प्लेटों के बीच एक समय विद्युत क्षेत्र दर्शाते हैं।
अब इसी परिसीमा वाली एक अन्य सतह पर विचार कीजिए। यह घड़े के आकार की एक सतह है जो धारा को कहीं भी नहीं छूती है [चित्र 8.1(b)] पर इसकी तली संधारित्र की दोनों प्लेटों के बीच में है और उसका मुँह ऊपर वर्णित वृत्ताकार लूप है। दूसरी ऐसी सतह (बिना ढक्कन के) टिफिन बॉक्स के आकार की है [चित्र 8.1(c)]। समान प्राचलों वाली ऐसी सतहों के लिए ऐम्पियर का नियम लगाने पर, हम पाते हैं कि समीकरण (8.1) के बाईं ओर का मान तो नहीं बदलता है पर दाईं ओर का मान शून्य है न कि $\mu _{0} i(t)$, क्योंकि चित्र 8.1 (b) एवं (c) में दर्शायी गई सतहों से कोई धारा नहीं गुजरती है। इसलिए, हमारा सामना एक विरोधाभास से होता है। एक प्रकार से गणना करें तो बिंदु $\mathrm{P}$ पर चुंबकीय क्षेत्र है; दूसरी प्रकार गणना करें तो $\mathrm{P}$ पर चुंबकीय क्षेत्र शून्य होता है।
क्योंकि यह विरोधाभास हमारे द्वारा लागू किए गए ऐम्पियर के परिपथीय नियम के कारण उत्पन्न होता है। इस नियम में संभवतः कोई पद छूट गया है। छूटा हुआ यह पद ऐसा होना चाहिए कि चाहे हम किसी भी सतह का उपयोग करें बिंदु $\mathrm{P}$ पर चुंबकीय क्षेत्र का समान मान प्राप्त हो।
यदि हम चित्र 8.1(c) को ध्यानपूर्वक देखें तो छूटे हुए पद का अनुमान लगाया जा सकता है। क्या संधारित्र की प्लेटों के बीच की सतह $S$ से गुजरती हुई किसी राशि के मान में परिवर्तन हो रहा है। जी हाँ, वास्तव में उनके बीच विद्युत क्षेत्र बदल रहा है। यदि संधारित्र की प्लेटों का क्षेत्रफल $A$ हो एवं इस पर कुल आवेश $Q$ हो तो प्लेटों के बीच विद्युत क्षेत्र $\mathbf{E}$ का परिमाण $(Q / A) / \varepsilon _{0}$ होता है [देखिए समीकरण (2.41)]। यह क्षेत्र चित्र 8.1(c) की सतह $S$ के लंबवत होता है। इसका परिमाण संधारित्र की प्लेटों के क्षेत्रफल $A$ पर समान रहता है पर इनके बाहर शून्य हो जाता है। इसलिए, सतह $S$ से गुजरने वाला विद्युत फ्लक्स, गाउस के नियम के उपयोग से होता है
$$ \begin{equation*} \Phi _{\mathrm{E}}=|\mathbf{E}| A=\frac{1}{\varepsilon _{0}} \frac{Q}{A} A=\frac{Q}{\varepsilon _{0}} \tag{8.3} \end{equation*} $$
अब यदि संधारित्र की प्लेटों पर आवेश $Q$ समय के साथ परिवर्तित हो तो यहाँ एक धारा $i=(\mathrm{d} Q / \mathrm{d} t)$ होगी। इसलिए समीकरण (8.3) से
$$ \frac{\mathrm{d} \Phi _{E}}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{Q}{\varepsilon _{0}}\right)=\frac{1}{\varepsilon _{0}} \frac{\mathrm{d} Q}{\mathrm{~d} t} $$
यह निर्दिष्ट करता है कि ऐम्पियर के नियम में संगति के लिए,
$$ \begin{equation*} \varepsilon _{0}\left(\frac{\mathrm{d} \Phi _{E}}{\mathrm{~d} t}\right)=i \tag{8.4} \end{equation*} $$
यही ऐम्पियर के परिपथीय नियम का छूटा हुआ पद है। यदि हम किसी भी सतह से होकर चालकों द्वारा वाहित कुल धारा में, $\varepsilon _{0}$ गुणा विद्युत फ्लक्स के परिवर्तन की दर जोड़ें तो हम ऐम्पियर के परिपथीय नियम का सामान्यीकरण कर सकते हैं। तब सभी सतहों के लिए धारा का मान $i$ समान होगा। तब कहीं पर भी ऐम्पियर का सामान्यीकृत नियम लगाने पर $B$ के प्राप्त मान में कोई विसंगति नहीं आएगी। बिंदु $\mathrm{P}$ पर, $\mathrm{B}$ का मान शून्येतर ही होगा चाहे इसकी गणना करने के लिए हम कोई भी सतह लें। प्लेटों के बाहर, किसी बिंदु $P$ पर $B$ का मान वही होगा जो ठीक इसके अंदर बिंदु $M$ पर होना चाहिए [चित्र 8.1(a)]। आवेशों के प्रवाह के कारण चालकों में जो धारा प्रवाहित होती है उसे चालन धारा कहा जाता है। समीकरण (8.4) द्वारा व्यक्त धारा एक नवीन पद है। जो परिवर्तनशील विद्युत क्षेत्र (या विद्युतीय विस्थापन, जो अभी भी कभी उपयोग में आता है) के कारण अस्तित्व में आता है। इसको इसलिए विस्थापन धारा अथवा मैक्सवेल की विस्थापन धारा कहा जाता है। चित्र 8.2, आगे वर्णित समांतर प्लेट संधारित्र के अंदर विद्युत एवं चुंबकीय क्षेत्र दर्शाता है।
चित्र 8.2 (a) संधारित्र की प्लेटों के बीच स्थित बिंदु $M$ पर विद्युत क्षेत्र $\mathbf{E}$ एवं चुंबकीय क्षेत्र $\mathbf{B}(b)$ चित्र (a) का परिच्छेदीय आरेख।
मैक्सवेल द्वारा किया गया व्यापकीकरण निम्न है। चुंबकीय क्षेत्र का स्रोत केवल प्रवाहमान आवेशों से निर्मित चालन विद्युत धारा ही नहीं होती, अपितु समय के सापेक्ष विद्युत क्षेत्र में परिवर्तन की दर भी इसका कारण बन सकती है। अधिक स्पष्टता से इस बात को कहें तो कुल धारा $i, i _{c}$ द्वारा निर्दिष्ट चालन धारा एवं $i _{\mathrm{d}}\left(=\varepsilon _{0}\left(\mathrm{~d} \Phi _{E} / \mathrm{d} t\right)\right)$ द्वारा निर्दिष्ट विस्थापन धारा के योग के बराबर होती है। अत:
$$ \begin{equation*} i=i _{c}+i _{d}=i _{c}+\varepsilon _{0} \frac{\mathrm{d} \Phi _{E}}{\mathrm{~d} t} \tag{8.5} \end{equation*} $$
सुस्पष्ट शब्दों में इसका अर्थ है कि संधारित्र की प्लेटों के बाहर केवल चालन धारा $i _{\mathrm{c}}=i$ होती है, तथा कोई विस्थापन धारा नहीं होती, अर्थात् $i _{d}=0$ । दूसरी ओर संधारित्र के अंदर कोई चालन धारा नहीं होती, अर्थात् $i _{\mathrm{c}}=0$ और केवल विस्थापन धारा होती है जिससे $i _{d}=i$ ।
व्यापकीकृत (एवं यथार्थ) ऐम्पियर के परिपथीय नियम का स्वरूप समीकरण (8.1) जैसा है। बस केवल एक अंतर है “ऐसी किसी भी सतह, जिसकी परिमिति बंद लूप है से गुजरने वाली कुल धारा चालन धारा एवं विस्थापन धारा का योग होती है।” व्यापक रूप में यह नियम तथा इसे ऐम्पियर मैक्सवेल नियम कहते हैं।
$$ \begin{equation*} \int \mathbf{B} \mathrm{d} \mathbf{l}=\mu_{0} i_{c}+\mu_{0} \varepsilon_{0} \frac{\mathrm{d} \Phi_{E}}{\mathrm{~d} t} \tag{8.6} \end{equation*} $$
किसी भी दृष्टि से विस्थापन धारा के भौतिक प्रभाव चालन धारा के समान हैं। कुछ स्थितियों में, उदाहरणार्थ, किसी चालक तार में नियत विद्युत क्षेत्र के लिए विस्थापन धारा का मान शून्य हो सकता है क्योंकि किसी विद्युत क्षेत्र $\mathbf{E}$ समय के साथ परिवर्तित नहीं होता। कुछ दूसरी स्थितियों में, जैसे कि ऊपर बताए गए आवेशित होते संधारित्र में चालन एवं विस्थापन धारा दोनों ही उपस्थित हो सकते हैं पर अलग-अलग दिक्स्थानों में। परंतु अधिकतर स्थितियों में दोनों एक ही स्थान पर विद्यमान हो सकते हैं क्योंकि कोई भी माध्यम पूर्ण चालक या पूर्ण विद्युतरोधी नहीं होता। सर्वाधिक रोचक तथ्य यह है कि किसी विशाल क्षेत्र में जहाँ कोई भी चालन धारा नहीं होती, समय के साथ परिवर्तनशील विद्युत क्षेत्र के कारण केवल विस्थापन धारा ही होती है। ऐसे क्षेत्र में, आसपास कोई (चालन) धारा स्रोत नहीं होने पर भी चुंबकीय क्षेत्र विद्यमान होगा। इस विस्थापन धारा के अस्तित्व की प्रागुक्ति प्रयोग द्वारा पुष्ट की जा सकती है। उदाहरण के लिए, चित्र 8.2(a) के संधारित्र की प्लेटों के बीच (माना बिंदु $\mathrm{M}$ पर) चुंबकीय क्षेत्र मापा जा सकता है। यह ठीक उतना ही पाया जाएगा जितना कि बाहर के किसी बिंदु (माना $\mathrm{P}$ ) पर।
विस्थापन धारा के (शब्दशः) दूरगामी परिणाम हैं। एक तथ्य जिसकी ओर हमारा ध्यान एकदम आकर्षित होता है, वह यह है कि विद्युत एवं चुंबकत्व अब और अधिक सममितीय* हो गए हैं। फैराडे का प्रेरण संबंधी नियम यह बताता है कि प्रेरित विद्युत वाहक बल चुंबकीय फ्लक्स परिवर्तन की दर के बराबर होता है। अब, चूँकि दो बिंदुओं 1 एवं 2 के बीच विद्युत वाहक बल, बिंदु 1 से बिंदु 2 तक इकाई आवेश को ले जाने में किया गया कार्य है। विद्युत वाहक बल की उपस्थिति एक विद्युत क्षेत्र की उपस्थिति को इंगित करती है। फैराडे के विद्युत चुंबकीय प्रेरण संबंधी नियम को हम दूसरे शब्दों में इस प्रकार भी कह सकते हैं कि समय के साथ परिवर्तनशील चुंबकीय क्षेत्र, विद्युत क्षेत्र उत्पन्न करता है। यह तथ्य कि समय के साथ परिवर्तनशील विद्युत क्षेत्र, चुंबकीय क्षेत्र उत्पन्न करता है, फैराडे के नियम का सममितीय प्रतिरूप है और विस्थापन धारा के चुंबकीय क्षेत्र का स्रोत होने का परिणाम है। अतः समय पर निर्भर वैद्युत एवं चुंबकीय क्षेत्र एक-दूसरे की उत्पत्ति के कारण हैं। फैराडे का विद्युत चुंबकीय प्रेरण का नियम एवं मैक्सवेल-ऐम्पियर का परिपथीय नियम इस कथन की परिमाणात्मक अभिव्यक्ति है। जहाँ धारा, कुल धारा है जैसा कि समीकरण (8.5) से स्पष्ट है। इस सममिति की एक अत्यंत महत्वपूर्ण निष्पत्ति विद्युत चुंबकीय तरंगों का अस्तित्व है जिसके विषय में हम अगले अनुभाग में चर्चा करेंगे।
- ये अभी भी पूर्णतः सममितीय नहीं हैं। विद्युत क्षेत्र को उत्पन्न करने के लिए विद्युत आवेशों के सादृश्य चुंबकीय क्षेत्र के स्रोत (चुंबकीय एकल ध्रुव, magnettc monopole) ज्ञात नहीं हैं।
निर्वात में मैक्सवेल के समीकरण
1. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=Q / \varepsilon _{0}$ (विद्युत संबंधी गाउस नियम)
2. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{A}=0$ (चुंबकत्व संबंधी गाउस नियम)
3. $\oint \mathbf{E} \cdot \mathrm{d} \mathbf{l}=\frac{-\mathrm{d} \Phi _{B}}{\mathrm{~d} t}$ (फैराडे नियम)
4. $\oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu _{0} i _{c}+\mu _{0} \varepsilon _{0} \frac{\mathrm{d} \Phi _{E}}{\mathrm{~d} t}$ (ऐम्पियर-मैक्सवेल नियम)
8.3 वैद्युतचुंबकीय तरंगें
8.3.1 तरंगों के स्रोत
वैद्युतचुंबकीय (electromagnetic, संक्षेप में em) तरंगें उत्पन्न कैसे होती हैं? न तो स्थिर आवेश, न ही एकसमान गति से चलते हुए आवेश (स्थिर धारा), वैद्युतचुंबकीय तरंगों के स्रोत हो सकते हैं। क्योंकि, स्थिर आवेश तो केवल स्थिरवैद्युत क्षेत्र उत्पन्न करते हैं जबकि गतिमान आवेश चुंबकीय क्षेत्र भी उत्पन्न करते हैं पर वह समय के साथ परिवर्तित नहीं होता। मैक्सवेल के सिद्धांत की यह एक महत्वपूर्ण निष्पत्ति है कि त्वरित आवेश वैद्युतचुंबकीय तरंगें विकिरित करते हैं। इस मौलिक निष्पत्ति का प्रमाण प्रस्तुत पुस्तक के विस्तार क्षेत्र से परे है, परंतु हम इसको एक अपरिष्कृत, गुणात्मक विवेचन के आधार पर स्वीकार कर सकते हैं। मान लीजिए कि एक आवेश है जो किसी निश्चित आवृत्ति से दोलन कर रहा है (कोई दोलन करता हुआ आवेश भी एक त्वरित आवेश का उदाहरण है)। यह उस क्षेत्र में एक दोलित विद्युत क्षेत्र उत्पन्न करता है जो पुनः एक दोलित चुंबकीय क्षेत्र को जन्म देता है जो पुनः एक दोलित विद्युत क्षेत्र की उत्पत्ति का कारण बनता है और यह प्रक्रिया चलती रहती है। अतः दोलित विद्युत एवं चुंबकीय क्षेत्र एक-दूसरे को संपोषित करते हैं या कहें कि तरंग गमन करती है। स्वाभाविक रूप से वैद्युतचुंबकीय तरंगों की आवृत्ति, आवेश के दोलनों की आवृत्ति के बराबर होती है। गमनकारी तरंगों से जुड़ी ऊर्जा, स्रोत अर्थात त्वरित आवेश की ऊर्जा से ही प्राप्त होती है।
पूर्वोक्त चर्चा के आधार पर हो सकता है कि इस प्रागुक्ति का परीक्षण कि प्रकाश विद्युत चुंबकीय तरंग है, सहज हो सकता है। हम विचार कर सकते हैं कि दृश्य प्रकाश (माना कि पीला) उत्पन्न करने के लिए हमें बस एक आवेश को उस प्रकाश की आवृत्ति से दोलन कराने के लिए एक $\mathrm{ac}$ परिपथ की आवश्यकता है। लेकिन अफसोस की बात यह है कि ऐसा संभव नहीं है। पीले प्रकाश की आवृत्ति लगभग $6 \times 10^{14} \mathrm{~Hz}$ है जबकि अत्यधिक आधुनिक इलैक्ट्रॉनिक परिपथों से भी जो अधिकतम आवृत्ति हम प्राप्त कर पाते हैं वह लगभग $10^{11} \mathrm{~Hz}$ होती है। यही कारण है कि जब वैद्युतचुंबकीय तरंगों का प्रायोगिक प्रदर्शन हुआ तो वह निम्न आवृत्ति की तरंगों (रेडियो तरंगों
मैक्सवेल के सिद्धांत के परीक्षण के लिए किए गए हर्ट्ज़ के सफल प्रयोग ने सनसनी फैला दी तथा ये प्रयोग इस क्षेत्र में अन्य महत्वपूर्ण कार्यों के लिए प्रेरणा का आधार बने। इस संबंध में दो महत्वपूर्ण उपलब्धियाँ उल्लेख किए जाने योग्य हैं। हर्ट्ज़ के प्रयोग के सात साल बाद, जगदीश चंद्र बसु ने कलकत्ता में कार्य करते हुए काफी कम तरंगदैर्घ्य $(25 \mathrm{~mm}$ से $5 \mathrm{~mm}$ ) की वैद्युतचुंबकीय तरंगें उत्पन्न करने और उन्हें प्रेक्षित करने में सफलता प्राप्त की। उनका प्रयोग भी हर्ट्ज़ के प्रयोग की भाँति ही प्रयोगशाला तक ही सीमित रहा।
लगभग उसी समय इटली में गुगलीओ मार्कोनी ने हर्ट्ज़ के कार्य का अनुसरण करते हुए कई किलोमीटर तक की दूरियों तक वैद्युतचुंबकीय तरंगें संप्रेषित करने में सफलता प्राप्त की। मार्कोनी के प्रयोग से संचार के क्षेत्र में वैद्युतचुंबकीय तरंगों के उपयोग का प्रारंभ हुआ।
8.3.2 वैद्युतचुंबकीय तरंगों की प्रकृति
हेनरिच रूडोल्फ हर्ट्ज़ (1857 - 1894) जर्मन भौतिकविद, जिन्होंने पहली बार रेडियो तरंगों को प्रसारित किया और ग्रहण किया। उन्होंने वैद्युतचुंबकीय तरंगें पैदा कीं, उन्हें आकाश में भेजा और उनका तरंगदैर्घ्य तथा चाल ज्ञात किया। उन्होंने दर्शाया कि वैद्युतचुंबकीय तरंगों के कंपनों की प्रकृति, परावर्तन एवं अपवर्तन ठीक वैसे ही थे जैसे प्रकाश एवं ऊष्मा तरंगों में, और इस प्रकार पहली बार इनकी अभिन्नता सिद्ध की। उन्होंने गैसों में विद्युत विसर्जन संबंधी शोध की अगुवाई की और प्रकाश-विद्युत प्रभाव की खोज की।
मैक्सवेल के समीकरणों के आधार पर यह दर्शाया जा सकता है कि किसी वैद्युतचुंबकीय तरंग में विद्युतीय एवं चुंबकीय क्षेत्र एक-दूसरे के लंबवत होते हैं और इसके गमन की दिशा के भी। विस्थापन धारा पर दिए गए विवेचन के आधार पर भी यह तर्कसंगत प्रतीत होता है। चित्र 8.2 पर विचार कीजिए। संध रित्र में प्लेटों के बीच विद्युत क्षेत्र प्लेटों के लंबवत है। विस्थापन धारा के द्वारा उत्पन्न चुंबकीय क्षेत्र संधारित्र की प्लेटों के समांतर वृत्त के अनुदिश है। अतः इस स्थिति में $\mathbf{B}$ तथा $\mathbf{E}$ परस्पर लंबवत हैं। यह एक सामान्य लक्षण है।
चित्र 8.3 एक रेखीय ध्रुवित वैद्युतचुंबकीय तरंग जो $z$-दिशा में गमन कर रही है और जिसका दोलनकारी विद्युत क्षेत्र $\mathbf{E}, x$ - दिशा के अनुदिश एवं दोलनकारी चुंबकीय क्षेत्र $\mathbf{B}, y$-दिशा के अनुदिश है।
चित्र (8.3) में हमने $z$ दिशा में गमन करती हुई एक समतल वैद्युतचुंबकीय तरंग का प्रारूपिक उदाहरण प्रदर्शित किया है ( किसी क्षण $t$ पर, क्षेत्रों को $Z$ निर्देशांक के फलन के रूप में दर्शाया गया है)। विद्युत क्षेत्र $E _{x}, x$-अक्ष के अनुदिश है और किसी क्षण $t$ पर $z$ के साथ ज्यावक्रीय रूप में परिवर्तित होता है। चुंबकीय क्षेत्र $B _{y}, y$-अक्ष के अनुदिश है और यह भी $Z$ के साथ ज्यावक्रीय रूप में परिवर्तित होता है। विद्युत क्षेत्र $E _{x}$ एवं चुंबकीय क्षेत्र $B _{y}$ एक दूसरे के लंबवत हैं एवं गमन दिशा, $z$ के भी लंबवत है। $E _{x}$ एवं $B _{y}$ को हम निम्नवत लिख सकते हैं :
$$ \begin{array}{ll} E_{x}=E_{0} \sin (k z-\omega t) & {[8.7(\mathrm{a})]} \\ B_{y}=B_{0} \sin (k z-\omega t) & {[8.7(\mathrm{~b})]} \end{array} $$
यहाँ $k$ एवं तरंग की तरंगदैर्घ्य $\lambda$ में निम्नलिखित सामान्य संबंध है
$$ \begin{equation*} k=\frac{2 \pi}{\lambda} \tag{8.8} \end{equation*} $$
तथा यहाँ $\omega$ कोणीय आवृत्ति है, $k$ तरंग सदिश (या गमन सदिश) $\mathbf{k}$ का परिमाण है। $k$ की दिशा तरंग के गमन की दिशा निर्दिष्ट करती है। तरंग की गमन चाल $(\omega / k)$ है। $E _{x}$ एवं $B _{y}$ के लिए समीकरणों [8.7(a) एवं (b)] तथा मैक्सवेल के समीकरणों का उपयोग करके आप निम्न परिणाम पर पहुँच सकते हैं -
$$ \begin{equation*} \omega=c k \text {, यहाँ, } c=1 / \sqrt{\mu _{0} \varepsilon _{0}} \tag{8.9a} \end{equation*} $$
समीकरण $\omega=c k$, सभी तरंगों के लिए प्रामाणिक संबंध है (देखिए कक्षा 11 भौतिकी पाठ्यपुस्तक, अनुभाग 14.4)। प्रायः इस संबंध को आवृत्ति, $v(=\omega / 2 \pi)$ एवं तरंगदैर्घ्य, $\lambda(=2 \pi / k)$ के पदों में इस रूप में लिखा जाता है-
$$ \begin{align*} & 2 \pi \nu=c \frac{2 \pi}{\lambda} \quad \text { अथवा } \\ & v \lambda=c \tag{8.9 b} \end{align*} $$
मैक्सवेल के समीकरणों के आधार पर इस निष्कर्ष पर भी पहुँचा जा सकता है कि किसी वैद्युतचुंबकीय तरंग में विद्युत एवं चुंबकीय क्षेत्र परस्पर निम्नलिखित समीकरण द्वारा संबंधित है -
$$ \begin{equation*} B _{0}=\left(E _{0} / c\right) \tag{8.10} \end{equation*} $$
अब हम वैद्युतचुंबकीय तरंगों के कुछ अभिलक्षणों पर टिप्पणियाँ करते हैं। वे मुक्त स्थान या निर्वात में, विद्युत एवं चुंबकीय क्षेत्रों के स्वःसंपोषित दोलन हैं। वे इस अर्थ में अभी तक हमारे द्वारा अध्ययन की गई अन्य तरंगों से भिन्न हैं कि इनमें विद्युत एवं चुंबकीय क्षेत्रों के दोलनों के लिए किसी भौतिक माध्यम की आवश्यकता नहीं होती।
लेकिन, अगर एक भौतिक माध्यम वास्तव में विद्यमान हो तो उदाहरण के लिए हम जानते हैं कि प्रकाश जो वैद्युतचुंबकीय तरंगें ही हैं; काँच में से गमन करता है। यह हम पहले ही देख चुके हैं कि किसी माध्यम में कुल विद्युत एवं चुंबकीय क्षेत्रों को उस माध्यम की आपेक्षिक विद्युतशीलता $\varepsilon$ एवं आपेक्षिक चुंबकशीलता $\mu$ के पदों में वर्णित किया जाता है (यह राशियाँ बताती हैं कि बाह्य क्षेत्र की तुलना में कुल क्षेत्र कितने गुना है)। मैक्सवेल समीकरणों में विद्युत एवं चुंबकीय क्षेत्रों के विवरण में $\varepsilon _{0}$ एवं $\mu _{0}$ का स्थान यह राशियाँ ले लेती हैं। आपेक्षिक विद्युतशीलता $\varepsilon$ एवं आपेक्षिक चुंबकशीलता $\mu$ वाले किसी माध्यम में, प्रकाश का वेग हो जाता है
$$ \begin{equation*} v=\frac{1}{\sqrt{\mu \varepsilon}} \tag{8.11} \end{equation*} $$
अतः किसी माध्यम में प्रकाश का वेग उस माध्यम के वैद्युत एवं चुंबकीय गुणों पर निर्भर करता है। अगले अध्याय में हम देखेंगे कि एक माध्यम के सापेक्ष दूसरे माध्यम का अपवर्तनांक इन दो माध्यमों में प्रकाश के वेग के अनुपात में होता है।
मुक्त आकाश अथवा निर्वात में वैद्युतचुंबकीय तरंगों का वेग एक महत्वपूर्ण, मौलिक नियतांक है। विभिन्न तरंगदैर्घ्य की वैद्युतचुंबकीय तरंगों पर किए गए प्रयोगों ने यह दर्शाया है कि यह वेग (जो तरंगदैर्घ्य पर निर्भर नहीं है) सभी के लिए समान होता है और इसका मान $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ से कुछ मीटर प्रति सेकंड कम या अधिक होता है। निर्वात में वैद्युतचुंबकीय तरंगों के वेग का नियत होना, प्रयोगों द्वारा इतनी दृढ़ता से पुष्ट हो चुका है और इसका मान इतनी अधिक यथार्थता से ज्ञात किया जा चुका है कि इसको लंबाई के मानक के रूप में स्वीकार कर लिया गया है।
वैद्युतचुंबकीय तरंगों का बड़ा प्रौद्योगिकीय महत्त्व, इनके द्वारा एक स्थान से दूसरे स्थान तक ऊर्जा वहन करने की क्षमता से ही प्रस्फुटित होता है। रेडियो एवं टीवी सिग्नलों के रूप में प्रसारण स्टेशनों से यही ऊर्जा अभिग्राहकों तक पहुँच कर उन्हें क्रियाशील बनाती है। प्रकाश के रूप में सूर्य से ऊर्जा पृथ्वी तक पहुँचती है जिसके कारण पृथ्वी पर जीवन संभव हुआ है।
उदाहरण 8.1 $25 \mathrm{MHz}$ आवृत्ति की एक समतल वैद्युतचुंबकीय तरंग निर्वात में $x$-दिशा के अनुदिश गतिमान है। दिक्काल (space) में किसी विशिष्ट बिंदु पर इसका $\mathbf{E}=6.3 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$ है। इस बिंदु पर $\mathbf{B}$ का मान क्या है?
हल
$\mathbf{B}$ एवं $\mathbf{E}$ के परिमाण एक-दूसरे से निम्नलिखित समीकरण द्वारा संबंधित हैं-
$$ \begin{aligned} B & =\frac{E}{c} \\ & =\frac{6.3 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.1 \times 10^{-8} \mathrm{~T} \end{aligned} $$
इसकी दिशा के संबंध में हम जानते हैं कि $\mathbf{E} y$-दिशा के अनुदिश है और तरंग $x$-दिशा के अनुदिश गमन कर रही है। अत: $\mathbf{B} x$-एवं $y$-अक्षों दोनों के लंबवत दिशा में होना चाहिए। सदिश बीजगणित का उपयोग करने पर, $\mathbf{E} \times \mathbf{B}$ को $x$-दिशा में होना चाहिए। चूँकि $(+\hat{\mathbf{j}}) \times(+\hat{\mathbf{k}})=\hat{\mathbf{i}}, \mathbf{B} z$-दिशा के अनुदिश है।अत:
$$\mathbf{B}=2.1 \times 10^{-8} \hat{\mathbf{k}} \mathrm{T}$$
उदाहरण 8.2 किसी समतल वैद्युतचुंबकीय तरंग में चुंबकीय क्षेत्र $B _{y}=\left(2 \times 10^{-7}\right) \mathrm{T} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)$ है
(a) तरंग की आवृत्ति तथा तरंगदैर्घ्य क्या है?
(b) विद्युत क्षेत्र के लिए व्यंजक लिखिए।
हल
(a) दिए गए समीकरण की निम्न समीकरण
$$ B _{y}=B _{0} \sin \left[2 \pi\left(\frac{x}{\lambda}+\frac{t}{T}\right)\right] $$
से तुलना करने पर
$$ \lambda=\frac{2 \pi}{0.5 \times 10^{3}} \mathrm{~m}=1.26 \mathrm{~cm} $$
$$ \text {तथा } \quad \frac{1}{T}=\nu=\left(1.5 \times 10^{11}\right) / 2 \pi=23.9 \mathrm{GHz} $$
(b) $E _{0}=B _{0} c=2 \times 10^{-7} \mathrm{~T} \times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=6 \times 10^{1} \mathrm{~V} / \mathrm{m}$
विद्युत क्षेत्र घटक तरंग की गमन दिशा एवं चुंबकीय क्षेत्र की दिशा के लंबवत होता है। अतः, विद्युत क्षेत्र घटक $\mathrm{z}$-अक्ष के अनुदिश निम्नलिखित समीकरण द्वारा व्यक्त होगा $E _{z}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \mathrm{V} / \mathrm{m}$
8.4 वैद्युतचुंबकीय स्पेक्ट्रम
जिस समय मैक्सवेल ने वैद्युतचुंबकीय तरंगों संबंधी अपना सिद्धांत प्रस्तुत किया था तो दृश्य प्रकाश तरंगें ही एक मात्र सुपरिचित वैद्युतचुंबकीय $(\mathrm{em})$ तरंगें थीं। पराबैगनी एवं अवरक्त तरंगों का अस्तित्व अभी मुश्किल से साबित हो पाया था। उन्नीसवीं शताब्दी के अंत तक $\mathrm{X}$ - किरणें एवं गामा किरणें भी खोज ली गई थीं। अब हम जानते हैं कि दृश्य प्रकाश तरंगें, X- किरणें, गामा किरणें, रेडियो तरंगें, सूक्ष्म (माइक्रो) तरंगें, पराबैंगनी एवं अवरक्त तरंगें ये सभी $\mathrm{em}$ तरंगें हैं। तरंगों का आवृत्ति के क्रम में वर्गीकरण (चित्र 8.4) वैद्युतचुंबकीय स्पेक्ट्रम कहलाता है। एक प्रकार की तरंग और उसके निकटवर्ती दूसरे प्रकार की तरंग के बीच कोई स्पष्ट विभाजन रेखा नहीं है। वर्गीकरण मोटे तौर पर इस बात पर आधारित है कि तरंगें किस प्रकार उत्पन्न एवंअथवा संसूचित की जाती हैं।
अब हम वैद्युतचुंबकीय तरंगों के इन विभिन्न प्रकारों का उनकी घटती हुई तरंगदैर्घ्यों के क्रम में वर्णन करेंगे।
चित्र 8.4 वैद्युतचुंबकीय स्पेक्ट्रम जिसके विभिन्न भागों के सामान्य नाम दर्शाए गए हैं। विभिन्न भागों के बीच कोई स्पष्ट विभाजन रेखा नहीं है।
8.4. 1 रेडियो तरंगें
रेडियो तरंगें चालक तारों में आवेशों की त्वरित गति से उत्पन्न होती हैं। इनका उपयोग रेडियो एवं दूरदर्शन की संचार प्रणालियों में किया जाता है। इनका आवृत्ति परास सामान्यतः $500 \mathrm{kHz}$ से लगभग $1000 \mathrm{MHz}$ के बीच होता है। AM (आयाम मॉड्यूलित) बैंड $530 \mathrm{kHz}$ से $1710 \mathrm{kHz}$ के बीच होता है। इससे उच्चतर $54 \mathrm{MHz}$ तक की आवृत्तियाँ लघुतरंग बैंडों के रूप में उपयोग की जाती हैं। टी.वी. तरंगों का परास $54 \mathrm{MHz}$ से $890 \mathrm{MHz}$ के बीच होता है। FM (आवृत्ति मॉड्यूलित) रेडियो बैंड $88 \mathrm{MHz}$ से $108 \mathrm{MHz}$ के बीच फैला होता है। सेल्यूलर फोनों में अत्युच्च आवृत्ति (UHF) बैंड की रेडियो तरंगों का उपयोग करके ध्वनि संदेशों के आदान-प्रदान की व्यवस्था की जाती है। ये तरंगें किस प्रकार प्रसारित एवं अभिगृहित की जाती है, इसका वर्णन अध्याय 15 में किया गया है।
8.4.2 सूक्ष्म तरंगें
सूक्ष्म तरंगों (लघु तरंगदैर्घ्य की रेडियो तरंगें) की आवृत्तियाँ गिगा हर्ट्ज़ (GHz) के परास में होती हैं ये विशेष प्रकार की निर्वात नलिकाओं (vacuum tubes) जिन्हें क्लाइस्ट्रॉन, मेगनेट्रॉन अथवा गन डायोड कहते हैं, द्वारा उत्पन्न होती हैं। अपने लघु तरंगदैर्घ्य के कारण विमान संचालन में रडार प्रणाली के लिए उपयुक्त हैं। रडार, तेज गेदों जैसे कि टेनिस में सर्व की गई गेंदों या वाहनों की गति प्रणाली का भी आधार हैं। माइक्रोवेव ऑवन इन तरंगों का एक रोचक घरेलू अनुप्रयोग है। इन ऑवनों में सूक्ष्म तरंगों की आवृत्ति इस प्रकार चुनी जाती है कि वे जल के अणुओं की अनुनाद आवृत्ति से मेल खा सकें, ताकि तरंगों की ऊर्जा प्रभावी रूप से अणुओं की गतिज ऊर्जा बढ़ाने के लिए स्थानांतरित की जा सके। इससे किसी भी जलयुक्त खाद्य पदार्थ का ताप बढ़ जाता है।
8.4.3 अवरक्त तरंगें
अवरक्त तरंगें (Infrared Waves) गर्म पिंडों एवं अणुओं से उत्पन्न होती हैं। यह बैंड दृश्य स्पेक्ट्रम के निम्न आवृत्ति या दीर्घ तरंगदैर्घ्य सिरे से संलग्नित होता है। अवरक्त तरंगों को कभी-कभी ऊष्मा तरंगें भी कहा जाता है। ऐसा इसलिए है क्योंकि अधिकांश पदार्थों में विद्यमान जल के अणु अवरक्त तरंगों को तुरंत अवशोषित कर लेते हैं (कई अन्य अणु, जैसे, $\mathrm{CO} _{2}, \mathrm{NH} _{3}$, आदि भी अवरक्त तरंगों को अवशोषित कर लेते हैं।) अवशोषण के पश्चात उनकी तापीय गति बढ़ जाती है, अर्थात वे गर्म हो जाते हैं और अपने परिवेश को गर्म करने लगते हैं। अवरक्त लैम्पों का उपयोग कायचिकित्सा में किया जाता है। अवरक्त विकिरण की पृथ्वी की गर्मी अर्थात माध्य ताप बनाए रखने में भी हरित गृह प्रभाव के द्वारा एक अहम भूमिका है। पृथ्वी पर आने वाला दृश्य प्रकाश (जो अपेक्षाकृत सरलतापूर्वक वायुमंडल से गुजर जाता है, पृथ्वी के पृष्ठ द्वारा अवशोषित हो जाता है और दीर्घ तरंगदैर्घ्य की अवरक्त तरंगों के रूप में पुनर्विकिरित हो जाता है। यह विकिरण, कार्बन डाइऑक्साइड एवं जल वाष्प जैसे हरित गृह प्रभावकारी गैसों के द्वारा वायुमंडल में रोक लिया जाता है। उपग्रहों में लगे अवरक्त संसूचकों का उपयोग सैनिक उद्देश्यों एवं फसलों की वृद्धि का प्रेक्षण करने के लिए किया जाता है। इलैक्ट्रॉनिक युक्तियाँ (उदाहरण के लिए प्रकाश उत्सर्जक डायोड) भी अवरक्त तरंगें उत्सर्जित करती हैं और घरेलू इलैक्ट्रॉनिक प्रणालियों जैसे टी.वी. सैट, वीडियो रिकॉर्डर एवं हाई-फाई प्रणालियों के रिमोट नियंत्रकों में ये बहुलता से प्रयोग की जाती हैं।
8.4.4 दृश्य प्रकाश तरंगें
यह वैद्युतचुंबकीय तरंगों का सर्वाधिक सुपरिचित रूप है। यह उस स्पेक्ट्रम का भाग है जिसके लिए मानवीय नेत्र संवेदनशील होते हैं। इसका आवृत्ति परास लगभग $4 \times 10^{14}$ हर्ट्ज़ से $7 \times 10^{14}$ हर्ट्ज़ या तरंगदैर्ध्य परास लगभग $700-400 \mathrm{~nm}$ होता है। हमारे चारों ओर की वस्तुओं से उत्सर्जित या परावर्तित होने वाला दृश्य प्रकाश जगत के विषय में सभी सूचनाएँ हमें उपलब्ध कराता है। हमारे नेत्र तरंगदैर्घ्यों के इस परास के लिए संवेदनशील हैं। विभिन्न जंतु तरंगदैर्घ्यों के विभिन्न परासों के लिए संवेदनशील हैं। उदाहरणार्थ, सर्प अवरक्त तरंगों को संसूचित कर सकते हैं। कई कीटों का दृश्य परास पराबैंगनी तरंगों तक पहुँचता है।
8.4.5 पराबैंगनी तरंगें
इसमें लगभग $4 \times 10^{-7} \mathrm{~m}(400 \mathrm{~nm})$ से $6 \times 10^{-10} \mathrm{~m}(0.6 \mathrm{~nm})$ तरंगदैर्घ्य परास की तरंगें सम्मिलित हैं। पराबैंगनी (UV) विकिरण विशिष्ट लैंपों एवं बहुत गर्म पिंडों से उत्पन्न होते हैं। सूर्य पराबैंगनी प्रकाश का एक महत्वपूर्ण स्रोत है। परंतु, सौभाग्य से इसका अधिकांश भाग वायुमंडल की लगभग $40-50 \mathrm{~km}$ की ऊँचाई पर स्थित ओजोन परत में अवशोषित हो जाता है। अधिक परिमाण में UV प्रकाश के संपर्क में आने का मानवों पर हानिकारक प्रभाव होता है। UV विकिरणों के पड़ने से त्वचा में अधिक मेलानिन का उत्पादन होता है जिससे त्वचा ताम्र रंग की हो जाती है। UV विकरण सामान्य काँच द्वारा अवशोषित हो जाते हैं। अतः काँच लगी खिड़कियों से छन कर आने वाले प्रकाश के कारण धूप-ताम्रता (sunburn) नहीं होती है।
वेल्डिग करने वाले लोग, वेल्डिग चिनगारियों से निकलने वाली UV किरणों से अपनी आँखों की सुरक्षा के लिए विशिष्ट काँच युक्त धूप के चश्मे पहनते हैं या काँच की खिड़कियों से युक्त मुखौटे अपने चेहरे पर लगाते हैं। अपनी छोटी तरंगदैर्घ्यों के कारण, पराबैंगनी किरणों को अति परिशुद्ध अनुप्रयोगों, जैसे लासिक (LASIK - Laser-assisted in situ keratomileusis) नेत्र शल्यता में उपयोग हेतु अत्यंत संकीर्ण किरण-पुंजों में फ़ोकसित किया जा सकता है। जल शोधक में पराबैंगनी (UV) लैंपों का उपयोग जीवाणुओं को मारने में होता है।
चूँकि ओजोन परत एक संरक्षक की भूमिका अदा करती है इसलिए क्लोरोफ्लोरो-कार्बन (CFCs) गैसों (जैसे फ्रीऑन) द्वारा इसका ह्रास अंतर्राष्ट्रीय स्तर पर चिंता का विषय है।
8.4.6 X-किरणें
वैद्युतचुंबकीय स्पेक्ट्रम के UV भाग के पश्चात $\mathrm{X}$-किरणों का क्षेत्र है। चिकित्सीय उपयोगिता के कारण हम $\mathrm{X}$-किरणों से परिचित हैं। इसका परास तरंगदैर्घ्य $10^{-8} \mathrm{~m}(10 \mathrm{~nm})$ से लेकर नीचे $10^{-13} \mathrm{~m}\left(10^{-4} \mathrm{~nm}\right)$ तक फैला है। X-किरणों के उत्पादन की एक सामान्य विधि किसी धात्वीय लक्ष्य पर उच्च ऊर्जा के इलेक्ट्रॉनों की बौछार करना है। चिकित्सा में X-किरणों को नैदानिक साधन के रूप में तथा कुछ प्रकार के कैंसर के उपचार के लिए उपयोग में लाते हैं। चूँकि $\mathrm{X}$-किरणें सजीव ऊतकों तथा जीवों को हानि पहुँचाती हैं या नष्ट कर देती हैं इसलिए इनसे अनावश्यक अथवा अधिक उद्भासन (exposure) से बचने की सावधानी बरतनी चाहिए।
8.4.7 गामा किरणें
ये वैद्युतचुंबकीय स्पेक्ट्रम के ऊपरी आवृत्ति के क्षेत्र में होती हैं तथा इनकी तरंगदैर्घ्य लगभग $10^{-10} \mathrm{~m}$ से लेकर $10^{-14} \mathrm{~m}$ से भी कम होती है। उच्च आवृत्ति का यह विकिरण नाभिकीय अभिक्रियाओं में उत्पन्न होता है। यह रेडियोधर्मी नाभिकों द्वारा भी उत्सर्जित होता है। ये चिकित्सा में कैंसर कोशिकाओं को नष्ट करने के लिए भी उपयोगी हैं।
सारणी 8.1 में विभिन्न प्रकार की वैद्युतचुंबकीय तरंगों, उनके उत्पादन एवं संसूचन को सार रूप में प्रस्तुत किया गया है। जैसा कि पहले बताया गया है, विभिन्न किरणों के क्षेत्रों के मध्य कोई तीक्ष्ण सीमाएँ नहीं हैं तथा ये दूसरे क्षेत्रों में भी व्यापित होते हैं।
सारणी 8.1 विभिन्न वैद्युतचुंबकीय तरंगों के अभिलक्षण
प्रकार | तरंगदैर्घ्य का परास | उत्पादन | संसूचन |
---|---|---|---|
रेडियो तरंगें | $>0.1 \mathrm{~m}$ | एरियल (aerial) में इलेक्ट्रॉनों का द्रत त्वरण या मंदन |
अभिग्राहक के एरियल |
सूक्ष्म तरंगें | $\mathrm{nm}$ | क्लेस्ट्रॉन या मेग्नाट्रॉन वाल्व | बिंदु संपर्क डायोड |
अवरक्त तरंगें | $1 \mathrm{~mm}$ से $700 \mathrm{~nm}$ | परमाणुओं एवं अणुओं के कंपन | थर्मोपाइल, बोलोमीटर, अवरक्त फोटोग्राफिक फिल्म |
प्रकाश तरंगें | $700 \mathrm{~nm}$ से $400 \mathrm{~nm}$ | परमाणु में इलेक्ट्रॉन, जब उच्चतर ऊर्जा स्तर से निम्नतर ऊर्जा स्तर पर संक्रमण करते हैं |
मानवीय नेत्र, फोटो सेल, फोटोग्राफिक फिल्म |
पराबैंगनी प्रकाश तरंगें | $400 \mathrm{~nm}$ से $1 \mathrm{~nm}$ | परमाणु के आंतरिक शैलों में इलेक्ट्रॉनों का एक ऊर्जा स्तर से दूसरे ऊर्जा स्तर पर संक्रमण |
फोटो सेल फोटोग्राफिक फिल्म |
$\mathrm{X}$-किरणें | $1 \mathrm{~nm}$ से $10^{-3} \mathrm{~nm}$ | X-किरण नलिका अथवा आंतरिक शैलों के इलेक्ट्रॉन |
फोटोग्राफिक फिल्म, गीगर ट्यूब, आयनीकरण प्रकोष्ठ |
गामा किरणें | $<10^{-3} \mathrm{~nm}$ | नाभिकों का रेडियोऐक्टिव क्षय | फोटोग्राफिक फिल्म, गीगर ट्यूब, आयनीकरण प्रकोष्ठ |
सारांश
1. मैक्सवेल ने ऐम्पियर के नियम में एक विसंगति पाई तथा इस विसंगति को दूर करने के लिए एक अतिरिक्त धारा के अस्तित्व का सुझाव दिया जिसे विस्थापन धारा कहते हैं। विस्थापन धारा समय के साथ परिवर्तित होने वाले विद्युत क्षेत्र के कारण उत्पन्न होती है और इसको इस प्रकार लिख सकते हैं
$i _{d}=\varepsilon _{0} \frac{\mathrm{d} \Phi _{\mathrm{E}}}{\mathrm{d} t}$
यह ठीक उसी प्रकार चुंबकीय क्षेत्र के स्रोत का कार्य करती है जैसे कि चालन धारा।
2. एक त्वरित आवेश वैद्युतचुंबकीय तरंगें उत्पन्न करता है। आवर्तीय रूप से, $v$ आवृत्ति से दोलन करता एक विद्युत आवेश उसी आवृत्ति $v$ की वैद्युतचुंबकीय तरंगों को उत्पन्न करता है। एक वैद्युत द्विध्रुव वैद्युतचुंबकीय तरंगों का मौलिक स्रोत है।
3. कुछ मीटर कोटि तरंगदैर्घ्य वाली वैद्युतचुंबकीय तरंगें प्रयोगशाला में सबसे पहले 1887 में हर्ट्ज़ द्वारा उत्पन्न व संसूचित की गईं। इस प्रकार उन्होंने मैक्सवेल की मौलिक भविष्यवाणी की पुष्टि की।
4. किसी वैद्युतचुंबकीय तरंग में विद्युत तथा चुंबकीय क्षेत्र, दिक्काल में ज्यावक्रीय ढंग से दोलन करते हैं। दोलनशील विद्युत व चुंबकीय क्षेत्र $\mathbf{E}$ तथा $\mathbf{B}$ परस्पर तथा वैद्युतचुंबकीय तरंग के संचरण की दिशा के लंबवत होते हैं। $z$-अक्ष के अनुदिश संचरित आवृत्ति $v$ तथा तरंगदैर्घ्य $\lambda$ की किसी तरंग के लिए हमें निम्नलिखित सूत्र उपलब्ध है :
$$ \begin{aligned} E & =E _{x}(t)=E _{0} \sin (k z-\omega t) \\ & =E _{0} \sin \left[2 \pi\left(\frac{z}{\lambda}-v t\right)\right]=E _{0} \sin \left[2 \pi\left(\frac{z}{\lambda}-\frac{t}{T}\right)\right] \\ B & =B _{y}(t)=B _{0} \sin (k z-\omega t) \\ & =B _{0} \sin \left[2 \pi\left(\frac{z}{\lambda}-v t\right)\right]=B _{0} \sin \left[2 \pi\left(\frac{z}{\lambda}-\frac{t}{T}\right)\right] \end{aligned} $$
ये परस्पर निम्नलिखित सूत्र द्वारा संबंधित हैं : $E _{0} / B _{0}=c$
5. निर्वात में वैद्युतचुंबकीय तरंग की चाल $c, \mu _{0}$ तथा $\varepsilon _{0}$ (चुंबकशीलता तथा विद्युतशीलता) से इस प्रकार संबंधित हैं : $c=1 / \sqrt{\mu _{0} \varepsilon _{0}}$ । $c$ का मान प्रकाशीय मापों द्वारा प्राप्त प्रकाश की चाल के बराबर होता है।
प्रकाश एक वैद्युतचुंबकीय तरंग है इसलिए $c$ प्रकाश की भी चाल है। प्रकाश के अतिरिक्त सभी वैद्युतचुंबकीय तरंगों की मुक्त आकाश में वही चाल $c$ है।
प्रकाश या वैद्युतचुंबकीय तरंगों की किसी भौतिक माध्यम में चाल $v=1 / \sqrt{\mu \varepsilon}$ होती है। यहाँ $\mu$ माध्यम की चुंबकशीलता तथा $\varepsilon$ विद्युतशीलता है।
6. वैद्युतचुंबकीय तरंगों का स्पेक्ट्रम सिद्धांततः तरंगों के अनंत परिसर में विस्तृत होता है। $10^{-2} Å $ या $10^{-12} \mathrm{~m}$ से $10^{6} \mathrm{~m}$ तक तरंगदैर्घ्य के बढ़ते हुए क्रम में समायोजित करने पर विभिन्न भाग अलग-अलग नाम से इस प्रकार जाने जाते हैं, $\gamma$-किरणें, $\mathrm{X}$-किरणें, पराबैंगनी किरणें, दृश्य प्रकाश, अवरक्त प्रकाश, सूक्ष्म तरंगें तथा रेडियो तरंगें।
ये द्रव्य से विद्युत तथा चुंबकीय क्षेत्रों के द्वारा पारस्परिक क्रिया करती हैं जिससे सभी द्रव्यों में विद्यमान आवेश दोलन प्रारंभ कर देते हैं। विस्तृत पारस्परिक क्रिया तथा इस प्रकार अवशोषण, प्रकीर्णन आदि की क्रिया विधि em तरंग की तरंगदैर्घ्य तथा माध्यम के परमाणु एवं अणुओं की प्रकृति पर निर्भर करती है।
विचारणीय विषय
1. विभिन्न प्रकार की वैद्युतचुंबकीय तरंगों का मौलिक अंतर उनकी तरंगदैर्घ्यों अथवा आवृत्तियों में निहित है क्योंकि ये सभी निर्वात में एक ही चाल से गुजरती हैं। परिणामस्वरूप, तरंगें पदार्थ से अपनी पारस्परिक क्रिया करने की विधि में बहुत भिन्न हैं।
2. त्वरित आवेशित कण वैद्युतचुंबकीय ऊर्जा विकिरित करते हैं। वैद्युतचुंबकीय तरंग की तरंगदैर्घ्य प्रायः तरंग विकीर्णक निकाय के आमाप (साइज़) पर निर्भर करती है। इस प्रकार से $\gamma$-किरण जिसकी तरंगदैर्घ्य $10^{-14} \mathrm{~m}$ से $10^{-15} \mathrm{~m}$ के मध्य है, विशिष्ट रूप से परमाणु-नाभिक से उत्पन्न होती है। $X$-किरणें भारी परमाणुओं से उत्सर्जित होती हैं। किसी परिपथ में त्वरित इलेक्ट्रॉनों से रेडियो तरंगें उत्पन्न होती हैं। एक संप्रेषक ऐंटीना अति दक्षतापूर्वक उन तरंगों को विकिरित कर सकता है जिनकी तरंगदैर्घ्य उसी परिमाण की हैं, जिस परिमाण का ऐंटीना है तथापि परमाणुओं द्वारा उत्सर्जित दृश्य विकिरण की तरंगदैर्घ्य परमाणु के आकार से काफी अधिक होती है।
3. अवरक्त तरंगें जिनकी आवृत्ति दृश्य प्रकाश से कम होती है, न केवल इलेक्ट्रॉनों को कंपित करती हैं वरन् पदार्थ के सभी परमाणुओं अथवा अणुओं को भी कंपित करती हैं। यह कंपन आंतरिक ऊर्जा को बढ़ाता है तथा परिणामस्वरूप ताप को भी। यही कारण है कि अवरक्त तरंगों को प्रायः ऊष्णता तरंगें कहते हैं।
4. हमारी आँख की संवेदनशीलता का केंद्र सूर्य के तरंगदैर्घ्य वितरण के केंद्र पर पड़ता है। ऐसा इसलिए हुआ है क्योंकि मानव इस प्रकार विकसित हुआ है कि उसकी दृष्टि उन तरंगदैर्घ्यों के प्रति सबसे अधिक संवेदनशील है जो सूर्य के विकिरणों में सर्वाधिक प्रबल हैं।
अभ्यास
8.1 चित्र 8.5 में एक संधारित्र दर्शाया गया है जो $12 \mathrm{~cm}$ त्रिज्या की दो वृत्ताकार प्लेटों को $5.0 \mathrm{~cm}$ की दूरी पर रखकर बनाया गया है। संधारित्र को एक बाह्य स्रोत (जो चित्र में नहीं दर्शाया गया है) द्वारा आवेशित किया जा रहा है। आवेशकारी धारा नियत है और इसका मान $0.15 \mathrm{~A}$ है।
(a) धारिता एवं प्लेटों के बीच विभवांतर परिवर्तन की दर का परिकलन कीजिए।
(b) प्लेटों के बीच विस्थापन धारा ज्ञात कीजिए।
(c) क्या किरोफ का प्रथम नियम संधारित्र की प्रत्येक प्लेट पर लागू होता है? स्पष्ट कीजिए।
चित्र 8.5
Show Answer
# Content Missing8.2 एक समांतर प्लेट संधारित्र (चित्र 8.6), $R=6.0 \mathrm{~cm}$ त्रिज्या की दो वृत्ताकार प्लेटों से बना है और इसकी धारिता $C=100 \mathrm{pF}$ है। संधारित्र को $230 \mathrm{~V}, 300 \mathrm{rad} \mathrm{s}^{-1}$ की (कोणीय) (a) चालन धारा का rms मान क्या है?
(b) क्या चालन धारा विस्थापन धारा के बराबर है?
(c) प्लेटों के बीच, अक्ष से $3.0 \mathrm{~cm}$ की दूरी पर स्थित बिंदु पर $\mathbf{B}$ का आयाम ज्ञात कीजिए।
चित्र 8.6
Show Answer
# Content Missing8.3 $10^{-10} \mathrm{~m}$ तरंगदैर्घ्य की $\mathrm{X}$-किरणों, $6800 Å$ तरंगदैर्घ्य के प्रकाश, तथा $500 \mathrm{~m}$ की रेडियो तरंगों के लिए किस भौतिक राशि का मान समान है?
Show Answer
# Content Missing8.4 एक समतल वैद्युतचुंबकीय तरंग निर्वात में $z$-अक्ष के अनुदिश चल रही है। इसके विद्युत तथा चुंबकीय क्षेत्रों के सदिश की दिशा के बारे में आप क्या कहेंगे? यदि तरंग की आवृत्ति $30 \mathrm{MHz}$ हो तो उसकी तरंगदैर्घ्य कितनी होगी?
Show Answer
# Content Missing8.5 एक रेडियो $7.5 \mathrm{MHz}$ से $12 \mathrm{MHz}$ बैंड के किसी स्टेशन से समस्वरित हो सकता है। संगत तरंगदैर्घ्य बैंड क्या होगा?
Show Answer
# Content Missing8.6 एक आवेशित कण अपनी माध्य साम्यावस्था के दोनों ओर $10^{9} \mathrm{~Hz}$ आवृत्ति से दोलन करता है। दोलक द्वारा जनित वैद्युतचुंबकीय तरंगों की आवृत्ति कितनी है?
Show Answer
# Content Missing8.7 निर्वात में एक आवर्त वैद्युतचुंबकीय तरंग के चुंबकीय क्षेत्र वाले भाग का आयाम $B _{0}=510 \mathrm{nT}$ है। तरंग के विद्युत क्षेत्र वाले भाग का आयाम क्या है ?
Show Answer
# Content Missing8.8 कल्पना कीजिए कि एक वैद्युतचुंबकीय तरंग के विद्युत क्षेत्र का आयाम $E _{0}=120 \mathrm{~N} / \mathrm{C}$ है तथा इसकी आवृत्ति $v=50.0 \mathrm{MHz}$ है। (a) $B _{0}, \omega, k$ तथा $\lambda$ ज्ञात कीजिए, (b) $\mathbf{E}$ तथा $\mathbf{B}$ के लिए व्यंजक प्राप्त कीजिए।
Show Answer
# Content Missing8.9 वैद्युतचुंबकीय स्पेक्ट्रम के विभिन्न भागों की पारिभाषिकी पाठ्यपुस्तक में दी गई है। सूत्र $E=h v$ ( विकिरण के एक क्वांटम की ऊर्जा के लिए : फोटॉन) का उपयोग कीजिए तथा $\mathrm{em}$ वर्णक्रम के विभिन्न भागों के लिए $\mathrm{eV}$ के मात्रक में फोटॉन की ऊर्जा निकालिए। फोटॉन ऊर्जा के जो विभिन्न परिमाण आप पाते हैं वे वैद्युतचुंबकीय विकिरण के स्रोतों से किस प्रकार संबंधित हैं?
Show Answer
# Content Missing8.10 एक समतल $\mathrm{em}$ तरंग में विद्युत क्षेत्र, $2.0 \times 10^{10} \mathrm{~Hz}$ आवृत्ति तथा $48 \mathrm{~V} \mathrm{~m}^{-1}$ आयाम से ज्यावक्रीय रूप से दोलन करता है।
(a) तरंग की तरंगदैर्घ्य कितनी है?
(b) दोलनशील चुंबकीय क्षेत्र का आयाम क्या है?
(c) यह दर्शाइए कि $\mathbf{E}$ क्षेत्र का औसत ऊर्जा घनत्व, $\mathbf{B}$ क्षेत्र के औसत ऊर्जा घनत्व के बराबर है। $\left[c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right.$ ]