Chapter-06 Electromagnetic Induction
6.1 INTRODUCTION
Electricity and magnetism were considered separate and unrelated phenomena for a long time. In the early decades of the nineteenth century, experiments on electric current by Oersted, Ampere and a few others established the fact that electricity and magnetism are inter-related. They found that moving electric charges produce magnetic fields. For example, an electric current deflects a magnetic compass needle placed in its vicinity. This naturally raises the questions like: Is the converse effect possible? Can moving magnets produce electric currents? Does the nature permit such a relation between electricity and magnetism? The answer is resounding yes! The experiments of Michael Faraday in England and Joseph Henry in USA, conducted around 1830, demonstrated conclusively that electric currents were induced in closed coils when subjected to changing magnetic fields. In this chapter, we will study the phenomena associated with changing magnetic fields and understand the underlying principles. The phenomenon in which electric current is generated by varying magnetic fields is appropriately called electromagnetic induction.
When Faraday first made public his discovery that relative motion between a bar magnet and a wire loop produced a small current in the latter, he was asked, “What is the use of it?” His reply was: “What is the use of a new born baby?” The phenomenon of electromagnetic induction is not merely of theoretical or academic interest but also of practical utility. Imagine a world where there is no electricity - no electric lights, no trains, no telephones and no personal computers. The pioneering experiments of Faraday and Henry have led directly to the development of modern day generators and transformers. Today’s civilisation owes its progress to a great extent to the discovery of electromagnetic induction.
6.2 The Experiments of Faraday and Henry
Josheph Henry [1797 – 1878] American experimental physicist, professor at Princeton University and first director of the Smithsonian Institution. He made important improvements in electro- magnets by winding coils of insulated wire around iron pole pieces and invented an electromagnetic motor and a new, efficient telegraph. He discoverd self-induction and investigated how currents in one circuit induce currents in another.
The discovery and understanding of electromagnetic induction are based on a long series of experiments carried out by Faraday and Henry. We shall now describe some of these experiments.
Experiment 6.1
FIGURE 6.1 When the bar magnet is pushed towards the coil, the pointer in the galvanometer G deflects.
Figure 6.1 shows a coil $\mathrm{C_1}^{*}$ connected to a galvanometer G. When the North-pole of a bar magnet is pushed towards the coil, the pointer in the galvanometer deflects, indicating the presence of electric current in the coil. The deflection lasts as long as the bar magnet is in motion. The galvanometer does not show any deflection when the magnet is held stationary. When the magnet is pulled away from the coil, the galvanometer shows deflection in the opposite direction, which indicates reversal of the current’s direction. Moreover, when the South-pole of the bar magnet is moved towards or away from the coil, the deflections in the galvanometer are opposite to that observed with the North-pole for similar movements. Further, the deflection (and hence current) is found to be larger when the magnet is pushed towards or pulled away from the coil faster. Instead, when the bar magnet is held fixed and the coil $\mathrm{C_1}$ is moved towards or away from the magnet, the same effects are observed. It shows that it is the relative motion between the magnet and the coil that is responsible for generation (induction) of electric current in the coil.
- Wherever the term ‘coil’ or ‘loop’ is used, it is assumed that they are made up of conducting material and are prepared using wires which are coated with insulating material.
Experiment 6.2
FIGURE 6.2 Current is induced in coil $C_{1}$ due to motion of the current carrying coil $\mathrm{C_2}$.
In Fig. 6.2 the bar magnet is replaced by a second coil $\mathrm{C_2}$ connected to a battery. The steady current in the coil $\mathrm{C_2}$ produces a steady magnetic field. As coil $\mathrm{C_2}$ is moved towards the coil $\mathrm{C_1}$, the galvanometer shows a deflection. This indicates that electric current is induced in coil $\mathrm{C_1}$. When $\mathrm{C_2}$ is moved away, the galvanometer shows a deflection again, but this time in the opposite direction. The deflection lasts as long as coil $\mathrm{C_2}$ is in motion. When the coil $\mathrm{C_2}$ is held fixed and $\mathrm{C_1}$ is moved, the same effects are observed. Again, it is the relative motion between the coils that induces the electric current.
Experiment 6.3
The above two experiments involved relative motion between a magnet and a coil and between two coils, respectively. Through another experiment, Faraday showed that this relative motion is not an absolute requirement. Figure 6.3 shows two coils $\mathrm{C_1}$ and $\mathrm{C_2}$ held stationary. Coil $\mathrm{C_1}$ is connected to galvanometer $\mathrm{G}$ while the second coil $\mathrm{C_2}$ is connected to a battery through a tapping key K.
FIGURE 6.3 Experimental set-up for Experiment 6.3.
It is observed that the galvanometer shows a momentary deflection when the tapping key $\mathrm{K}$ is pressed. The pointer in the galvanometer returns to zero immediately. If the key is held pressed continuously, there is no deflection in the galvanometer. When the key is released, a momentory deflection is observed again, but in the opposite direction. It is also observed that the deflection increases dramatically when an iron rod is inserted into the coils along their axis.
6.3 Magnetic Flux
Faraday’s great insight lay in discovering a simple mathematical relation to explain the series of experiments he carried out on electromagnetic induction. However, before we state and appreciate his laws, we must get the same way as electric flux is defined in Chapter 1. Magnetic flux through a plane of area $A$ placed in a uniform magnetic field B (Fig. 6.4) can be written as
$$ \begin{equation*} \Phi_{\mathrm{B}}=\mathbf{B} \cdot \mathbf{A}=B A \cos \theta \tag{6.1} \end{equation*} $$
where $\theta$ is angle between $\mathbf{B}$ and $\mathbf{A}$. The notion of the area as vector has been discussed earlier in Chapter 1. Equation (6.1) can be extended to curved surfaces and nonuniform fields.
If the magnetic field has different magnitudes and directions at various parts of a surface as shown in Fig. 6.5, then the magnetic flux through the surface is given by
$$ \begin{equation*} \Phi_{B}=\mathbf{B_1} \cdot \mathrm{d} \mathbf{A_1}+\mathbf{B_2} \cdot \mathrm{d} \mathbf{A_2}+\cdots=\sum_{\text {all }} \mathbf{B_i} \cdot \mathrm{d} \mathbf{A_i} \tag{6.2} \end{equation*} $$
where ‘all’ stands for summation over all the area elements $\mathrm{d} \mathbf{A_i}$ comprising the surface and $\mathbf{B_i}$ is the magnetic field at the area element $\mathrm{d} \mathbf{A_1}$. The SI unit of magnetic flux is weber $(\mathrm{Wb})$ or tesla meter squared $\left(\mathrm{T}^{2}\right.)$ . Magnetic flux is a scalar quantity.
6.4 Faraday’s Law of Induction
From the experimental observations, Faraday arrived at a conclusion that an emf is induced in a coil when magnetic flux through the coil changes with time. Experimental observations discussed in Section 6.2 can be explained using this concept.
FIGURE 6.4 A plane of surface area $\mathbf{A}$ placed in a uniform magnetic field $\mathbf{B}$.
FIGURE 6.5 Magnetic field $\mathbf{B_i}$ at the $i^{\text {th }}$ area element. $\mathrm{d} \mathbf{A_i}$ represents area vector of the $i^{\text {th }}$ area element.
The motion of a magnet towards or away from coil $C_{1}$ in Experiment 6.1 and moving a current-carrying coil $\mathrm{C_2}$ towards or away from coil $\mathrm{C_1}$ in Experiment 6.2, change the magnetic flux associated with coil $\mathrm{C_1}$. The change in magnetic flux induces emf in coil $\mathrm{C_1}$. It was this induced emf which caused electric current to flow in coil $\mathrm{C_1}$ and through the galvanometer. A plausible explanation for the observations of Experiment 6.3 is as follows: When the tapping key $\mathrm{K}$ is pressed, the current in coil $\mathrm{C_2}$ (and the resulting magnetic field) rises from zero to a maximum value in a short time. Consequently, the magnetic flux through the neighbouring coil $\mathrm{C_1}$ also increases. It is the change in magnetic flux through coil $\mathrm{C_1}$ that produces an induced emf in coil $\mathrm{C_1}$. When the key is held pressed, current in coil $\mathrm{C_2}$ is constant. Therefore, there is no change in the magnetic flux through coil $\mathrm{C_1}$ and the current in coil $\mathrm{C_1}$ drops to zero. When the key is released, the current in $\mathrm{C_2}$ and the resulting magnetic field decreases from the maximum value to zero in a short time. This results in a decrease in magnetic flux through coil $\mathrm{C_1}$ and hence again induces an electric current in coil $\mathrm{C_1}{ }^{*}$. The common point in all these observations is that the time rate of change of magnetic flux through a circuit induces emf in it. Faraday stated experimental observations in the form of a law called Faraday’s law of electromagnetic induction. The law is stated below.
- Note that sensitive electrical instruments in the vicinity of an electromagnet can be damaged due to the induced emfs (and the resulting currents) when the electromagnet is turned on or off.
The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit.
Mathematically, the induced emf is given by
$$ \begin{equation*} \varepsilon=-\frac{\mathrm{d} \Phi_{B}}{\mathrm{~d} t} \tag{6.3} \end{equation*} $$
The negative sign indicates the direction of $\varepsilon$ and hence the direction of current in a closed loop. This will be discussed in detail in the next section.
In the case of a closely wound coil of $N$ turns, change of flux associated with each turn, is the same. Therefore, the expression for the total induced emf is given by
$$ \begin{equation*} \varepsilon=-N \frac{\mathrm{d} \Phi_{B}}{\mathrm{~d} t} \tag{6.4} \end{equation*} $$
The induced emf can be increased by increasing the number of turns $N$ of a closed coil.
Michael Faraday [1791– 1867] Faraday made numerous contributions to science, viz., the discovery of electromagnetic induction, the laws of electrolysis, benzene, and the fact that the plane of polarisation is rotated in an electric field. He is also credited with the invention of the electric motor, the electric generator and the transformer. He is widely regarded as the greatest experimental scientist of the nineteenth century.
From Eqs. (6.1) and (6.2), we see that the flux can be varied by changing any one or more of the terms $\mathbf{B}, \mathbf{A}$ and $\theta$. In Experiments 6.1 and 6.2 in Section 6.2, the flux is changed by varying $\mathbf{B}$. The flux can also be altered by changing the shape of a coil (that is, by shrinking it or stretching it) in a magnetic field, or rotating a coil in a magnetic field such that the angle $\theta$ between $\mathbf{B}$ and $\mathbf{A}$ changes. In these cases too, an emf is induced in the respective coils.
Example 6.1 Consider Experiment 6.2. (a) What would you do to obtain a large deflection of the galvanometer? (b) How would you demonstrate the presence of an induced current in the absence of a galvanometer?
Solution (a) To obtain a large deflection, one or more of the following steps can be taken: (i) Use a rod made of soft iron inside the coil $C_{2}$, (ii) Connect the coil to a powerful battery, and (iii) Move the arrangement rapidly towards the test coil $C_{1}$.
(b) Replace the galvanometer by a small bulb, the kind one finds in a small torch light. The relative motion between the two coils will cause the bulb to glow and thus demonstrate the presence of an induced current.
In experimental physics one must learn to innovate. Michael Faraday who is ranked as one of the best experimentalists ever, was legendary for his innovative skills.
Example 6.2 A square loop of side $10 \mathrm{~cm}$ and resistance $0.5 \Omega$ is placed vertically in the east-west plane. A uniform magnetic field of $0.10 \mathrm{~T}$ is set up across the plane in the north-east direction. The magnetic field is decreased to zero in $0.70 \mathrm{~s}$ at a steady rate. Determine the magnitudes of induced emf and current during this time-interval.
Solution The angle $\theta$ made by the area vector of the coil with the magnetic field is $45^{\circ}$. From Eq. (6.1), the initial magnetic flux is $\Phi=B A \cos \theta$
$=\frac{0.1 \times 10^{-2}}{\sqrt{2}} \mathrm{~Wb}$
Final flux, $\Phi_{\min }=0$
The change in flux is brought about in $0.70 \mathrm{~s}$. From Eq. (6.3), the magnitude of the induced emf is given by
$$ \varepsilon=\frac{\left|\Delta \Phi_{B}\right|}{\Delta t}=\frac{|(\Phi-0)|}{\Delta t}=\frac{10^{-3}}{\sqrt{2} \times 0.7}=1.0 \mathrm{mV} $$
And the magnitude of the current is
$I=\frac{\varepsilon}{R}=\frac{10^{-3} \mathrm{~V}}{0.5 \Omega}=2 \mathrm{~mA}$
Note that the earth’s magnetic field also produces a flux through the loop. But it is a steady field (which does not change within the time span of the experiment) and hence does not induce any emf.
Example 6.3
A circular coil of radius $10 \mathrm{~cm}, 500$ turns and resistance $2 \Omega$ is placed with its plane perpendicular to the horizontal component of the earth’s magnetic field. It is rotated about its vertical diameter through $180^{\circ}$ in $0.25 \mathrm{~s}$. Estimate the magnitudes of the emf and current induced in the coil. Horizontal component of the earth’s magnetic field at the place is $3.0 \times 10^{-5} \mathrm{~T}$.
Solution
Initial flux through the coil,
$$ \begin{aligned} \Phi_{\mathrm{B}(\text { initial })} & =B A \cos \theta \\ & =3.0 \times 10^{-5} \times\left(\pi \times 10^{-2}\right) \times \cos 0^{\circ} \\ & =3 \pi \times 10^{-7} \mathrm{~Wb} \end{aligned} $$
Final flux after the rotation,
$$ \begin{aligned} \Phi_{\mathrm{B}(\text { final })} & =3.0 \times 10^{-5} \times\left(\pi \times 10^{-2}\right) \times \cos 180^{\circ} \\ & =-3 \pi \times 10^{-7} \mathrm{~Wb} \end{aligned} $$
Therefore, estimated value of the induced emf is,
$$ \begin{aligned} \varepsilon & =N \frac{\Delta \Phi}{\Delta t} \\ & =500 \times\left(6 \pi \times 10^{-7}\right) / 0.25 \\ \end{aligned} $$
$$ \begin{aligned} & =3.8 \times 10^{-3} \mathrm{~V} \\ I & =\varepsilon / R=1.9 \times 10^{-3} \mathrm{~A} \end{aligned} $$
Note that the magnitudes of $\varepsilon$ and $I$ are the estimated values. Their instantaneous values are different and depend upon the speed of rotation at the particular instant.
6.5 Lenz’s Law and Conservation of Energy
In 1834, German physicist Heinrich Friedrich Lenz (1804-1865) deduced a rule, known as Lenz’s law which gives the polarity of the induced emf in a clear and concise fashion. The statement of the law is:
The polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it.
The negative sign shown in Eq. (6.3) represents this effect. We can understand Lenz’s law by examining Experiment 6.1 in Section 6.2.1. In Fig. 6.1, we see that the North-pole of a bar magnet is being pushed towards the closed coil. As the North-pole of the bar magnet moves towards the coil, the magnetic flux through the coil increases. Hence current is induced in the coil in such a direction that it opposes the increase in flux. This is possible only if the current in the coil is in a counter-clockwise direction with respect to an observer situated on the side of the magnet. Note that magnetic moment associated with this current has North polarity towards the North-pole of the approaching magnet. Similarly, if the Northpole of the magnet is being withdrawn from the coil, the magnetic flux through the coil will decrease. To counter this decrease in magnetic flux, the induced current in the coil flows in clockwise direction and its Southpole faces the receding North-pole of the bar magnet. This would result in an attractive force which opposes the motion of the magnet and the corresponding decrease in flux.
What will happen if an open circuit is used in place of the closed loop in the above example? In this case too, an emf is induced across the open ends of the circuit. The direction of the induced emf can be found using Lenz’s law. Consider Figs. 6.6 (a) and (b). They provide an easier way to understand the direction of induced currents. Note that the direction shown by $\sqrt{ }$ and indicate the directions of the induced currents.
FIGURE 6.6 Illustration of Lenz’s law.
A little reflection on this matter should convince us on the correctness of Lenz’s law. Suppose that the induced current was in the direction opposite to the one depicted in Fig. 6.6(a). In that case, the South-pole due to the induced current will face the approaching North-pole of the magnet. The bar magnet will then be attracted towards the coil at an ever increasing acceleration. A gentle push on the magnet will initiate the process and its velocity and kinetic energy will continuously increase without expending any energy. If this can happen, one could construct a perpetual-motion machine by a suitable arrangement. This violates the law of conservation of energy and hence can not happen.
Now consider the correct case shown in Fig. 6.6(a). In this situation, the bar magnet experiences a repulsive force due to the induced current. Therefore, a person has to do work in moving the magnet. Where does the energy spent by the person go? This energy is dissipated by Joule heating produced by the induced current.
Example 6.4
Figure 6.7 shows planar loops of different shapes moving out of or into a region of a magnetic field which is directed normal to the plane of the loop away from the reader. Determine the direction of induced current in each loop using Lenz’s law.
FIGURE 6.7
Solution
(i) The magnetic flux through the rectangular loop abcd increases, due to the motion of the loop into the region of magnetic field, The induced current must flow along the path bcdab so that it opposes the increasing flux.
(ii) Due to the outward motion, magnetic flux through the triangular loop abc decreases due to which the induced current flows along bacb, so as to oppose the change in flux.
(iii) As the magnetic flux decreases due to motion of the irregular shaped loop abcd out of the region of magnetic field, the induced current flows along cdabc, so as to oppose change in flux.
Note that there are no induced current as long as the loops are completely inside or outside the region of the magnetic field.
Example 6.5
(a) A closed loop is held stationary in the magnetic field between the north and south poles of two permanent magnets held fixed. Can we hope to generate current in the loop by using very strong magnets?
(b) A closed loop moves normal to the constant electric field between the plates of a large capacitor. Is a current induced in the loop (i) when it is wholly inside the region between the capacitor plates (ii) when it is partially outside the plates of the capacitor? The electric field is normal to the plane of the loop.
(c) A rectangular loop and a circular loop are moving out of a uniform magnetic field region (Fig. 6.8) to a field-free region with a constant velocity $\mathbf{v}$. In which loop do you expect the induced emf to be constant during the passage out of the field region? The field is normal to the loops.
(d) Predict the polarity of the capacitor in the situation described by Fig. 6.9.
FIGURE 6.9
Solution
(a) No. However strong the magnet may be, current can be induced only by changing the magnetic flux through the loop.
(b) No current is induced in either case. Current can not be induced by changing the electric flux.
(c) The induced emf is expected to be constant only in the case of the rectangular loop. In the case of circular loop, the rate of change of area of the loop during its passage out of the field region is not constant, hence induced emf will vary accordingly.
(d) The polarity of plate ’ $A$ ’ will be positive with respect to plate ’ $B$ ’ in the capacitor.
6.6 Motional Electromotive Force
Let us consider a straight conductor moving in a uniform and timeindependent magnetic field. Figure 6.10 shows a rectangular conductor PQRS in which the conductor PQ is free to move. The rod PQ is moved
FIGURE 6.10 The arm $\mathrm{PQ}$ is moved to the left side, thus decreasing the area of the rectangular loop. This movement induces a current $I$ as shown.
towards the left with a constant velocity $\mathbf{v}$ as shown in the figure. Assume that there is no loss of energy due to friction. PQRS forms a closed circuit enclosing an area that changes as $\mathrm{PQ}$ moves. It is placed in a uniform magnetic field $\mathbf{B}$ which is perpendicular to the plane of this system. If the length $\mathrm{RQ}=x$ and $\mathrm{RS}=l$, the magnetic flux $\Phi_{\mathrm{B}}$ enclosed by the loop PQRS will be
$$ \Phi_{B}=B l x $$
Since $x$ is changing with time, the rate of change of flux $\Phi_{\mathrm{B}}$ will induce an emf given by:
$$ \begin{align*} \varepsilon & =\frac{-\mathrm{d} \Phi_{B}}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{d} t}(B l x) \\ & =-B l \frac{\mathrm{d} x}{\mathrm{~d} t}=B l v \tag{6.5} \end{align*} $$
where we have used $\mathrm{d} x / \mathrm{d} t=-v$ which is the speed of the conductor PQ. The induced emf Blv is called motional emf. Thus, we are able to produce induced emf by moving a conductor instead of varying the magnetic field, that is, by changing the magnetic flux enclosed by the circuit.
It is also possible to explain the motional emf expression in Eq. (6.5) by invoking the Lorentz force acting on the free charge carriers of conductor PQ. Consider any arbitrary charge $q$ in the conductor PQ. When the rod moves with speed $v$, the charge will also be moving with speed $v$ in the magnetic field $\mathbf{B}$. The Lorentz force on this charge is $q v B$ in magnitude, and its direction is towards $\mathrm{Q}$. All charges experience the same force, in magnitude and direction, irrespective of their position in the rod PQ.
The work done in moving the charge from $\mathrm{P}$ to $\mathrm{Q}$ is,
$$ \mathrm{W}=q v \mathrm{~B} l $$
Since emf is the work done per unit charge,
$$ \begin{aligned} \varepsilon & =\frac{W}{q} & =B l v \end{aligned} $$
This equation gives emf induced across the rod $\mathrm{PQ}$ and is identical to Eq. (6.5). We stress that our presentation is not wholly rigorous. But it does help us to understand the basis of Faraday’s law when the conductor is moving in a uniform and time-independent magnetic field.
On the other hand, it is not obvious how an emf is induced when a conductor is stationary and the magnetic field is changing - a fact which Faraday verified by numerous experiments. In the case of a stationary conductor, the force on its charges is given by
$$ \begin{equation*} \mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})=q \mathbf{E} \tag{6.6} \end{equation*} $$
since $\mathbf{v}=0$. Thus, any force on the charge must arise from the electric field term $\mathbf{E}$ alone. Therefore, to explain the existence of induced emf or induced current, we must assume that a time-varying magnetic field generates an electric field. However, we hasten to add that electric fields produced by static electric charges have properties different from those produced by time-varying magnetic fields. In Chapter 4, we learnt that charges in motion (current) can exert force/torque on a stationary magnet. Conversely, a bar magnet in motion (or more generally, a changing magnetic field) can exert a force on the stationary charge. This is the fundamental significance of the Faraday’s discovery. Electricity and magnetism are related.
Example 6.6 A metallic rod of $1 \mathrm{~m}$ length is rotated with a frequency of $50 \mathrm{rev} / \mathrm{s}$, with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius $1 \mathrm{~m}$, about an axis passing through the centre and perpendicular to the plane of the ring (Fig. 6.11). A constant and uniform magnetic field of $1 \mathrm{~T}$ parallel to the axis is present everywhere. What is the emf between the centre and the metallic ring?
FIGURE 6.11
Solution
Method I
As the rod is rotated, free electrons in the rod move towards the outer end due to Lorentz force and get distributed over the ring. Thus, the resulting separation of charges produces an emf across the ends of the rod. At a certain value of emf, there is no more flow of electrons and a steady state is reached. Using Eq. (6.5), the magnitude of the emf generated across a length $\mathrm{d} r$ of the rod as it moves at right angles to the magnetic field is given by
$\mathrm{d} \varepsilon=B v \mathrm{~d} r$. Hence,
$\varepsilon=\int \mathrm{d} \varepsilon=\int_{0}^{R} B v \mathrm{~d} r=\int_{0}^{R} B \omega r \mathrm{~d} r=\frac{B \omega R^{2}}{2}$
Note that we have used $v=\omega r$. This gives
$\varepsilon=\frac{1}{2} \times 1.0 \times 2 \pi \times 50 \times\left(1^{2}\right)$
$=157 \mathrm{~V}$
Method II
To calculate the emf, we can imagine a closed loop OPG in which point $\mathrm{O}$ and $\mathrm{P}$ are connected with a resistor $R$ and $\mathrm{OQ}$ is the rotating rod. The potential difference across the resistor is then equal to the induced emf and equals $B \times$ (rate of change of area of loop). If $\theta$ is the angle between the rod and the radius of the circle at $\mathrm{P}$ at time $t$, the area of the sector OPQ is given by
$\pi R^{2} \times \frac{\theta}{2 \pi}=\frac{1}{2} R^{2} \theta$
where $R$ is the radius of the circle. Hence, the induced emf is
$\varepsilon=B \times \frac{\mathrm{d}}{\mathrm{d} t}\left[\frac{1}{2} R^{2} \theta\right]=\frac{1}{2} B R^{2} \frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{B \omega R^{2}}{2}$
[Note: $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\omega=2 \pi \nu$ ]
This expression is identical to the expression obtained by Method I and we get the same value of $\varepsilon$.
Example 6.7
A wheel with 10 metallic spokes each $0.5 \mathrm{~m}$ long is rotated with a speed of $120 \mathrm{rev} / \mathrm{min}$ in a plane normal to the horizontal component of earth’s magnetic field $H_{E}$ at a place. If $H_{E}=0.4 \mathrm{G}$ at the place, what is the induced emf between the axle and the rim of the wheel? Note that $1 \mathrm{G}=10^{-4} \mathrm{~T}$.
Solution
Induced emf $=(1 / 2) \omega B R^{2}$
$$ \begin{aligned} & =(1 / 2) \times 4 \pi \times 0.4 \times 10^{-4} \times(0.5)^{2} \\ & =6.28 \times 10^{-5} \mathrm{~V} \end{aligned} $$
The number of spokes is immaterial because the emfs across the spokes are in parallel.
6.7 Inductance
An electric current can be induced in a coil by flux change produced by another coil in its vicinity or flux change produced by the same coil. These two situations are described separately in the next two sub-sections. However, in both the cases, the flux through a coil is proportional to the current. That is, $\Phi_{\mathrm{B}} \alpha I$.
Further, if the geometry of the coil does not vary with time then,
$$ \frac{\mathrm{d} \Phi_{B}}{\mathrm{~d} t} \propto \frac{\mathrm{d} I}{\mathrm{~d} t} $$
For a closely wound coil of $N$ turns, the same magnetic flux is linked with all the turns. When the flux $\Phi_{\mathrm{B}}$ through the coil changes, each turn contributes to the induced emf. Therefore, a term called flux linkage is used which is equal to $N \Phi_{\mathrm{B}}$ for a closely wound coil and in such a case
$$ N \Phi_{\mathrm{B}} \propto I $$
The constant of proportionality, in this relation, is called inductance. We shall see that inductance depends only on the geometry of the coil and intrinsic material properties. This aspect is akin to capacitance which for a parallel plate capacitor depends on the plate area and plate separation (geometry) and the dielectric constant $K$ of the intervening medium (intrinsic material property).
Inductance is a scalar quantity. It has the dimensions of $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ given by the dimensions of flux divided by the dimensions of current. The SI unit of inductance is henry and is denoted by $\mathrm{H}$. It is named in honour of Joseph Henry who discovered electromagnetic induction in USA, independently of Faraday in England.
6.7.1 Mutual inductance
Consider Fig. 6.11 which shows two long co-axial solenoids each of length $l$. We denote the radius of the inner solenoid $S_{1}$ by $r_{1}$ and the number of turns per unit length by $n_{1}$. The corresponding quantities for the outer solenoid $S_{2}$ are $r_{2}$ and $n_{2}$, respectively. Let $N_{1}$ and $N_{2}$ be the total number of turns of coils $S_{1}$ and $S_{2}$, respectively.
FIGURE 6.12 Two long co-axial solenoids of same length $l$.
When a current $I_{2}$ is set up through $S_{2}$, it in turn sets up a magnetic flux through $S_{1}$. Let us denote it by $\Phi_{1}$. The corresponding flux linkage with solenoid $S_{1}$ is
$$ \begin{equation*} N_{1} \Phi_{1}=M_{12} I_{2} \tag{6.7} \end{equation*} $$
$M_{12}$ is called the mutual inductance of solenoid $S_{1}$ with respect to solenoid $S_{2}$. It is also referred to as the coefficient of mutual induction.
For these simple co-axial solenoids it is possible to calculate $M_{12}$. The magnetic field due to the current $I_{2}$ in $S_{2}$ is $\mu_{0} n_{2} I_{2}$. The resulting flux linkage with coil $S_{1}$ is,
$$ \begin{align*} N_{1} \Phi_{1} & =\left(n_{1} l\right)\left(\pi r_{1}^{2}\right)\left(\mu_{0} n_{2} I_{2}\right) \\ & =\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l I_{2} \tag{6.8} \end{align*} $$
where $n_{1} l$ is the total number of turns in solenoid $S_{1}$. Thus, from Eq. (6.9) and Eq. (6.10),
$$ \begin{equation*} M_{12}=\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l \tag{6.9} \end{equation*} $$
Note that we neglected the edge effects and considered the magnetic field $\mu_{0} n_{2} I_{2}$ to be uniform throughout the length and width of the solenoid $S_{2}$. This is a good approximation keeping in mind that the solenoid is long, implying $l>r_{2}$.
We now consider the reverse case. A current $I_{1}$ is passed through the solenoid $S_{1}$ and the flux linkage with coil $S_{2}$ is,
$$ \begin{equation*} N_{2} \Phi_{2}=M_{21} I_{1} \tag{6.10} \end{equation*} $$
$M_{21}$ is called the mutual inductance of solenoid $S_{2}$ with respect to solenoid $S_{1}$.
The flux due to the current $I_{1}$ in $S_{1}$ can be assumed to be confined solely inside $S_{1}$ since the solenoids are very long. Thus, flux linkage with solenoid $S_{2}$ is
$$ N_{2} \Phi_{2}=\left(n_{2} l\right)\left(\pi r_{1}^{2}\right)\left(\mu_{0} n_{1} I_{1}\right) $$
where $n_{2} l$ is the total number of turns of $\mathrm{S_2}$. From Eq. (6.12),
$$ \begin{equation*} M_{21}=\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l \tag{6.11} \end{equation*} $$
Using Eq. (6.11) and Eq. (6.12), we get
$$ \begin{equation*} M_{12}=M_{21}=M \text { (say) } \tag{6.12} \end{equation*} $$
We have demonstrated this equality for long co-axial solenoids. However, the relation is far more general. Note that if the inner solenoid was much shorter than (and placed well inside) the outer solenoid, then we could still have calculated the flux linkage $N_{1} \Phi_{1}$ because the inner solenoid is effectively immersed in a uniform magnetic field due to the outer solenoid. In this case, the calculation of $M_{12}$ would be easy. However, it would be extremely difficult to calculate the flux linkage with the outer solenoid as the magnetic field due to the inner solenoid would vary across the length as well as cross section of the outer solenoid. Therefore, the calculation of $M_{21}$ would also be extremely difficult in this case. The equality $M_{12}=M_{21}$ is very useful in such situations.
We explained the above example with air as the medium within the solenoids. Instead, if a medium of relative permeability $\mu_{\mathrm{r}}$ had been present, the mutual inductance would be
$$ M=\mu_{r} \mu_{0} n_{1} n_{2} \pi r_{1}^{2} l $$
It is also important to know that the mutual inductance of a pair of coils, solenoids, etc., depends on their separation as well as their relative orientation.
Example 6.8 Two concentric circular coils, one of small radius $r_{1}$ and the other of large radius $r_{2}$, such that $r_{1} \ll r_{2}$, are placed co-axially with centres coinciding. Obtain the mutual inductance of the arrangement.
Solution Let a current $I_{2}$ flow through the outer circular coil. The field at the centre of the coil is $B_{2}=\mu_{0} I_{2} / 2 r_{2}$. Since the other co-axially placed coil has a very small radius, $B_{2}$ may be considered constant over its cross-sectional area. Hence,
$\Phi_{1}=\pi r_{1}^{2} B_{2}$
$$ \begin{aligned} & =\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}} I_{2} \\ & =M_{12} I_{2} \end{aligned} $$
Thus,
$$ M_{12}=\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}} $$
From Eq. (6.12)
$$ M_{12}=M_{21}=\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}} $$
Note that we calculated $M_{12}$ from an approximate value of $\Phi_{1}$, assuming the magnetic field $B_{2}$ to be uniform over the area $\pi r_{1}^{2}$. However, we can accept this value because $r_{1} \ll r_{2}$.
Now, let us recollect Experiment 6.3 in Section 6.2. In that experiment, emf is induced in coil $C_{1}$ wherever there was any change in current through coil $C_{2}$. Let $\Phi_{1}$ be the flux through coil $C_{1}$ (say of $N_{1}$ turns) when current in coil $C_{2}$ is $I_{2}$.
Then, from Eq. (6.7), we have
$N_{1} \Phi_{1}=M I_{2}$
For currents varrying with time,
$$ \frac{\mathrm{d}\left(N_{1} \Phi_{1}\right)}{\mathrm{d} t}=\frac{\mathrm{d}\left(M I_{2}\right)}{\mathrm{d} t} $$
Since induced emf in coil $C_{1}$ is given by
$$ \varepsilon_{1}=-\frac{\mathrm{d}\left(N_{1} \Phi_{1}\right)}{\mathrm{d} t} $$
We get,
$$ \varepsilon_{1}=-M \frac{\mathrm{d} I_{2}}{\mathrm{~d} t} $$
It shows that varying current in a coil can induce emf in a neighbouring coil. The magnitude of the induced emf depends upon the rate of change of current and mutual inductance of the two coils.
6.7.2 Self-inductance
In the previous sub-section, we considered the flux in one solenoid due to the current in the other. It is also possible that emf is induced in a single isolated coil due to change of flux through the coil by means of varying the current through the same coil. This phenomenon is called self-induction. In this case, flux linkage through a coil of $N$ turns is proportional to the current through the coil and is expressed as
$$ \begin{align*} & N \Phi_{B} \propto I \\ & N \Phi_{B}=L I \tag{6.13} \end{align*} $$
where constant of proportionality $L$ is called self-inductance of the coil. It is also called the coefficient of self-induction of the coil. When the current is varied, the flux linked with the coil also changes and an emf is induced in the coil. Using Eq. (6.13), the induced emf is given by
$$ \begin{align*} & \varepsilon=-\frac{\mathrm{d}\left(N \Phi_{\mathrm{B}}\right)}{\mathrm{d} t} \\ & \varepsilon=-L \frac{\mathrm{d} I}{\mathrm{~d} t} \tag{6.14} \end{align*} $$
Thus, the self-induced emf always opposes any change (increase or decrease) of current in the coil.
It is possible to calculate the self-inductance for circuits with simple geometries. Let us calculate the self-inductance of a long solenoid of crosssectional area $A$ and length $l$, having $n$ turns per unit length. The magnetic field due to a current $I$ flowing in the solenoid is $B=\mu_{0} n I$ (neglecting edge effects, as before). The total flux linked with the solenoid is
$$ \begin{aligned} & N \Phi_{B}=(n l)\left(\mu_{0} n I\right)(A) \\ & =\mu_{0} n^{2} A l I \end{aligned} $$
where $n l$ is the total number of turns. Thus, the self-inductance is,
$$ \begin{align*} L & =\frac{N \Phi_{B}}{I} \\ & =\mu_{0} n^{2} A l \tag{6.15} \end{align*} $$
If we fill the inside of the solenoid with a material of relative permeability $\mu_{r}$ (for example soft iron, which has a high value of relative permeability), then,
$$ \begin{equation*} L=\mu_{r} \mu_{0} n^{2} A l \tag{6.16} \end{equation*} $$
The self-inductance of the coil depends on its geometry and on the permeability of the medium.
The self-induced emf is also called the back emf as it opposes any change in the current in a circuit. Physically, the self-inductance plays the role of inertia. It is the electromagnetic analogue of mass in mechanics. So, work needs to be done against the back $\operatorname{emf}(\varepsilon)$ in establishing the current. This work done is stored as magnetic potential energy. For the current $I$ at an instant in a circuit, the rate of work done is
$$ \frac{\mathrm{d} W}{\mathrm{~d} t}=|\varepsilon| I $$
If we ignore the resistive losses and consider only inductive effect, then using Eq. (6.16),
$$ \frac{\mathrm{d} W}{\mathrm{~d} t}=L I \frac{\mathrm{d} I}{\mathrm{~d} t} $$
Total amount of work done in establishing the current $I$ is
$$ W=\int \mathrm{d} W=\int_{0}^{I} L I \mathrm{~d} I $$
Thus, the energy required to build up the current $I$ is,
$$ \begin{equation*} W=\frac{1}{2} L I^{2} \tag{6.17} \end{equation*} $$
This expression reminds us of $m v^{2} / 2$ for the (mechanical) kinetic energy of a particle of mass $m$, and shows that $L$ is analogous to $m$ (i.e., $L$ is electrical inertia and opposes growth and decay of current in the circuit).
Consider the general case of currents flowing simultaneously in two nearby coils. The flux linked with one coil will be the sum of two fluxes which exist independently. Equation (6.7) would be modified into
$$ N_{1} \Phi_{1}=M_{11} I_{1}+M_{12} I_{2} $$
where $M_{11}$ represents inductance due to the same coil.
Therefore, using Faraday’s law,
$$ \varepsilon_{1}=-M_{11} \frac{\mathrm{d} I_{1}}{\mathrm{~d} t}-M_{12} \frac{\mathrm{d} I_{2}}{\mathrm{~d} t} $$
$M_{11}$ is the self-inductance and is written as $L_{1}$. Therefore,
$$ \varepsilon_{1}=-L_{1} \frac{\mathrm{d} I_{1}}{\mathrm{~d} t}-M_{12} \frac{\mathrm{d} I_{2}}{\mathrm{~d} t} $$
Example 6.9 (a) Obtain the expression for the magnetic energy stored in a solenoid in terms of magnetic field $B$, area $A$ and length $l$ of the solenoid. (b) How does this magnetic energy compare with the electrostatic energy stored in a capacitor?
Solution (a) From Eq. (6.17), the magnetic energy is
$$ \begin{aligned} U_{B} & =\frac{1}{2} L I^{2} \\ & =\frac{1}{2} L{\frac{B}{\mu_{0} n}}^{2} \quad (\text { since } B=\mu_{0} n I, \text { for a solenoid }) \end{aligned} $$
$$ \begin{aligned} =\frac{1}{2}\left(\mu_0 n^2 A l\right)\left(\frac{B}{\mu_0 n}\right)^2 \end{aligned} $$
$$ \begin{aligned} =\frac{1}{2} B^2 {\frac{B}{\mu_{0} n}}^{2} \end{aligned} $$
(b) The magnetic energy per unit volume is
$$ \begin{aligned} u_B & =\frac{U_B}{V} \quad \text { ( where V is volume that contains flux) } \end{aligned} $$
$ \begin{aligned} & =\frac{U_B}{A l} & =\frac{B^2}{2 \mu_0} \end{aligned} $
We have already obtained the relation for the electrostatic energy stored per unit volume in a parallel plate capacitor (refer to Chapter 2, Eq. 2.73),
$ u_{E}=\frac{1}{2} \varepsilon_{0} E^{2} $
In both the cases energy is proportional to the square of the field strength. Equations (6.18) and (2.73) have been derived for special cases: a solenoid and a parallel plate capacitor, respectively. But they are general and valid for any region of space in which a magnetic field or/and an electric field exist.
6.8 AC Generator
FIGURE 6.13 AC Generator
The phenomenon of electromagnetic induction has been technologically exploited in many ways. An exceptionally important application is the generation of alternating currents (ac). The modern ac generator with a typical output capacity of $100 \mathrm{MW}$ is a highly evolved machine. In this section, we shall describe the basic principles behind this machine. The Yugoslav inventor Nicola Tesla is credited with the development of the machine. As was pointed out in Section 6.3, one method to induce an emf or current in a loop is through a change in the loop’s orientation or a change in its effective area. As the coil rotates in a magnetic field $\mathbf{B}$, the effective area of the loop (the face perpendicular to the field) is $A \cos \theta$, where $\theta$ is the angle between $\mathbf{A}$ and $\mathbf{B}$. This method of producing a flux change is the principle of operation of a simple ac generator. An ac generator converts mechanical energy into electrical energy.
The basic elements of an ac generator are shown in Fig. 6.13. It consists of a coil mounted on a rotor shaft. The axis of rotation of the coil is perpendicular to the direction of the magnetic field. The coil (called armature) is mechanically rotated in the uniform magnetic field by some external means. The rotation of the coil causes the magnetic flux through it to change, so an emf is induced in the coil. The ends of the coil are connected to an external circuit by means of slip rings and brushes.
When the coil is rotated with a constant angular speed $\omega$, the angle $\theta$ between the magnetic field vector $\mathbf{B}$ and the area vector $\mathbf{A}$ of the coil at any instant $t$ is $\theta=\omega t$ (assuming $\theta=0^{\circ}$ at $t=0$ ). As a result, the effective area of the coil exposed to the magnetic field lines changes with time, and from Eq. (6.1), the flux at any time $t$ is
$$ \Phi_{\mathrm{B}}=B A \cos \theta=B A \cos \omega t $$
From Faraday’s law, the induced emf for the rotating coil of $N$ turns is then,
$$ \varepsilon=-N \frac{\mathrm{d} \Phi_{B}}{\mathrm{dt}}=-N B A \frac{\mathrm{d}}{\mathrm{d} t}(\cos \omega t) $$
Thus, the instantaneous value of the emf is
$$ \begin{equation*} \varepsilon=N B A \omega \sin \omega t \tag{6.19} \end{equation*} $$
where NBA $\omega$ is the maximum value of the emf, which occurs when $\sin \omega t= \pm 1$. If we denote $N B A \omega$ as $\varepsilon_{0}$, then
$$ \begin{equation*} \varepsilon=\varepsilon_{0} \sin \omega t \tag{6.20} \end{equation*} $$
Since the value of the sine fuction varies between +1 and -1 , the sign, or polarity of the emf changes with time. Note from Fig. 6.14 that the emf has its extremum value when $\theta=90^{\circ}$ or $\theta=270^{\circ}$, as the change of flux is greatest at these points.
The direction of the current changes periodically and therefore the current is called alternating current (ac). Since $\omega=2 \pi \nu$, Eq (6.20) can be written as
$$ \begin{equation*} \varepsilon=\varepsilon_{0} \sin 2 \pi \nu t \tag{6.21} \end{equation*} $$
where $v$ is the frequency of revolution of the generator’s coil.
Note that Eq. (6.20) and (6.21) give the instantaneous value of the emf and $\varepsilon$ varies between $+\varepsilon_{0}$ and $-\varepsilon_{0}$ periodically. We shall learn how to determine the time-averaged value for the alternating voltage and current in the next chapter.
FIGURE 6.14 An alternating emf is generated by a loop of wire rotating in a magnetic field.
In commercial generators, the mechanical energy required for rotation of the armature is provided by water falling from a height, for example, from dams. These are called hydro-electric generators. Alternatively, water is heated to produce steam using coal or other sources. The steam at high pressure produces the rotation of the armature. These are called thermal generators. Instead of coal, if a nuclear fuel is used, we get nuclear power generators. Modern day generators produce electric power as high as $500 \mathrm{MW}$, i.e., one can light up 5 million $100 \mathrm{~W}$ bulbs! In most generators, the coils are held stationary and it is the electromagnets which are rotated. The frequency of rotation is $50 \mathrm{~Hz}$ in India. In certain countries such as USA, it is $60 \mathrm{~Hz}$.
Example 6.10 Kamla peddles a stationary bicycle. The pedals of the bicycle are attached to a 100 turn coil of area $0.10 \mathrm{~m}^{2}$. The coil rotates at half a revolution per second and it is placed in a uniform magnetic field of $0.01 \mathrm{~T}$ perpendicular to the axis of rotation of the coil. What is the maximum voltage generated in the coil?
Solution Here $v=0.5 \mathrm{~Hz} ; N=100, A=0.1 \mathrm{~m}^{2}$ and $B=0.01 \mathrm{~T}$. Employing Eq. (6.19)
$$ \begin{aligned} \varepsilon_{0} & =N B A(2 \pi v) \\ & =100 \times 0.01 \times 0.1 \times 2 \times 3.14 \times 0.5 \\ & =0.314 \mathrm{~V} \end{aligned} $$
The maximum voltage is $0.314 \mathrm{~V}$.
We urge you to explore such alternative possibilities for power generation.
SUMMARY
1. The magnetic flux through a surface of area $\mathbf{A}$ placed in a uniform magnetic field $\mathbf{B}$ is defined as,
$\Phi_{\mathrm{B}}=\mathbf{B} \cdot \mathbf{A}=B A \cos \theta$
where $\theta$ is the angle between $\mathbf{B}$ and $\mathbf{A}$.
2. Faraday’s laws of induction imply that the emf induced in a coil of $N$ turns is directly related to the rate of change of flux through it,
$\varepsilon=-N \frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{d} t}$
Here $\Phi_{\mathrm{B}}$ is the flux linked with one turn of the coil. If the circuit is closed, a current $I=\varepsilon / R$ is set up in it, where $R$ is the resistance of the circuit.
3. Lenz’s law states that the polarity of the induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produces it. The negative sign in the expression for Faraday’s law indicates this fact.
4. When a metal rod of length $l$ is placed normal to a uniform magnetic field $B$ and moved with a velocity $v$ perpendicular to the field, the induced emf (called motional emf) across its ends is $\varepsilon=B l v$
5. Inductance is the ratio of the flux-linkage to current. It is equal to $N \Phi / I$.
6. A changing current in a coil (coil 2) can induce an emf in a nearby coil (coil 1). This relation is given by,
$\varepsilon_{1}=-M_{12} \frac{\mathrm{d} I_{2}}{\mathrm{~d} t}$
The quantity $M_{12}$ is called mutual inductance of coil 1 with respect to coil 2. One can similarly define $M_{21}$. There exists a general equality, $M_{12}=M_{21}$
7. When a current in a coil changes, it induces a back emf in the same coil. The self-induced emf is given by,
$\varepsilon=-L \frac{\mathrm{d} I}{\mathrm{~d} t}$
$L$ is the self-inductance of the coil. It is a measure of the inertia of the coil against the change of current through it.
8. The self-inductance of a long solenoid, the core of which consists of a magnetic material of relative permeability $\mu_{\mathrm{r}}$, is given by
$L=\mu_{r} \mu_{0} n^{2} A l$
where $A$ is the area of cross-section of the solenoid, $l$ its length and $n$ the number of turns per unit length.
9. In an ac generator, mechanical energy is converted to electrical energy by virtue of electromagnetic induction. If coil of $N$ turn and area $A$ is rotated at $v$ revolutions per second in a uniform magnetic field $B$, then the motional emf produced is $\varepsilon=N B A(2 \pi v) \sin (2 \pi v t)$
where we have assumed that at time $t=0 \mathrm{~s}$, the coil is perpendicular to the field.
Buantity | Symbol | Units | Dimensions | Equations |
---|---|---|---|---|
Magnetic Flux | $\Phi_{\mathrm{B}}$ | $\mathrm{Wb}$ (weber) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$ | $\Phi_{\mathrm{B}}=\mathbf{B} \cdot \mathbf{A}$ |
EMF | $\varepsilon$ | $\mathrm{V}$ (volt) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | $\varepsilon=-\mathrm{d}\left(N \Phi_{\mathrm{B}}\right) / \mathrm{d} t$ |
Mutual Inductance | $M$ | $\mathrm{H}$ (henry) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ | $\varepsilon_{1}=-M_{12}\left(\mathrm{~d} I_{2} / \mathrm{d} t\right)$ |
Self Inductance | $L$ | $\mathrm{H}$ (henry) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ | $\varepsilon=-L(\mathrm{~d} I / \mathrm{d} t)$ |
POINTS TO PONDER
1. Electricity and magnetism are intimately related. In the early part of the nineteenth century, the experiments of Oersted, Ampere and others established that moving charges (currents) produce a magnetic field. Somewhat later, around 1830, the experiments of Faraday and Henry demonstrated that a moving magnet can induce electric current.
2. In a closed circuit, electric currents are induced so as to oppose the changing magnetic flux. It is as per the law of conservation of energy. However, in case of an open circuit, an emf is induced across its ends. How is it related to the flux change?
3. The motional emf discussed in Section 6.5 can be argued independently from Faraday’s law using the Lorentz force on moving charges. However, even if the charges are stationary [and the $q(\mathbf{v} \times \mathbf{B})$ term of the Lorentz force is not operative], an emf is nevertheless induced in the presence of a time-varying magnetic field. Thus, moving charges in static field and static charges in a time-varying field seem to be symmetric situation for Faraday’s law. This gives a tantalising hint on the relevance of the principle of relativity for Faraday’s law.
Exercises
6.1 Predict the direction of induced current in the situations described by the following Figs. 6.15(a) to (f).
FIGURE 6.15
Show Answer
Answer
The direction of the induced current in a closed loop is given by Lenz’s law. The given pairs of figures show the direction of the induced current when the North pole of a bar magnet is moved towards and away from a closed loop respectively.
Using Lenz’s rule, the direction of the induced current in the given situations can be predicted as follows:
The direction of the induced current is along qrpq.
The direction of the induced current is along prqp.
The direction of the induced current is along $\boldsymbol{y z x y}$.
The direction of the induced current is along $\mathbf{z y x z}$.
The direction of the induced current is along xryx.
No current is induced since the field lines are lying in the plane of the closed loop.
6.2 Use Lenz’s law to determine the direction of induced current in the situations described by Fig. 6.16:
(a) A wire of irregular shape turning into a circular shape;
(b) A circular loop being deformed into a narrow straight wire.
FIGURE 6.16
Show Answer
Answer
(a) According to Lenz’s law, the magnetic flux produced by the induced current opposes the cause of induction. It defines the direction of flow of induced current.
In the given closed loop, the loop is placed in a magnetic field and it is changing its shape from irregular to circular. During this change the magnetic flux linked with it increases, so according to Lenz’s law, the induced current should produce magnetic flux such that it reduces the flux linked to the coil.
The induced magnetic flux should be in opposite direction to the original flux. Thus, the current should flow in anti clockwise direction.
Thus, the direction of the induced current is adcba.
(b) As the circular loop is being deformed into a narrow straight line, the magnetic flux linked to the loop will decrease and according to Lenz’s law, the induced current should oppose the cause of change. Therefore, the induced flux should be produced in the direction of the original flux.
Therefore, the induced current should flow in anti clockwise direction.
Thus, the direction of induced current is a ′ d ′ c ′ b ′ .
6.3 A long solenoid with 15 turns per $\mathrm{cm}$ has a small loop of area $2.0 \mathrm{~cm}^{2}$ placed inside the solenoid normal to its axis. If the current carried by the solenoid changes steadily from $2.0 \mathrm{~A}$ to $4.0 \mathrm{~A}$ in $0.1 \mathrm{~s}$, what is the induced emf in the loop while the current is changing?
Show Answer
Answer
Number of turns on the solenoid $=15$ turns $/ \mathrm{cm}=1500$ turns $/ \mathrm{m}$
Number of turns per unit length, $n=1500$ turns
The solenoid has a small loop of area, $A=2.0 \mathrm{~cm}^{2}=2 \times 10^{-4} \mathrm{~m}^{2}$
Current carried by the solenoid changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$.
$\therefore$ Change in current in the solenoid, $d i=4-2=2 \mathrm{~A}$
Change in time, $d t=0.1 \mathrm{~s}$
Induced $e m f$ in the solenoid is given by Faraday’s law as:
$e=\frac{d \phi}{d t}$
Where,
$\phi=$ Induced flux through the small loop
$=B A \ldots(i i)$
$B=$ Magnetic field
$=\mu_{0} n i$
$\mu_{0}=$ Permeability of free space
$=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Hence, equation $(i)$ reduces to:
$$ \begin{aligned} e & =\frac{d}{d t}(B A) \\ & =A \mu_{0} n \times\left(\frac{d i}{d t}\right) \\ & =2 \times 10^{-4} \times 4 \pi \times 10^{-7} \times 1500 \times \frac{2}{0.1} \\ & =7.54 \times 10^{-6} \mathrm{~V} \end{aligned} $$
Hence, the induced voltage in the loop is $7.54 \times 10^{-6} \mathrm{~V}$.
6.4 A rectangular wire loop of sides $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ with a small cut is moving out of a region of uniform magnetic field of magnitude $0.3 \mathrm{~T}$ directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is $1 \mathrm{~cm} \mathrm{~s}^{-1}$ in a direction normal to the (a) longer side, (b) shorter side of the loop? For how long does the induced voltage last in each case?
Show Answer
Answer
Length of the rectangular wire, $l=8 \mathrm{~cm}=0.08 \mathrm{~m}$
Width of the rectangular wire, $b=2 \mathrm{~cm}=0.02 \mathrm{~m}$
Hence, area of the rectangular loop,
$A=l b$
$=0.08 \times 0.02$
$=16 \times 10^{-4} \mathrm{~m}^{2}$
Magnetic field strength, $B=0.3 \mathrm{~T}$
Velocity of the loop, $v=1 \mathrm{~cm} / \mathrm{s}=0.01 \mathrm{~m} / \mathrm{s}$
Emf developed in the loop is given as:
$e=B l v$
$=0.3 \times 0.08 \times 0.01=2.4 \times 10^{-4} \mathrm{~V}$
Time taken to travel along the width, $t=\frac{\text { Distance travelled }}{\text { Velocity }}=\frac{b}{v}$
$$ =\frac{0.02}{0.01}=2 \mathrm{~s} $$
Hence, the induced voltage is $2.4 \times 10^{-4} \mathrm{~V}$ which lasts for $2 \mathrm{~s}$.
Emf developed, $e=B b v$
$=0.3 \times 0.02 \times 0.01=0.6 \times 10^{-4} \mathrm{~V}$
Time taken to travel along the length, $t=\frac{\text { Distance traveled }}{\text { Velocity }}=\frac{l}{v}$
$$ =\frac{0.08}{0.01}=8 \mathrm{~s} $$
Hence, the induced voltage is $0.6 \times 10^{-4} \mathrm{~V}$ which lasts for $8 \mathrm{~s}$.
6.5 A $1.0 \mathrm{~m}$ long metallic rod is rotated with an angular frequency of $400 \mathrm{rad} \mathrm{s} ^{-1}$ about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of $0.5 \mathrm{~T}$ parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.
Show Answer
Answer
$$ 1 = 1.0 \mathrm{~cm} \quad \omega=400 \mathrm{rad} / \mathrm{s} $$
$\mathrm{B}=0.5 \mathrm{~T}$
$$ \begin{aligned} \varepsilon= & -\frac{\mathrm{d} \Phi}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{B} \cdot \frac{\pi \mathrm{r}^{2} \theta}{2 \pi}\right)=\mathrm{B}\left(\frac{1}{2} \mathrm{r}^{2} \omega\right) \\ & =100 \mathrm{~V} \end{aligned} $$
6.6 A horizontal straight wire $10 \mathrm{~m}$ long extending from east to west is falling with a speed of $5.0 \mathrm{~m} \mathrm{~s}^{-1}$, at right angles to the horizontal component of the earth’s magnetic field, $0.30 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$.
(a) What is the instantaneous value of the emf induced in the wire?
(b) What is the direction of the emf?
(c) Which end of the wire is at the higher electrical potential?
Show Answer
Answer
Length of the wire, $l=10 \mathrm{~m}$
Falling speed of the wire, $v=5.0 \mathrm{~m} / \mathrm{s}$
Magnetic field strength, $B=0.3 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$
Emf induced in the wire,
$$ \begin{aligned} e & =B l v \\ & =0.3 \times 10^{-4} \times 5 \times 10 \\ & =1.5 \times 10^{-3} \mathrm{~V} \end{aligned} $$
Using Fleming’s right hand rule, it can be inferred that the direction of the induced emf is from West to East.
The eastern end of the wire is at a higher potential.
6.7 Current in a circuit falls from $5.0 \mathrm{~A}$ to $0.0 \mathrm{~A}$ in $0.1 \mathrm{~s}$. If an average emf of $200 \mathrm{~V}$ induced, give an estimate of the self-inductance of the circuit.
Show Answer
Answer
Initial current, $I_{1}=5.0 \mathrm{~A}$
Final current, $I_{2}=0.0 \mathrm{~A}$
Change in current, $d I=I_{1}-I_{2}=5 \mathrm{~A}$
Time taken for the change, $t=0.1 \mathrm{~s}$
Average emf, $e=200 \mathrm{~V}$
For self-inductance $(L)$ of the coil, we have the relation for average emf as:
$$ \begin{aligned} e & =L \frac{d i}{d t} \\ L & =\frac{e}{\left(\frac{d i}{d t}\right)} \\ & =\frac{200}{\frac{5}{0.1}}=4 \mathrm{H} \end{aligned} $$
Hence, the self induction of the coil is $4 \mathrm{H}$.
6.8 A pair of adjacent coils has a mutual inductance of $1.5 \mathrm{H}$. If the current in one coil changes from 0 to $20 \mathrm{~A}$ in $0.5 \mathrm{~s}$, what is the change of flux linkage with the other coil?
Show Answer
Answer
Mutual inductance of a pair of coils, $\mu=1.5 \mathrm{H}$
Initial current, $I_{1}=0 \mathrm{~A}$
Final current $I_{2}=20 \mathrm{~A}$
Change in current, $d I=I_{2}-I_{1}=20-0=20 \mathrm{~A}$
Time taken for the change, $t=0.5 \mathrm{~s}$
Induced emf, $e=\frac{d \phi}{d t}$
Where $d \phi$ is the change in the flux linkage with the coil.
Emf is related with mutual inductance as:
$$ \begin{equation*} e=\mu \frac{d I}{d t} \tag{2} \end{equation*} $$
Equating equations (1) and (2), we get
$$ \begin{aligned} \frac{d \phi}{d t} & =\mu \frac{d I}{d t} \\ d \phi & =1.5 \times(20) \\ & =30 \mathrm{~Wb} \end{aligned} $$
Hence, the change in the flux linkage is $30 \mathrm{~Wb}$.
6.1 भूमिका
विद्युत तथा चुंबकत्व काफी लंबे समय तक अलग-अलग तथा असंबद्ध परिघटनाएँ मानी जाती रही हैं। उन्नीसवीं शताब्दी के प्रारंभिक दशकों में ऑर्स्टेड, ऐम्पियर तथा कुछ अन्य वैज्ञानिकों द्वारा विद्युत धारा पर किए गए प्रयोगों ने यह प्रमाणित किया कि विद्युत तथा चुंबकत्व परस्पर संबंधित हैं। उन्होंने ज्ञात किया कि गतिमान विद्युत आवेश चुंबकीय क्षेत्र उत्पन्न करते हैं। उदाहरण के लिए, विद्युत धारा अपने पास रखी हुई एक चुंबकीय सुई को विक्षेपित करती है। इससे एक स्वाभाविक प्रश्न उत्पन्न होता है - क्या इसका विपरीत प्रभाव संभव है? क्या गतिमान चुंबक विद्युत धारा उत्पन्न कर सकते हैं? क्या प्रकृति विद्युत तथा चुंबकत्व के बीच इस प्रकार के संबंध की अनुमति देती है? इसका उत्तर एक निश्चित ‘हाँ’ है। लगभग सन 1830 में माइकल फैराडे द्वारा इंग्लैंड में तथा जोसेफ हेनरी द्वारा अमेरिका में किए गए प्रयोगों ने स्पष्ट रूप से दर्शाया कि परिवर्तनशील चुंबकीय क्षेत्र बंद कुंडलियों में विद्युत धारा उत्पन्न करता है। इस अध्याय में हम परिवर्तनशील चुंबकीय क्षेत्रों से संबंधित परिघटनाओं के बारे में अध्ययन करेंगे तथा इनमें निहित सिद्धांतों को समझेंगे। वह परिघटना जिसमें चुंबकीय क्षेत्रों द्वारा विद्युत धारा उत्पन्न होती है, उसे उचित रूप से ही वैद्युतचुंबकीय प्रेरण कहते हैं।
जब फैराडे ने प्रथम बार अपनी इस खोज को सार्वजनिक किया कि ‘चालक तार से बने लूप तथा दंड चुंबक के बीच सापेक्ष गति कराने पर लूप में क्षीण धारा उत्पन्न होती है’, तब उनसे पूछा गया कि ‘इसका क्या उपयोग है’? फैराडे का उत्तर था, ‘नवजात शिशु का क्या उपयोग होता है?’ वैद्युतचुंबकीय प्रेरण केवल सैद्धांतिक या शैक्षिक रूप से ही उपयोगी परिघटना नहीं है वरन व्यावहारिक दृष्टि से विद्युत न हो तो विद्युत प्रकाश न हो, ट्रेन न हो, टेलीफ़ोन न हो और कंप्यूटर न हो। फैराडे एवं हेनरी के इन पुरोगामी (pioneering) प्रयोगों ने ही आधुनिक जनित्रों एवं ट्रांसफार्मरों के विकास को संभव बनाया। आज की सभ्यता के विकास में वैद्युतचुंबकीय प्रेरण की खोज ने एक अहम भूमिका निभाई है।
6.2 फैराडे एवं हेनरी के प्रयोग
जोसेफ हेनरी [1797 - 1878] जोसेफ हेनरी अमेरिकी प्रायोगिक भौतिकशास्त्री, प्रिंस्टन विश्वविद्यालय में प्रोफ़ेसर तथा स्मिथसोनियन इंस्टीट्यूशन के प्रथम निदेशक थे। लोहे के ध्रुवों के चारों ओर पृथक्कृत दंड चुंबक को स्थिर रखकर तथा इसके स्थान पर तार की कुंडलियाँ लपेटकर उन्होंने विद्युत चुंबकों में महत्वपूर्ण सुधार किए एवं एक विद्युत चुंबकीय मोटर तथा एक नए दक्ष टेलीग्राफ़ का आविष्कार किया। उन्होंने स्वप्रेरण की खोज की तथा इस बात का पता लगाया कि कैसे एक परिपथ में प्रवाहित धारा दूसरे परिपथ में धारा प्रेरित करती है।
वैद्युतचुंबकीय प्रेरण की खोज तथा उसकी समझ फैराडे एवं हेनरी द्वारा किए गए अनेक प्रयोगों पर आधारित है। हम उनमें से कुछ प्रयोगों का वर्णन यहाँ करेंगे।
प्रयोग 6.1
चित्र 6.1 जब दंड चुंबक को कुंडली की ओर धकेलते हैं, धारामापी $\mathrm{G}$ का संकेतक विक्षेपित होता है।
चित्र 6.1 में धारामापी $\mathrm{G}$ से जुड़ी हुई एक कुंडली $\mathrm{C} _{1}$ * दर्शायी गई है। जब एक दंड चुंबक के उत्तरी ध्रुव को इस कुंडली की ओर धकेला जाता है तो धारामापी का संकेतक विक्षेपित होता है जो कुंडली में विद्युत धारा की उपस्थिति को दर्शाता है। यह विक्षेप तभी तक रहता है जब तक दंड चुंबक गति में रहता है। जब चुंबक स्थिर होता है तो धारामापी कोई विक्षेप नहीं दर्शाता। जब चुंबक को कुंडली से दूर ले जाते हैं तो धारामापी विपरीत दिशा में विक्षेप दर्शाता है, जो धारा प्रवाह की दिशा के विपरीत होने को दर्शाता है। इसके अतिरिक्त, जब दंड चुंबक के दक्षिणी ध्रुव को कुंडली की ओर या इससे दूर ले जाते हैं तो धारामापी में विक्षेप की दिशाएँ उत्तरी ध्रुव की इसी प्रकार की गति की अपेक्षा विपरीत हो जाती हैं। इसके अतिरिक्त, जब चुंबक को कुंडली की ओर या इससे दूर तेजी से गतिमान किया जाता है तो विक्षेप और इसलिए धारा अधिक प्राप्त होता है। यह भी देखा गया है कि यदि दंड चुंबक को स्थिर रखा जाए तथा इसके बजाय कुंडली $\mathrm{C} _{1}$ को चुंबक की ओर या इससे दूर गतिमान किया जाए तो भी इसी प्रकार का प्रभाव उत्पन्न होता है। यह दर्शाता है कि कुंडली में विद्युत धारा की उत्पत्ति (प्रेरण) चुंबक तथा कुंडली के मध्य सापेक्ष गति का प्रतिफल है।
- जब भी कुंडली या ‘लूप’ शब्द का उपयोग किया जाता है तो यह मान लिया जाता है कि वे चालक पदार्थों से बने हैं तथा इन्हें जिन तारों से बनाया गया है उन पर अवरोधक पदार्थों की परत चढ़ी है।
प्रयोग 6.2
चित्र 6.2 धारायुक्त कुंडली $\mathrm{C} _{2}$ की गति के कारण कुंडली $\mathrm{C} _{1}$ में प्रेरित धारा उत्पन्न होती है।
चित्र 6.2 में दंड चुंबक को बैटरी से जुड़ी हुई एक दूसरी कुंडली $\mathrm{C} _{2}$ से प्रतिस्थापित किया गया है। कुंडली $\mathrm{C} _{2}$ में अपरिवर्ती धारा अपरिवर्ती चुंबकीय क्षेत्र उत्पन्न करती है। जैसे ही कुंडली $\mathrm{C} _{2}$ को कुंडली $\mathrm{C} _{1}$ की ओर लाते हैं, धारामापी एक विक्षेप दर्शाता है। यह कुंडली $\mathrm{C} _{1}$ में प्रेरित विद्युत धारा को निदर्शित करता है। जब $\mathrm{C} _{2}$ को दूर ले जाते हैं तो धारामापी फिर से विक्षेप दर्शाता है, लेकिन इस बार यह विक्षेप विपरीत दिशा में होता है। यह विक्षेप तभी तक रहता है जब तक कुंडली $\mathrm{C} _{2}$ गति में रहती है। जब कुंडली $\mathrm{C} _{2}$ को स्थिर रखा जाता है तथा $\mathrm{C} _{1}$ गतिमान होता है तो उन्हीं प्रभावों को फिर से देखा जा सकता है। यहाँ भी कुंडलियों के मध्य सापेक्ष गति विद्युत धारा प्रेरित करती है।
प्रयोग 6.3
उपरोक्त दोनों प्रयोगों में चुंबक तथा कुंडली के बीच तथा दो कुंडलियों के बीच सापेक्ष गति शामिल है। एक अन्य प्रयोग द्वारा फैराडे ने दर्शाया कि यह सापेक्ष गति कोई अति आवश्यक अनिवार्यता नहीं है। चित्र 6.3 में दो कुंडलियाँ $\mathrm{C} _{1}$ तथा $\mathrm{C} _{2}$ दर्शायी गई हैं जो स्थिर रखी गई हैं। कुंडली $\mathrm{C} _{1}$ को एक धारामापी $\mathrm{G}$ से जोड़ा गया है जबकि दूसरी कुंडली $\mathrm{C} _{2}$ को एक दाब-कुंजी $\mathrm{K}$ से होकर एक बैटरी से जोड़ा जाता है।
चित्र 6.3 प्रयोग 6.3 के लिए प्रयोगात्मक व्यवस्था
यह देखा जाता है कि दाब-कुंजी $\mathrm{K}$ को दबाने पर धारामापी एक क्षणिक विक्षेप दर्शाता है और फिर इसका संकेतक तत्काल शून्य पर वापस आ जाता है। यदि कुंजी को लगातार दबाकर रखा जाए तो धारामापी में कोई विक्षेप नहीं होता। जब कुंजी को छोड़ा जाता है तो फिर से एक क्षणिक विक्षेप देखा जाता है, लेकिन यह विक्षेप विपरीत दिशा में होता है। यह भी देखा गया है कि यदि कुंडलियों में उनके अक्ष के अनुदिश एक लोहे की छड़ रख दी जाए तो विक्षेप नाटकीय रूप से बढ़ जाता है।
6.3 चुंबकीय फ्लक्स
फैराडे की विशाल अंतर्दृष्टि के कारण वैद्युतचुंबकीय प्रेरण पर उनके द्वारा किए गए प्रयोगों की श्रृंखला की व्याख्या करने वाले एक सरल गणितीय संबंध की खोज करना संभव हुआ। तथापि, इसके पहले कि हम वह नियम बताएँ तथा उसकी प्रशंसा में कुछ कहें, हमें चुंबकीय फ्लक्स $\Phi _{B}$ की अवधारणा से परिचित हो जाना आवश्यक है। चुंबकीय फ्लक्स को भी ठीक उसी प्रकार यदि क्षेत्रफल $\mathbf{A}$ वाले समतल को एकसमान चुंबकीय क्षेत्र $\mathbf{B}$ (चित्र 6.4) में रखा जाता है तो चुंबकीय फ्लक्स को व्यक्त किया जा सकता है -
$$ \begin{equation*} \Phi _{\mathrm{B}}=\mathbf{B} \quad \mathbf{A}=B A \cos \theta \tag{6.1} \end{equation*} $$
जहाँ पर $\theta \mathbf{B}$ तथा $\mathbf{A}$ के बीच का कोण है। एक सदिश राशि के रूप में क्षेत्रफल की अवधारणा का विवेचन पहले ही अध्याय 1 में किया जा चुका है। समीकरण (6.1) को वक्र पृष्ठों एवं असमान क्षेत्रों के लिए विस्तारित किया जा सकता है।
यदि चित्र 6.5 में दर्शाए अनुसार किसी सतह के विभिन्न भागों पर चुंबकीय क्षेत्र के परिमाण तथा दिशाएँ भिन्न-भिन्न हों, तो सतह से होकर गुजरने वाला चुंबकीय फ्लक्स होगा
$$ \begin{equation*} \Phi _{B}=\mathbf{B} _{1} \mathrm{~d} \mathbf{A} _{1}+\mathbf{B} _{2} \mathrm{~d} \mathbf{A} _{2}+\cdots=\sum _{\text {सभी }} \mathbf{B} _{i} \mathrm{~d} \mathbf{A} _{i} \tag{6.2} \end{equation*} $$
जहाँ ‘सभी’ का अर्थ है सतह के सभी सूक्ष्म क्षेत्र अवयवों $\mathrm{d} \mathbf{A} _{i}$ के लिए योग तथा $\mathbf{B} _{i}$ क्षेत्र अवयव $\mathrm{dA} _{1}$ पर चुंबकीय क्षेत्र है। चुंबकीय फ्लक्स का $\mathrm{SI}$ मात्रक वेबर $(\mathrm{Wb})$ है। इसे टेस्ला वर्ग मीटर $\left(\mathrm{T} \mathrm{m}^{2}\right)$ द्वारा भी व्यक्त किया जाता है। चुंबकीय फ्लक्स एक अदिश राशि है।
6.4 फैराडे का प्रेरण का नियम
प्रायोगिक प्रेक्षणों के आधार पर फैराडे इस निष्कर्ष पर पहुँचे कि जब किसी कुंडली में चुंबकीय फ्लक्स समय के साथ परिवर्तित होता है तब कुंडली में विद्युत वाहक बल प्रेरित होता है। अनुभाग 6.2 में चर्चित प्रायोगिक प्रेक्षणों की इस अवधारणा का उपयोग करके व्याख्या कर सकते हैं।
चित्र 6.4 एकसमान चुंबकीय क्षेत्र $\mathbf{B}$ में रखा पृष्ठ क्षेत्रफल $\mathbf{A}$ वाला एक समतल।
चित्र 6.5 वे अवयव क्षेत्र पर चुंबकीय क्षेत्र $\mathrm{B} _{i} \mid \mathrm{dA} _{i}, i$ वें क्षेत्र अवयव का क्षेत्र सदिश निरूपित करता है।
प्रयोग 6.1 में कुंडली $\mathrm{C} _{1}$ की ओर अथवा इससे दूर चुंबक की गति तथा प्रयोग 6.2 में कुंडली $\mathrm{C} _{1}$ की ओर अथवा इससे दूर एक धारा वाहक कुंडली $\mathrm{C} _{2}$ की गति, कुंडली $\mathrm{C} _{1}$ की ओर अथवा इससे दूर एक धारा वाहक कुंडली $\mathrm{C} _{2}$ की गति, कुंडली $\mathrm{C} _{1}$ से संबद्ध चुंबकीय फ्लक्स को परिवर्तित करती है। चुंबकीय फ्लक्स में परिवर्तन से कुंडली $\mathrm{C} _{1}$ में विद्युत वाहक बल प्रेरित होता है। इसी प्रेरित विद्युत वाहक बल के कारण कुंडली $\mathrm{C} _{1}$ तथा धारामापी में विद्युत धारा प्रवाहित होती है। प्रयोग 6.3 में किए गए प्रेक्षणों का एक युक्तियुक्त स्पष्टीकरण निम्न प्रकार है- जब दाब कुंजी $\mathrm{K}$ को दबाते हैं तो कुंडली $\mathrm{C} _{2}$ में विद्युत धारा (तथा इसके कारण चुंबकीय क्षेत्र)अल्प समय में शून्य से अधिकतम मान तक बढ़ती है। परिणामस्वरूप, समीपस्थ कुंडली $\mathrm{C} _{1}$ में भी चुंबकीय फ्लक्स बढ़ता है। कुंडली $\mathrm{C} _{1}$ में होने वाले चुंबकीय फ्लक्स के इस परिवर्तन के कारण कुंडली $\mathrm{C} _{1}$ में प्रेरित विद्युत वाहक बल उत्पन्न होता है। जब कुंजी को दबाकर रखा जाता है तो कुंडली $\mathrm{C} _{2}$ में धारा स्थिर रहती है। इसीलिए कुंडली $\mathrm{C} _{1}$ में चुंबकीय फ्लक्स में कोई परिवर्तन नहीं होता तथा कुंडली $\mathrm{C} _{1}$ में धारा शून्य हो जाती है। जब कुंजी को छोड़ते हैं तो कुंडली $\mathrm{C} _{2}$ में विद्युत धारा तथा इसके कारण उत्पन्न होने वाला चुंबकीय क्षेत्र अल्प समय में अधिकतम मान से घटकर शून्य हो जाता है। इसके परिणामस्वरूप कुंडली $\mathrm{C} _{1}$ * में चुंबकीय फ्लक्स घटता है और इस प्रकार कुंडली $\mathrm{C} _{1}$ में पुन: प्रेरित विद्युत धारा उत्पन्न होती है। इन सभी प्रेक्षणों में एक सर्वनिष्ठ बात यह है कि किसी परिपथ में चुंबकीय फ्लक्स के परिवर्तन दर के कारण प्रेरित विद्युत वाहक बल उत्पन्न होता है। फैराडे ने प्रायोगिक प्रेक्षणों को एक नियम के रूप में व्यक्त किया जिसे फैराडे का वैद्युतचुंबकीय प्रेरण का नियम कहते हैं। इस नियम को निम्न प्रकार से अभिव्यक्त किया गया है।
- नोट कीजिए कि विद्युत चुंबक के समीप रखे सुग्राही विद्युत यंत्र विद्युत चुंबक को ऑन $(\mathrm{ON})$ या ऑफ़ (OFF) करने पर उत्पन्न होने वाली धाराओं के कारण क्षतिग्रस्त हो जाते हैं।
प्रेरित विद्युत वाहक बल का परिमाण चुंबकीय फ्लक्स में समय के साथ होने वाले परिवर्तन की दर के बराबर होता है।
गणितीय रूप में प्रेरित विद्युत धारा बल को
$$ \begin{equation*} \varepsilon=-\frac{\mathrm{d} \Phi _{B}}{\mathrm{~d} t} \tag{6.3} \end{equation*} $$
ॠण चिह्न $\varepsilon$ की दिशा तथा परिणामतः बंद लूप में धारा की दिशा व्यक्त करता है। इसकी विस्तृत चर्चा हम अगले अनुच्छेद में करेंगे।
पास-पास लपेटे हुए $N$ फेरों वाली किसी कुंडली के प्रत्येक फेरे से संबद्ध फ्लक्स में एकसमान परिवर्तन होता है। इसलिए कुल प्रेरित विद्युत वाहक बल का व्यंजक होगा-
$$ \begin{equation*} \varepsilon=-N \frac{\mathrm{d} \Phi _{B}}{\mathrm{~d} t} \tag{6.4} \end{equation*} $$
बंद कुंडली में फेरों की संख्या $N$ बढ़ा कर प्रेरित विद्युत वाहक बल को बढ़ाया जा सकता है।
माइकल फैराडे [1791 - 1867] माइकल फैराडे ने विज्ञान के क्षेत्र में महत्वपूर्ण योगदान किया, उदाहरण के लिए वैद्युतचुंबकीय प्रेरण की खोज, विद्युत अपघटन के नियम, बेंजीन तथा यह तथ्य कि ध्रुवण तल विद्युत क्षेत्र में घूर्णन कर सकता है। विद्युत मोटर, विद्युत जनित्र तथा ट्रांसफार्मर की खोज का श्रेय भी फैराडे को ही जाता है। उन्हें उन्नीसवीं शताब्दी का महानतम प्रयोगात्मक वैज्ञानिक माना जाता है।
समीकरण (6.1) तथा (6.2), से हमें ज्ञात होता है कि फ्लक्स में परिवर्तन $\mathbf{B}, \mathbf{A}$ तथा $\theta$ में से किसी एक या अधिक पदों को बदल कर किया जा सकता है। अनुच्छेद 6.2 के प्रयोगों 6.1 तथा 6.2 में फ्लक्स को $\mathbf{B}$ में परिवर्तित करके बदला गया है। फ्लक्स में परिवर्तन चुंबकीय क्षेत्र में इसी कुंडली के आकार में परिवर्तन करके (जैसे इसे सिकोड़ कर या खींच कर) या कुंडली को चुंबकीय क्षेत्र में इस प्रकार घूर्णन कराकर कि $\mathbf{B}$ तथा $\mathbf{A}$ के बीच में कोण $\theta$ बदल जाए, भी किया जा सकता है। इन अवस्थाओं में भी क्रमानुसार कुंडलियों में एक विद्युत वाहक बल प्रेरित होता है।
उदाहरण 6.1 प्रयोग 6.2 पर विचार करें। (a) धारामापी में अधिक विक्षेप प्राप्त करने के लिए आप क्या करेंगे? (b) धारामापी की अनुपस्थिति में आप प्रेरित धारा की उपस्थिति किस प्रकार दर्शाएँगे?
हल (a) अधिक विक्षेप प्राप्त करने के लिए निम्न में से एक या अधिक उपाय किए जा सकते हैं(i) कुंडली $C _{2}$ के अंदर नर्म लोहे की छड़ का उपयोग करेंगे, (ii) कुंडली को एक उच्च शक्ति की बैटरी से जोड़ेंगे, (iii) परीक्षण कुंडली $C _{1}$ की ओर संयोजन को अधिक तेजी से ले जाएँगे।
(b) धारामापी को टॉर्च में उपयोग किए जाने वाले छोटे बल्ब से बदल देंगे। दोनों कुंडलियों के बीच सापेक्ष गति से बल्ब क्षणिक अवधि के लिए चमकेगा जो प्रेरित धारा के उत्पन्न होने का द्योतक है।
प्रयोगात्मक भौतिकी में हमें नवीनता लाने का प्रयास करना चाहिए। उच्चतम श्रेणी के प्रयोग वैज्ञानिक माइकल फैराडे प्रयोगों में विविधता लाने के लिए प्रसिद्ध हैं।
उदाहरण 6.2 एक वर्गाकार लूप जिसकी एक भुजा $10 \mathrm{~cm}$ लंबी है तथा जिसका प्रतिरोध $0.5 \Omega$ है, पूर्व-पश्चिम तल में ऊर्ध्वाधर रखा गया है। $0.10 \mathrm{~T}$ के एक एकसमान चुंबकीय क्षेत्र को उत्तर-पूर्व दिशा में तल के आर-पार स्थापित किया गया है। चुंबकीय क्षेत्र को एकसमान दर से $0.70 \mathrm{~s}$ में घटाकर शून्य तक लाया जाता है। इस समय अंतराल में प्रेरित विद्युत वाहक बल तथा धारा का मान ज्ञात कीजिए।
हल कुंडली का क्षेत्रफल-सदिश, चुंबकीय क्षेत्र के साथ $\theta=45^{\circ}$ कोण बनाता है। समीकरण (6.1) से, प्रारंभिक चुंबकीय फ्लक्स है $\Phi=B A \cos \theta$
$=\frac{0.1 \times 10^{-2}}{\sqrt{2}} \mathrm{~Wb}$
अंतिम फ्लक्स, $\Phi _{\text {न्यूनतम }}=0$
फ्लक्स में परिवर्तन $0.70 \mathrm{~s}$ में हुआ। समीकरण (6.3) से, प्रेरक विद्युत वाहक बल होगा
$$\varepsilon=\frac{\left|\Delta \Phi _{B}\right|}{\Delta t}=\frac{|(\Phi-0)|}{\Delta t}=\frac{10^{-3}}{\sqrt{2} \times 0.7}=1.0 \mathrm{mV}$$
और धारा का परिमाण होगा
$I=\frac{\varepsilon}{R}=\frac{10^{-3} \mathrm{~V}}{0.5 \Omega}=2 \mathrm{~mA}$
ध्यान दें कि पृथ्वी का चुंबकीय क्षेत्र भी लूप में कुछ फ्लक्स उत्पन्न करता है। किन्तु पृथ्वी का चुंबकीय क्षेत्र स्थिर है (जो कि प्रयोग की अल्प अवधि में परिवर्तित नहीं होता) और कोई विद्युत वाहक बल प्रेरित नहीं करता।
उदाहरण 6.3
$10 \mathrm{~cm}$ त्रिज्या, 500 फेरों तथा $2 \Omega$ प्रतिरोध की एक वृत्ताकार कुंडली को इसके तल के लंबवत पृथ्वी के चुंबकीय क्षेत्र के क्षैतिज घटक में रखा गया है। इसे अपने ऊर्ध्व व्यास के परितः $0.25 \mathrm{~s}$ में $180^{\circ}$ से घुमाया गया कुंडली में प्रेरित विद्युत वाहक बल तथा विद्युत धारा का आकलन कीजिए। दिए गए स्थान पर पृथ्वी के चुंबकीय क्षेत्र के क्षैतिज घटक का मान $3.0 \times 10^{-5} \mathrm{~T}$ है।
हल
कुंडली में प्रारंभिक फ्लक्स,
$$ \begin{aligned} \Phi _{\mathrm{B}(\text { प्रारंभिक) }} & =B A \cos \theta \\ & =3.0 \times 10^{-5} \times\left(\pi \times 10^{-2}\right) \times \cos 0^{\circ} \\ & =3 \pi \times 10^{-7} \mathrm{~Wb} . \end{aligned} $$
घूर्णन के पश्चात अंतिम फ्लक्स,
$$ \begin{aligned} \Phi _{\mathrm{B} \text { (अंतिम })} & =3.0 \times 10^{-5} \times\left(\pi \times 10^{-2}\right) \times \cos 180^{\circ} \\ & =-3 \pi \times 10^{-7} \mathrm{~Wb} \end{aligned} $$
इसलिए प्रेरित विद्युत वाहक बल का आकलित मान है,
$$ \begin{aligned} \varepsilon & =N \frac{\Delta \Phi}{\Delta t} \\ & =500 \times\left(6 \pi \times 10^{-7}\right) / 0.25 \\ \end{aligned} $$
$$ \begin{aligned} & =3.8 \times 10^{-3} \mathrm{~V} \\ I & =\varepsilon / R=1.9 \times 10^{-3} \mathrm{~A} \end{aligned} $$
ध्यान दें कि ये $\varepsilon$ तथा $I$ के परिमाणों के आकलित मान हैं। इनके तात्क्षणिक मान भिन्न हैं तथा वे किसी विशेष समय पर घूर्णन गति पर निर्भर करते हैं।
6.5 लेंज का नियम तथा ऊर्जा संरक्षण
सन 1834 में जर्मन भौतिकविद हेनरिक फ्रेडरिच लेंज (1804-1865) ने एक नियम का निगमन किया जिसे लेंज का नियम के नाम से जाना जाता है। यह नियम प्रेरित विद्युत वाहक बल की ध्रुवता (दिशा) का स्पष्ट एवं संक्षिप्त रूप में वर्णन करता है। इस नियम का प्रकथन है-
प्रेरित विद्युत वाहक बल की ध्रुवता (polarity) इस प्रकार होती है कि वह उस दिशा में धारा प्रवाह प्रवृत्त करे जो उसे उत्पन्न करने वाले कारक (चुंबकीय क्षेत्र परिवर्तन) का विरोध करे।
समीकरण (6.3) में ऋण चिह्न इस प्रभाव को निरूपित करता है। अनुच्छेद 6.2.1 के प्रयोग 6.1 का निरीक्षण करके हम लेंज के नियम को समझ सकते हैं। चित्र 6.1 में हम देखते हैं कि दंड चुंबक का उत्तरी-ध्रुव बंद कुंडली की ओर ले जाया जा रहा है। जब दंड चुंबक का उत्तरी ध्रुव कुंडली की ओर गति करता है तब कुंडली में चुंबकीय फ्लक्स बढ़ता है। इस प्रकार कुंडली में प्रेरित धारा ऐसी दिशा में उत्पन्न होती है जिससे कि यह फ्लक्स के बढ़ने का विरोध कर सके। यह तभी संभव है जब चुंबक की ओर स्थित प्रेक्षक के सापेक्ष कुंडली में धारा वामावर्त दिशा में हो। ध्यान दीजिए, इस धारा से संबद्ध चुंबकीय आघूर्ण की ध्रुवता उत्तरी है जबकि इसकी ओर चुंबक का उत्तरी ध्रुव आ रहा हो। इसी प्रकार, यदि कुंडली में चुंबकीय फ्लक्स घटेगा। चुंबकीय फ्लक्स के इस घटने का विरोध करने के लिए कुंडली में प्रेरित धारा दक्षिणावर्त दिशा में बहती है तथा इसका दक्षिणी ध्रुव दूर हटते दंड चुंबक के उत्तरी ध्रुव की ओर होता है। इसके फलस्वरूप एक आकर्षण बल काम करेगा जो चुंबक की गति तथा इससे संबद्ध फ्लक्स के घटने का विरोध करेगा।
उपरोक्त उदाहरण में यदि बंद लूप के स्थान पर एक खुला परिपथ उपयोग किया जाए तो क्या होगा? इस दशा में भी, परिपथ के खुले सिरों पर एक प्रेरित विद्युत वाहक बल उत्पन्न होगा। प्रेरित विद्युत वाहक बल की दिशा लेंज के नियम का उपयोग करके ज्ञात की जा सकती है। चित्र 6.6 (a) तथा (b) पर विचार करें। ये प्रेरित धाराओं की दिशा को समझने के लिए एक सरल विधि सुझाते हैं। ध्यान दीजिए कि $\sqrt{5}$ तथा द्वारा दर्शायी गई दिशाएँ प्रेरित धारा की दिशाएँ निरूपित करती हैं।
चित्र 6.6 लेंज के नियम का चित्रण
इस विषय पर थोड़े से गंभीर चिंतन से हम लेंज के नियम की सत्यता को स्वीकार कर सकते हैं। माना कि प्रेरित विद्युत धारा की दिशा चित्र 6.6(a) में दर्शायी गई दिशा के विपरीत है। उस दशा में, प्रेरित धारा के कारण दक्षिणी ध्रुव पास आते हुए चुंबक के उत्तरी ध्रुव की ओर होगा। इसके कारण दंड चुंबक कुंडली की ओर लगातार बढ़ते हुए त्वरण से आकर्षित होगा। चुंबक को दिया गया हलका-सा धक्का इस प्रक्रिया को प्रारंभ कर देगा तथा बिना किसी ऊर्जा निवेश के इसका वेग एवं गतिज ऊर्जा सतत रूप से बढ़ती जाएगी। यदि ऐसा हो सके तो उचित प्रबंध द्वारा एक शाश्वत गतिक मशीन (perpetual motion machine) का निर्माण किया जा सकता है। यह ऊर्जा के संरक्षण नियम का उल्लंघन है और इसीलिए ऐसा नहीं हो सकता।
अब चित्र 6.6(a) में दर्शायी गई सही स्थिति पर विचार करें। इस स्थिति में दंड चुंबक प्रेरित विद्युत धारा के कारण एक प्रतिकर्षण बल का अनुभव करता है। इसलिए चुंबक को गति देने के लिए हमें कार्य करना पड़ेगा। हमारे द्वारा खर्च की गई ऊर्जा कहाँ गई? वह ऊर्जा प्रेरित धारा द्वारा उत्पन्न जूल ऊष्मन के रूप में क्षयित होती है।
उदाहरण 6.4
चित्र 6.7 में विभिन्न आकार के समतल लूप जो चुंबकीय क्षेत्र में प्रवेश कर रहे हैं अथवा क्षेत्र से बाहर निकल रहे हैं, दिखाए गए हैं। चुंबकीय क्षेत्र लूप के तल के अभिलंबवत किंतु प्रेक्षक से दूर जाते हुए हैं। लेंज के नियम का उपयोग करते हुए प्रत्येक लूप में प्रेरित विद्युत धारा की दिशा ज्ञात कीजिए।
चित्र 6.7
हल
(i) आयताकार लूप abcd में चुंबकीय फ्लक्स, लूप के चुंबकीय क्षेत्र के भाग की ओर गति करने के कारण बढ़ता है। प्रेरित धारा पथ bcdab के अनुदिश प्रवाहित होनी चाहिए जिससे कि यह बढ़ते हुए फ्लक्स का विरोध कर सके।
(ii) बाहर की ओर गति करने के कारण, त्रिभुजाकार लूप $a b c$ में चुंबकीय फ्लक्स घटता है जिसके कारण प्रेरित धारा bacb के अनुदिश प्रवाहित होती है, जिससे कि यह फ्लक्स परिवर्तन का विरोध कर सके।
(iii) चुंबकीय क्षेत्र से बाहर की ओर गति करने के कारण अनियमित आकार के लूप abcd में चुंबकीय फ्लक्स घटता है जिसके कारण प्रेरित धारा cdabc के अनुदिश प्रवाहित होती है जिससे कि यह फ्लक्स का विरोध कर सके।
नोट कीजिए कि जब तक लूप पूरी तरह से चुंबकीय क्षेत्र के अंदर या इससे बाहर रहता है तब कोई प्रेरित धारा उत्पन्न नहीं होती।
उदाहरण 6.5
(a) एक बंद लूप, दो स्थिर रखे गए स्थायी चुंबकों के उत्तरी तथा दक्षिणी ध्रुवों के बीच चुंबकीय क्षेत्र में स्थिर रखा गया है। क्या हम अत्यंत प्रबल चुंबकों का उपयोग करके लूप में धारा उत्पन्न होने की आशा कर सकते हैं।
(b) एक बंद लूप विशाल संधारित्र की प्लेटों के बीच स्थिर विद्युत क्षेत्र के अभिलंबवत गति करता है। क्या लूप में प्रेरित धारा उत्पन्न होगी (i) जब लूप संधारित्र की प्लेटों के पूर्णतः अंदर हो (ii) जब लूप आंशिक रूप से प्लेटों के बाहर हो? विद्युत क्षेत्र लूप के तल के अभिलंबवत है।
(c) एक आयताकार लूप एवं एक वृत्ताकार लूप एकसमान चुंबकीय क्षेत्र में से (चित्र 6.8) क्षेत्र विहीन भाग में एकसमान वेग $\mathbf{v}$ से निकल रहे हैं। चुंबकीय क्षेत्र से बाहर निकलते समय, आप किस लूप में प्रेरित विद्युत वाहक बल के स्थिर होने की अपेक्षा करते हैं? क्षेत्र, लूपों के तल के अभिलंबवत है।
(d) चित्र 6.9 में वर्णित स्थिति के लिए संधारित्र की ध्रुवता की प्रागुक्ति (Predict) कीजिए।
चित्र 6.9
हल
(a) नहीं। चुंबक चाहे कितना भी प्रबल हो, प्रेरित धारा तभी उत्पन्न होगी जब लूप में से चुंबकीय फ्लक्स परिवर्तित हो।
(b) नहीं। विद्युत फ्लक्स परिवर्तित करके प्रेरित धारा प्राप्त नहीं हो सकती।
(c) आयताकार लूप के लिए प्रेरित विद्युत वाहक बल के स्थिर रहने की अपेक्षा कर सकते हैं। वृत्ताकार लूप में क्षेत्र के प्रभाव से बाहर निकलते समय लूप के क्षेत्रफल के परिवर्तन की दर स्थिर नहीं है, अतः प्रेरित विद्युत वाहक बल तदनुसार बदलेगा।
(d) संधारित्र की प्लेट ’ $\mathrm{A}$ ’ की ध्रुवता प्लेट ’ $\mathrm{B}$ ’ के सापेक्ष धनात्मक होगी।
6.6 गतिक विद्युत वाहक बल
किसी एकसमान, काल स्वतंत्र (time independent) चुंबकीय क्षेत्र में एक गतिमान ऋजु चालक पर विचार कीजिए। चित्र 6.10 में एक आयताकार चालक PQRS दर्शाया गया है जिसमें चालक
चित्र 6.10 भुजा $\mathrm{PQ}$ बाईं ओर गतिमान है जिससे आयताकार लूप का क्षेत्रफल घट जाता है। इस गति के कारण दर्शाए अनुसार प्रेरित धारा $I$ उत्पन्न होती है।
$\mathrm{PQ}$ स्वतंत्र रूप से गति कर सकता है। छड़ $\mathrm{PQ}$ को स्थिर वेग $\mathbf{v}$ से बाईं ओर, चित्र में दर्शाए अनुसार, चलाया जाता है। मान लीजिए कि घर्षण के कारण किसी प्रकार का ऊर्जा का क्षय नहीं हो रहा है। PQRS एक बंद परिपथ बनाता है जिससे घिरा क्षेत्रफल $\mathrm{PQ}$ की गति के कारण परिवर्तित होता है। इसे एकसमान चुंबकीय क्षेत्र $\mathbf{B}$ में इस प्रकार रखा जाता है कि इसका तल चुंबकीय क्षेत्र के अभिलंबवत हो। यदि लंबाई $\mathrm{RQ}=x$ तथा $\mathrm{RS}=l$, तो लूप $\mathrm{PQRS}$ से घिरा चुंबकीय फ्लक्स $\Phi _{\mathrm{B}}$ होगा
$$ \Phi _{\mathrm{B}}=B l x $$
क्योंकि $x$ समय के साथ बदल रहा है, फ्लक्स $\Phi _{\mathrm{B}}$ के परिवर्तन की दर के कारण एक प्रेरित विद्युत वाहक बल उत्पन्न होगा जिसका मान होगा
$$ \begin{align*} & \varepsilon=\frac{-\mathrm{d} \Phi _{B}}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{d} t}(B l x) \\ & =-B l \frac{\mathrm{d} x}{\mathrm{~d} t}=B l v \tag{6.5} \end{align*} $$
जहाँ हमने $\mathrm{d} x / \mathrm{d} t=-v$ लिया है जो कि चालक $\mathrm{PQ}$ की चाल है। प्रेरित विद्युत वाहक बल $B l v$ को गतिक विद्युत वाहक बल कहते हैं। इस प्रकार हम चुंबकीय क्षेत्र को परिवर्तित करने की बजाय किसी चालक को गतिमान करके, किसी परिपथ द्वारा घिरे चुंबकीय फ्लक्स में परिवर्तन करके प्रेरित विद्युत वाहक बल उत्पन्न कर सकते हैं।
समीकरण (6.5) में दर्शाए गए गतिक विद्युत वाहक बल के व्यंजक को चालक $\mathrm{PQ}$ के स्वतंत्र आवेशों पर कार्य करने वाले लोरेंज बल की सहायता से भी समझाना संभव है। चालक $\mathrm{PQ}$ में कोई यादृच्छिक (arbitrary) आवेश $q$ पर विचार करें। जब छड़ चाल $v$ से गति करती है तो आवेश भी चुंबकीय क्षेत्र $\mathbf{B}$ में चाल $v$ से गति करेगा। इस आवेश पर लोरेंज बल का परिमाण $q v B$ है तथा इसकी दिशा $\mathrm{Q}$ के अनुदिश होगी। प्रत्येक आवेश परिमाण तथा दिशा में, छड़ $\mathrm{PQ}$ में उनकी स्थिति के निरपेक्ष, समान बल का अनुभव करेंगे।
आवेश को $\mathrm{P}$ से $\mathrm{Q}$ तक ले जाने में किया गया कार्य है,
$$\mathrm{W}=q v \mathrm{Bl}$$
चूँकि प्रति इकाई आवेश पर किया गया कार्य ही विद्युत वाहक बल है, अतः
$$ \begin{aligned} \varepsilon & =\frac{W}{q} & =B l v \end{aligned} $$
यह समीकरण छड़ $\mathrm{PQ}$ के सिरों के बीच प्रेरण द्वारा उत्पन्न हुए विद्युत वाहक बल का मान बताती है तथा समीकरण (6.5) के तुल्य है। हम इस बात को जोर देकर कहना चाहते हैं कि हमारी यह प्रस्तुति पूर्णतः यथार्थ नहीं है। परंतु यह किसी एकसमान एवं समय के साथ न बदलने वाले चुंबकीय क्षेत्र में गतिमान चालक के लिए फैराडे के नियम का आधार समझने में हमारी सहायता करती है।
दूसरी ओर, यह स्पष्ट नहीं होता है कि जब चालक स्थिर हो और चुंबकीय क्षेत्र परिवर्तित हो रहा हो तो इसमें $\mathrm{emf}$ कैसे प्रेरित होता है - जो एक ऐसा तथ्य है जो फैराडे के अनेक प्रयोग द्वारा पुष्ट होता है। स्थिर चालक के लिए इसके आवेशों पर लगने वाला बल,
$$ \begin{equation*} \mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})=q \mathbf{E} \tag{6.6} \end{equation*} $$
क्योंकि $\mathbf{v}=0$ है, अतः आवेश पर लगने वाला कोई भी बल केवल विद्युत क्षेत्र $\mathbf{E}$ के कारण होगा। इसलिए प्रेरित विद्युत वाहक बल या प्रेरित धारा के अस्तित्व की व्याख्या करने के लिए हमें यह मान लेना चाहिए कि समय के साथ परितवर्तनशील चुंबकीय क्षेत्र एक विद्युतीय क्षेत्र भी उत्पन्न करता है। तथापि, साथ ही हम यह भी कहना चाहेंगे कि स्थिर विद्युत आवेशों द्वारा उत्पन्न विद्युत क्षेत्र समय के साथ बदलते चुंबकीय क्षेत्रों द्वारा उत्पन्न विद्युत क्षेत्रों से भिन्न गुण रखते हैं। अध्याय 4 में हमने अध्ययन किया कि गतिमान आवेश (विद्युत धारा) स्थिर चुंबक पर बल/बल युग्म आरोपित कर सकते हैं। इसके विपरीत एक गतिमान दंड चुंबक (या अधिक व्यापक रूप में कहें तो एक परिवर्तनशील चुंबकीय क्षेत्र) स्थिर आवेश पर एक बल आरोपित कर सकता है। यही फैराडे की खोज की मूलभूत महत्ता है। विद्युत एवं चुंबकत्व परस्पर संबंधित होते हैं।
उदाहरण 6.6 एक मीटर लंबी धातु की एक छड़ को 50 चक्कर/सेंकड की आवृत्ति से घुमाया गया है। छड़ का एक सिरा वृत्ताकार धात्विक वलय जिसकी त्रिज्या 1 मीटर है, के केन्द्र पर तथा दूसरा सिरा वलय की परिधि पर कब्ज़े से इस प्रकार जुड़ा है कि छड़ की गति वलय के केन्द्र से जाने वाले तथा वलय के तल में अभिलंबवत अक्ष के परितः है (चित्र 6.11)। अक्ष के अनुदिश एक स्थिर तथा एकसमान चुंबकीय क्षेत्र $1 \mathrm{~T}$ सर्वत्र उपस्थित है। केन्द्र तथा धात्विक वलय के बीच विद्युत वाहक बल क्या होगा?
चित्र 6.11
हल
प्रथम विधि :
जब छड़ घूर्णन करती है तो छड़ में मुक्त इलेक्ट्रॉन लोरेंज बल के कारण बाहरी सिरे की ओर गति करते हैं तथा वलय के ऊपर वितरित हो जाते हैं। इस प्रकार, आवेशों के परिणामी पृथक्करण के कारण छड़ के सिरों के बीच एक विद्युत वाहक बल उत्पन्न होता है। विद्युत वाहक बल के एक निश्चित मान के लिए इलेक्ट्रॉनों का और अधिक प्रवाह नहीं होता तथा एक स्थायी दशा पहुँच जाती है। समीकरण (6.5) का उपयोग करने पर, जब छड़ चुंबकीय क्षेत्र के लंबवत गतिमान है तो इसकी लंबाई $\mathrm{d} r$ के आर-पार उत्पन्न विद्युत वाहक बल का परिमाण प्राप्त होगा
$\mathrm{d} \varepsilon=B v \mathrm{~d} r$ अत:,
$\varepsilon=\int \mathrm{d} \varepsilon=\int _{0}^{R} B v \mathrm{~d} r=\int _{0}^{R} B \omega r \mathrm{~d} r=\frac{B \omega R^{2}}{2}$
नोट कीजिए कि हमने $v=\omega r$ उपयोग किया है। इससे प्राप्त होता है
$\varepsilon=\frac{1}{2} \times 1.0 \times 2 \pi \times 50 \times\left(1^{2}\right)$
$=157 \mathrm{~V}$
द्वितीय विधि-
विद्युत वाहक बल की गणना करने के लिए हम एक बंद लूप $\mathrm{OPQ}$ की कल्पना करते हैं जिसमें बिंदु $\mathrm{O}$ तथा $\mathrm{P}$ को प्रतिरोध $R$ से जोड़ा गया है तथा $\mathrm{OQ}$ घूमती हुई छड़ है। प्रतिरोध के आर-पार विभवान्तर प्रेरित विद्युत वाहक बल के बराबर होगा तथा ये $B \times$ (लूप के क्षेत्रफल परिवर्तन की दर) के बराबर होगा। यदि $t$ समय पर छड़ तथा $\mathrm{P}$ पर वृत्त की त्रिज्या के बीच का कोण $\theta$ है, तो खंड $\mathrm{OPQ}$ का क्षेत्रफल प्राप्त होगा
$\pi R^{2} \times \frac{\theta}{2 \pi}=\frac{1}{2} R^{2} \theta$
जहाँ पर $R$ वृत्त की त्रिज्या है। अतः प्रेरित विद्युत वाहक बल है
$\varepsilon=B \times \frac{\mathrm{d}}{\mathrm{d} t}\left[\frac{1}{2} R^{2} \theta\right]=\frac{1}{2} B R^{2} \frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{B \omega R^{2}}{2}$
[नोट कीजिए : $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\omega=2 \pi v$ ]
यह व्यंजक प्रथम विधि द्वारा प्राप्त व्यंजक के अनुरूप ही है और हम $\varepsilon$ का समान मान पाते हैं।
उदाहरण 6.7
एक पहिया जिसमें $0.5 \mathrm{~m}$ लंबे 10 धात्विक स्पोक (spokes) हैं, को 120 चक्र प्रति मिनट की दर से घुमाया जाता है। पहिये का घूर्णन तल उस स्थान पर पृथ्वी के चुंबकीय क्षेत्र के क्षैतिज घटक $H _{E}$ के अभिलंबवत है। उस स्थान पर यदि $H _{E}=0.4 \mathrm{G}$ है तो पहिये की धुरी (axle) तथा रिम के मध्य स्थापित प्रेरित विद्युत वाहक बल का मान क्या होगा? नोट कीजिए $1 \mathrm{G}=10^{-4} \mathrm{~T}$
हल
प्रेरित विद्युत वाहक बल $=(1 / 2) \omega B R^{2}$
$$ \begin{aligned} & =(1 / 2) \times 4 \pi \times 0.4 \times 10^{-4} \times(0.5)^{2} \\ & =6.28 \times 10^{-5} \mathrm{~V} \end{aligned} $$
क्योंकि स्पोक के आरपार विद्युत वाहक बल समांतर हैं इसलिए उनकी संख्या का कोई प्रभाव नहीं पड़ता।
6.7 प्रेरकत्व
एक कुंडली के निकट रखी दूसरी कुंडली में फ्लक्स परिवर्तन से अथवा उसी कुंडली में फ्लक्स परिवर्तन से, उस कुंडली में विद्युत धारा प्रेरित हो सकती है। ये दोनों स्थितियाँ अगले दो उपखंडों में अलग-अलग वर्णित की गई हैं। तथापि, इन दोनों स्थितियों में, कुंडली में फ्लक्स धारा के समानुपाती है। अर्थात् $\Phi _{\mathrm{B}} \alpha I$
इसके अतिरिक्त यदि समय के साथ कुंडली की ज्यामिति नहीं बदलती, तब
$$ \frac{\mathrm{d} \Phi _{B}}{\mathrm{~d} t} \alpha \frac{\mathrm{d} I}{\mathrm{~d} t} $$
समीप-समीप लिपटे $N$ फेरों (turns) वाली कुंडली के सभी फेरों से समान चुंबकीय फ्लक्स संबद्ध होता है। जब कुंडली में फ्लक्स $\Phi _{\mathrm{B}}$ परिवर्तित होता है तो प्रत्येक फेस प्रेरित विद्युत वाहक बल में योगदान करता है। इसलिए एक पद फ्लक्स-बंधता (flux linkage) का उपयोग होता है जो कि पास-पास लिपटी कुंडली के लिए $N \Phi _{\mathrm{B}}$ के बराबर है तथा इस स्थिति में
$$ N \Phi _{\mathrm{B}} \propto I $$
इस संबंध में समानुपातिक स्थिरांक को प्रेरकत्व कहते हैं। हम देखेंगे कि प्रेरकत्व का मान कुंडली की ज्यामिति तथा उसके पदार्थ के नैज (intrinsic) गुणधर्मों पर निर्भर करता है। यह पक्ष धारिता की प्रकृति के समान है जो समांतर प्लेट संधारित्र के लिए प्लेट के क्षेत्रफल तथा प्लेट-पृथक्करण (ज्यामिति) तथा उनके बीच उपस्थित माध्यम के परावैद्युतांक $K$ (पदार्थ के नैज गुणधर्म) पर निर्भर करती है।
प्रेरकत्व एक अदिश राशि है। इसकी विमाएँ $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ हैं जो कि फ्लक्स की विमाओं तथा धारा की विमाओं के अनुपात द्वारा व्यक्त की जाती हैं। प्रेरकत्व की SI मात्रक हेनरी है तथा इसे $\mathrm{H}$ द्वारा व्यक्त किया जाता है। यह नाम जोसेफ हेनरी के सम्मान में रखा गया है जिन्होंने इंग्लैंड के वैज्ञानिक फैराडे से अलग अमेरिका में वैद्युत चुंबकीय प्रेरण की खोज की।
6.7.1 अन्योन्य प्रेरकत्व
चित्र 6.12 में दर्शायी गई दो लंबी समाक्षी (co-axial) परिनालिकाओं (solenoids) जिनकी प्रत्येक की लंबाई $l$ है, पर विचार कीजिए। हम अंतः परिनालिका $S _{1}$ की त्रिज्या $r _{1}$ तथा उसकी इकाई लंबाई में फेरों की संख्या को $n _{1}$ द्वारा व्यक्त करते हैं। बाह्य परिनालिका $S _{2}$ के लिए संगत राशियाँ क्रमशः $r _{2}$ तथा $n _{2}$ हैं। मान लीजिए $N _{1}$ तथा $N _{2}$ क्रमशः कुंडलियों $S _{1}$ तथा $S _{2}$ में फेरों की कुल संख्या है।
चित्र 6.12 समान लंबाई $l$ की दो समाक्षी दीर्घ परिनालिकाएँ।
जब $S _{2}$ में धारा $I _{2}$ प्रवाहित करते हैं तो यह $S _{1}$ में एक चुंबकीय फ्लक्स स्थापित करती है। हम इसे $\Phi _{1}$ से निर्दिष्ट करते हैं। परिनालिका $S _{1}$ में संगत फ्लक्स-बंधता है
$$ \begin{equation*} N_{1} \Phi_{1}=M_{12} I_{2} \tag{6.7} \end{equation*} $$
$M _{12}$ को परिनालिका $S _{1}$ का परिनालिका $S _{2}$ के सापेक्ष अन्योन्य प्रेरकत्व कहते हैं। इसे अन्योन्य प्रेरक गुणांक भी कहा जाता है।
इन सरल समाक्षी परिनालिकाओं के लिए $M _{12}$ की गणना संभव है। परिनालिका $S _{2}$ में स्थापित विद्युत धारा $I _{2}$ द्वारा उत्पन्न चुंबकीय क्षेत्र है $\mu _{0} n _{2} I _{2}$ । कुंडली $S _{1}$ के साथ परिणामी फ्लक्स-बंधता है
$$ \begin{align*} N _{1} \Phi _{1} & =\left(n _{1} l\right)\left(\pi r _{1}^{2}\right)\left(\mu _{0} n _{2} I _{2}\right) \\ & =\mu _{0} n _{1} n _{2} \pi r _{1}^{2} l I _{2} \tag{6.8} \end{align*} $$
जहाँ $n _{1} l$ परिनालिका $S _{1}$ में कुल फेरों की संख्या है। इस प्रकार, समीकरण (6.7) तथा समीकरण (6.8) से
$$ \begin{equation*} M _{12}=\mu _{0} n _{1} n _{2} \pi r _{1}^{2} l \tag{6.9} \end{equation*} $$
ध्यान दीजिए कि हमने यहाँ पर कोर-प्रभावों को नगण्य मान लिया है तथा चुंबकीय क्षेत्र $\mu _{0} n _{2} I _{2}$ को परिनालिका $S _{2}$ को लंबाई तथा चौड़ाई में सर्वत्र एकसमान माना है। यह ध्यान रखते हुए कि परिनालिका लंबी है, जिसका अर्थ है $l>r _{2}$ यह एक अच्छा सन्निकटन (approximation) है।
अब हम विपरीत स्थिति पर विचार करते हैं। परिनालिका $S _{1}$ से एक विद्युत धारा $I _{1}$ प्रवाहित की जाती है तथा परिनालिका $S _{2}$ से फ्लक्स-बंधता है,
$$ \begin{equation*} N _{2} \Phi _{2}=M _{21} I _{1} \tag{6.10} \end{equation*} $$
$M _{21}$ को परिनालिका $S _{2}$ का परिनालिका $S _{1}$ के सापेक्ष अन्योन्य प्रेरकत्व कहते हैं।
$S _{1}$ में धारा $I _{1}$ के कारण फ्लक्स पूरी तरह $S _{1}$ के अंदर सीमित माना जा सकता है क्योंकि परिनालिकाएँ बहुत लंबी हैं। अतः, परिनालिका $S _{2}$ के साथ फ्लक्स-बंधता है
$$ N _{2} \Phi _{2}=\left(n _{2} l\right)\left(\pi r _{1}^{2}\right)\left(\mu _{0} n _{1} I _{1}\right) $$
यहाँ पर $n _{2} l, S _{2}$ में फेरों की कुल संख्या है। समीकरण (6.10) से,
$$ \begin{equation*} M _{21}=\mu _{0} n _{1} n _{2} \pi r _{1}^{2} l \tag{6.11} \end{equation*} $$
समीकरण (6.9) तथा समीकरण (6.10) का उपयोग करके हमें प्राप्त होता है
$$ \begin{equation*} \left.M _{12}=M _{21}=M \text { (माना }\right) \tag{6.12} \end{equation*} $$
हमने यह समानता दीर्घ लंबाई की समाक्षी परिनालिकाओं के लिए दर्शायी है। तथापि, यह संबंध व्यापक रूप से सत्य है। नोट कीजिए कि यदि अंतःपरिनालिका बाह्य परिनालिका से बहुत छोटी होती (तथा बाह्य परिनालिका में ठीक प्रकार अंदर रखी होती) तब भी हम फ्लक्स ग्रंथिका $N _{1} \Phi _{1}$ की गणना कर पाते, क्योंकि अंतःपरिनालिका बाह्य परिनालिका के कारण प्रभावी ढंग से एकसमान चुंबकीय क्षेत्र में निमज्जित है। इस स्थिति में, $M _{12}$ की गणना सरल होगी। तथापि, बाह्य परिनालिका से आबद्ध फ्लक्स की गणना करना अत्यंत कठिन होगा क्योंकि अंतःपरिनालिका के कारण चुंबकीय क्षेत्र बाह्य परिनालिका की लंबाई तथा साथ-ही-साथ अनुप्रस्थ काट के आर-पार परिवर्तित होगा। इसीलिए इस स्थिति में $M _{21}$ की गणना भी अत्यंत कठिन होगी। ऐसी स्थितियों में $M _{12}=M _{21}$ जैसी समानता अत्यंत लाभकारी होगी।
उपरोक्त उदाहरण की व्याख्या हमने यह मान कर की है कि परिनालिकाओं के अंदर माध्यम वायु है। इसके स्थान पर यदि $\mu _{\mathrm{r}}$ सापेक्ष चुंबकशीलता का माध्यम मौजूद होता तो अन्योन्य प्रेरकत्व का मान होता
$$M=\mu _{r} \mu _{0} n _{1} n _{2} \pi r _{1}^{2} l$$
यह जानना भी महत्वपूर्ण है कि कुंडलियों, परिनालिकाओं आदि के युग्म का अन्योन्य प्रेरकत्व उनके पृथक्करण एवं साथ-ही-साथ उनके सापेक्ष दिक्विन्यास (orientation) पर निर्भर है।
उदाहरण 6.8 दो संकेन्द्री वृत्ताकार कुंडलियाँ, एक कम त्रिज्या $r _{1}$ की तथा दूसरी अधिक त्रिज्या $r _{2}$ की, ऐसी कि $r _{1} \ll<r _{2}$, समाक्षी रखी हैं तथा दोनों के केन्द्र संपाती हैं। इस व्यवस्था के लिए अन्योन्य प्रेरकत्व ज्ञात कीजिए।
हल माना कि बाह्य वृत्ताकार कुंडली में से $I _{2}$ धारा प्रवाहित होती है। कुंडली के केन्द्र पर चुंबकीय क्षेत्र है $B _{2}=\mu _{0} I _{2} / 2 r _{2}$ । क्योंकि दूसरी समाक्षी कुंडली की त्रिज्या अत्यंत अल्प है, उसके अनुप्रस्थ काट क्षेत्रफल पर $B _{2}$ का मान स्थिर माना जा सकता है। अतः,
$\Phi _{1}=\pi r _{1}^{2} B _{2}$
$$ \begin{aligned} & =\frac{\mu _{0} \pi r _{1}^{2}}{2 r _{2}} I _{2} \\ & =M _{12} I _{2} \end{aligned} $$
इस प्रकार,
$$ M_{12}=\frac{\mu_0 \pi r_1^2}{2 r_2} $$
समीकरण (6.12) से
$$ M_{12}=M_{21}=\frac{\mu_0 \pi r_1^2}{2 r_2} $$
ध्यान दीजिए कि हमने $M_{12}$ की गणना $\Phi_1$ के सन्निकट मान से यह मानते हुए की है कि चुंबकीय क्षेत्र $B_2$ का मान क्षेत्रफल $\pi r_1^2$ पर एकसमान है। तथापि, हम इस मान को स्वीकार कर सकते हैं क्योंकि $r_1 \ll r_2$ ।
अब, अनुच्छेद 6.2 के प्रयोग 6.3 को स्मरण करें। उस प्रयोग में, जब भी कुंडली $C _{2}$ में धारा परिवर्तित होती है, कुंडली $C _{1}$ में विद्युत वाहक बल प्रेरित होता है। मान लीजिए कुंडली $C _{1}$ (माना $N _{1}$ फेरों वाली) में फ्लक्स $\Phi _{1}$ है, जबकि कुंडली $C _{2}$ में धारा $I _{2}$ है।
तब समीकरण (6.8) से हमें प्राप्त होगा
$N _{1} \Phi _{1}=M I _{2}$
समय के साथ परिवर्तनशील धाराओं के लिए
$$ \frac{\mathrm{d}\left(N _{1} \Phi _{1}\right)}{\mathrm{d} t}=\frac{\mathrm{d}\left(M I _{2}\right)}{\mathrm{d} t} $$
क्योंकि कुंडली $C _{1}$ में प्रेरक विद्युत वाहक बल का मान है
$$ \varepsilon _{1}=-\frac{\mathrm{d}\left(N _{1} \Phi _{1}\right)}{\mathrm{d} t} $$
हमें प्राप्त होगा,
$$ \varepsilon _{1}=-M \frac{\mathrm{d} I _{2}}{\mathrm{~d} t} $$
यह दर्शाता है कि किसी कुंडली में परिवर्ती धारा समीपस्थ कुंडली में विद्युत वाहक बल प्रेरित कर सकती है। प्रेरक विद्युत वाहक बल का परिमाण धारा परिवर्तन की दर तथा दोनों कुंडलियों के अन्योन्य प्रेरकत्व पर निर्भर है।
6.7.2 स्व-प्रेरकत्व
पिछले उप-परिच्छेद में हमने एक परिनालिका में बहने वाली धारा के कारण दूसरी परिनालिका में उत्पन्न होने वाले फ्लक्स के बारे में विचार किया। किसी एकल वियुक्त कुंडली में भी उसी कुंडली में धारा परिवर्तित करने पर कुंडली में होने वाले फ्लक्स परिवर्तन के कारण, विद्युत वाहक बल प्रेरित करना संभव है। इस परिघटना को स्व-प्रेरण कहते हैं। इस स्थिति में, $N$ फेरों वाली कुंडली में फ्लक्स-बंधता, कुंडली में बहने वाली धारा के समानुपातिक है तथा इसे व्यक्त कर सकते हैं,
$$ \begin{align*} & N \Phi _{B} \propto I \\ & N \Phi _{B}=L I \tag{6.13} \end{align*} $$
यहाँ समानुपातिक स्थिरांक $L$ को कुंडली का स्व-प्रेरकत्व कहते हैं। इसे कुंडली का स्व-प्रेरण गुणांक भी कहते हैं। जब धारा परिवर्तित होती है, कुंडली से संबद्ध फ्लक्स भी परिवर्तित होता है। समीकरण (6.13) का उपयोग करने पर प्रेरित विद्युत वाहक बल होगा
$$ \begin{align*} & \varepsilon=-\frac{\mathrm{d}\left(N \Phi _{\mathrm{B}}\right)}{\mathrm{d} t} \\ & \varepsilon=-L \frac{\mathrm{d} I}{\mathrm{~d} t} \tag{6.14} \end{align*} $$
इस प्रकार, स्व-प्रेरित विद्युत वाहक बल सदैव कुंडली में किसी भी धारा परिवर्तन (बढ़ना या घटना) का विरोध करता है।
सरल ज्यामितियों से किसी परिपथ के लिए स्व-प्रेरकत्व की गणना करना संभव है। आइए एक लंबी परिनालिका के स्व-प्रेरकत्व की गणना करें, जिसके अनुप्रस्थ काट का क्षेत्रफल $A$ तथा लंबाई $l$ है, तथा इसी एकांक लंबाई में फेरों की संख्या $n$ है। परिनालिका में प्रवाहित होने वाली धारा $I$ के कारण चुंबकीय क्षेत्र $B=\mu _{0} n I$ है (पहले की भाँति कोर प्रभावों को नगण्य मानते हुए)। परिनालिका से संबद्ध कुल फ्लक्स हैं
$$ \begin{aligned} & N \Phi _{B}=(n l)\left(\mu _{0} n I\right)(A) \\ & =\mu _{0} n^{2} A l I \end{aligned} $$
यहाँ पर $n l$ फेरों की कुल संख्या है। अतः, स्व-प्रेरकत्व है,
$$ \begin{align*} L & =\frac{N \Phi _{B}}{I} \\ & =\mu _{0} n^{2} A l \tag{6.15} \end{align*} $$
यदि हम परिनालिका की अंतःधारा को $\mu _{r}$ आपेक्षिक चुंबकशीलता वाले पदार्थ से भर दें (उदाहरण के लिए नर्म लोहा, जिसकी आपेक्षिक चुंबकशीलता का मान उच्च है), तब,
$$ \begin{equation*} L=\mu _{r} \mu _{0} n^{2} A l \tag{6.16} \end{equation*} $$
कुंडली का स्वप्रेरकत्व उसकी ज्यामितीय संरचना तथा माध्यम की चुंबकशीलता पर निर्भर है।
स्वप्रेरित विद्युत वाहक बल को विरोधी विद्युत वाहक बल (backemf) भी कहते हैं क्योंकि यह परिपथ में किसी भी धारा-परिवर्तन का विरोध करता है। भौतिक दृष्टि से स्व-प्रेरकत्व जड़त्व का कार्य करता है। यह यांत्रिकी में द्रव्यमान का विद्युतचुंबकीय अनुरूप है। अतः, धारा स्थापित करने के लिए, विरोधी विद्युत वाहक बल $(\varepsilon)$ के विरुद्ध कार्य करना पड़ता है। यह किया गया कार्य चुंबकीय स्थितिज ऊर्जा के रूप में संचित हो जाता है। किसी परिपथ में किसी क्षण धारा $I$ के लिए कार्य करने की दर है,
$$ \frac{\mathrm{d} W}{\mathrm{~d} t}=|\varepsilon| I $$
यदि हम प्रतिरोधक क्षयों को नगण्य मान लें तथा केवल प्रेरणिक प्रभाव पर ही विचार करें, तब समीकरण (6.14) का उपयोग करने पर,
$$ \frac{\mathrm{d} W}{\mathrm{~d} t}=L I \frac{\mathrm{d} I}{\mathrm{~d} t} $$
धारा $I$ स्थापित करने में किया गया कुल कार्य है,
$$ W=\int \mathrm{d} W=\int _{0}^{I} L I \mathrm{~d} I $$
अतः, धारा I स्थापित करने में आवश्यक ऊर्जा होगी,
$$ \begin{equation*} W=\frac{1}{2} L I^{2} \tag{6.17} \end{equation*} $$
यह व्यंजक हमें $m$ द्रव्यमान के किसी कण की गतिज ऊर्जा (यांत्रिक) के व्यंजक $m v^{2} / 2$ की याद दिलाता है तथा दर्शाता है कि $L, m$ के अनुरूप है (अर्थात $L$ विद्युत जड़त्व है तथा किसी परिपथ में जिसमें यह संयोजित है, धारा के बढ़ने तथा घटने का विरोध करता है)।
दो समीपस्थ कुंडलियों में साथ-साथ प्रवाहित होने वाली धाराओं की सामान्य स्थिति पर विचार करें। एक कुंडली के साथ संबद्ध फ्लक्स, स्वतंत्र रूप से विद्यमान दो फ्लक्सों के योग के बराबर होगा। समीकरण (6.7) निम्न रूप में रूपातंरित हो जाएगी।
$$ N _{1} \Phi _{1}=M _{11} I _{1}+M _{12} I _{2} $$
यहाँ $M _{11}$ उसी कुंडली के प्रेरकत्व को निरूपित करता है।
अतः, फैराडे का नियम उपयोग करने पर,
$$ \varepsilon _{1}=-M _{11} \frac{\mathrm{d} I _{1}}{\mathrm{~d} t}-M _{12} \frac{\mathrm{d} I _{2}}{\mathrm{~d} t} $$
$M _{11}$ स्व-प्रेरकत्व है तथा इसे $L _{1}$ द्वारा लिखा जाता है। इसलिए,
$$ \varepsilon _{1}=-L _{1} \frac{\mathrm{d} I _{1}}{\mathrm{~d} t}-M _{12} \frac{\mathrm{d} I _{2}}{\mathrm{~d} t} $$
उदाहरण 6.9 (a) परिनालिका में संचित चुंबकीय ऊर्जा का व्यंजक परिनालिका के चुंबकीय क्षेत्र $B$, क्षेत्रफल $A$ तथा लंबाई $l$ के पदों में ज्ञात कीजिए। (b) यह चुंबकीय ऊर्जा तथा संधारित्र में संचित स्थिरवैद्युत ऊर्जा किस रूप में तुलनीय है?
हल (a) समीकरण (6.17) से, चुंबकीय ऊर्जा है
$$ \begin{aligned} U _{B}=\frac{1}{2} L I^{2} \\ =\frac{1}{2} L\left(\frac{B}{\mu_0 n}\right)^2 & \text { (क्योंकि परिनालिका के लिए, } \left.B=\mu_0 n I\right) \end{aligned} $$
$$ \begin{aligned} =\frac{1}{2}\left(\mu_0 n^2 A l\right)\left(\frac{B}{\mu_0 n}\right)^2 & \text { [समीकरण (6.15) से] } \end{aligned} $$
$$ \begin{aligned} =\frac{1}{2} B^2 {\frac{B}{\mu_{0} n}}^{2} \end{aligned} $$
(b) प्रति एकांक आयतन चुंबकीय ऊर्जा है,
$$ \begin{aligned} u_B & =\frac{U_B}{V} \quad \text { (यहाँ } V \text { आयतन है जिसमें फ्लक्स विद्यमान है) } \end{aligned} $$
$ \begin{aligned} & =\frac{U_B}{A l} & =\frac{B^2}{2 \mu_0} \end{aligned} $
हम पहले ही समांतर प्लेट संधारित्र के एकांक आयतन में संचित स्थिरवैद्युत ऊर्जा का संबंध प्राप्त कर चुके हैं [अध्याय 2 समीकरण 2.73 देखिए]।
$ u_E=\frac{1}{2} \varepsilon_0 E^2 $
दोनों दशाओं में ऊर्जा क्षेत्र की तीव्रता के समानुपाती है। समीकरण (6.18) तथा (2.73) विशेष स्थितियों क्रमशः एक परिनालिका तथा एक समांतर प्लेट संधारित्र के लिए व्युत्पन्न किए गए हैं। लेकिन वे व्यापक हैं तथा विश्व के किसी भी ऐसे स्थान के लिए सत्य है जिसमें कोई चुंबकीय क्षेत्र अथवा/और विद्युतीय क्षेत्र विद्यमान है।
6.8 प्रत्यावर्ती धारा जनित्र
चित्र 6.13 प्रत्यावर्ती धारा जनित्र।
विद्युत चुंबकीय प्रेरण परिघटना का प्रौद्योगिक रूप से कई प्रकार से उपयोग किया गया है। एक असाधारण तथा महत्वपूर्ण उपयोग प्रत्यावर्ती धारा (ac) उत्पादन है। $100 \mathrm{MW}$ सामर्थ्य का आधुनिक प्रत्यावर्ती धारा जनित्र एक अत्यंत विकसित मशीन है। इस अनुच्छेद में, हम इस मशीन के मूल सिद्धांतों का वर्णन करेंगे। इस मशीन के विकास का श्रेय यूगोस्लाव वैज्ञानिक निकोला टेस्ला को जाता है। जैसा कि अनुच्छेद 6.3 में संकेत किया गया था, किसी लूप में विद्युत वाहक बल या धारा प्रेरित करने के लिए, एक विधि यह है कि लूप के अभिविन्यास में अथवा इसके प्रभावी क्षेत्रफल में परिवर्तन किया जाए। जब कुंडली एक चुंबकीय क्षेत्र $\mathbf{B}$ में घूर्णन करती है तो लूप का (क्षेत्र के अभिलंबवत) प्रभावी क्षेत्रफल $A \cos \theta$ है, यहाँ $\theta, \mathbf{A}$ तथा $\mathbf{B}$ के बीच का कोण है। फ्लक्स परिवर्तन करने की यह विधि, एक सरल प्रत्यावर्ती धारा जनित्र का कार्य सिद्धांत है। जनित्र यांत्रिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है।
प्रत्यावर्ती धारा जनित्र के मूल अवयव चित्र 6.13 में दर्शाए गए हैं। इसमें एक कुंडली होती है जो रोटर शैफ्ट (roter shaft) पर आरोपित होती है। कुंडली का घूर्णन अक्ष चुंबकीय क्षेत्र की दिशा के लंबवत है। कुंडली (जिसे आर्मेचर कहते हैं) को किसी एकसमान चुंबकीय क्षेत्र में किसी बाह्य साधन द्वारा यांत्रिक विधि से घूर्णन कराया जाता है। कुंडली के घूमने से, इसमें चुंबकीय फ्लक्स परिवर्तित होता है, जिससे कि कुंडली में एक विद्युत वाहक बल प्रेरित होता है। कुंडली के सिरों को सर्पी वलयों (slip rings) तथा ब्रुशों (brushes) की सहायता से एक बाह्य परिपथ से जोड़ा जाता है।
जब कुंडली को एकसमान कोणीय चाल $\omega$ से घूर्णन कराया जाता है तो चुंबकीय क्षेत्र सदिश $\mathbf{B}$ तथा क्षेत्रफल सदिश $\mathbf{A}$ के बीच कोण $\theta$ का मान किसी समय $t$ पर $\theta=\omega t$ है (यह मानते हुए कि जब $t=0, \theta=0^{\circ}$ ) है। परिणामस्वरूप, कुंडली का प्रभावी क्षेत्रफल, जिसमें चुंबकीय क्षेत्र रेखाएँ होकर गुजरती हैं, समय के साथ परिवर्तित होता है। समीकरण (6.1) के अनुसार किसी समय $t$ पर फ्लक्स है :
$$\Phi _{\mathrm{B}}=B A \cos \theta=B A \cos \omega t$$
फैराडे के नियम से, $N$ फेरों वाली घूर्णी कुंडली के लिए प्रेरित विद्युत वाहक बल होगा
$$\varepsilon=-N \frac{\mathrm{d} \Phi _{B}}{\mathrm{dt}}=-N B A \frac{\mathrm{d}}{\mathrm{d} t}(\cos \omega t)$$
अतः, विद्युत वाहक बल का तात्क्षणिक मान है
$$ \begin{equation*} \varepsilon=N B A \omega \sin \omega t \tag{6.19} \end{equation*} $$
यहाँ NBA $\omega$ विद्युत वाहक बल का अधिकतम मान है, जो $\sin \omega t= \pm 1$ पर प्राप्त होता है। यदि हम NBA $\omega$ को $\varepsilon _{0}$ से दर्शाएँ, तब
$$ \begin{equation*} \varepsilon=\varepsilon_{0} \sin \omega t \tag{6.20} \end{equation*} $$
क्योंकि ज्या फलन (sine function) का मान +1 से -1 के बीच बदलता है, विद्युत वाहक बल का चिह्न या ध्रुवता समय के साथ परिवर्तित होता है। चित्र 6.14 से नोट कीजिए कि जब $\theta=90^{\circ}$ या $\theta=270^{\circ}$ होता है तो विद्युत वाहक बल अपने चरम मान पर होता है क्योंकि इन बिंदुओं पर फ्लक्स में परिवर्तन अधिकतम है।
क्योंकि धारा की दिशा आवर्ती रूप से परिवर्तित होती है इसलिए धारा को प्रत्यावर्ती धारा (ac) कहते हैं। क्योंकि $\omega=2 \pi v$, समीकरण (6.20) को हम निम्न प्रकार से लिख सकते हैं-
$$ \begin{equation*} \varepsilon=\varepsilon _{0} \sin 2 \pi v t \tag{6.21} \end{equation*} $$
यहाँ, $v$, जनित्र की कुंडली (आर्मेचर) के परिक्रमण की आवृत्ति है।
ध्यान रखिए कि समीकरण (6.20) तथा (6.21) विद्युत वाहक बल का तात्क्षणिक मान बतलाते हैं तथा $\varepsilon,+\varepsilon _{0}$ तथा $-\varepsilon _{0}$ के बीच आवर्ती रूप से परिवर्तित होता है। हम अध्याय 7 में सीखेंगे कि प्रत्यावर्ती वोल्टता तथा धारा का काल औसत मान कैसे ज्ञात करते हैं।
चित्र 6.14 एक चुंबकीय क्षेत्र में घूर्णन करते तार के लूप में एक प्रत्यावर्ती विद्युत वाहक बल उत्पन्न होता है।
व्यावसायिक जनित्रों में, आर्मेचर को घुमाने के लिए आवश्यक यांत्रिक ऊर्जा ऊँचाई से गिरते हुए पानी द्वारा प्राप्त की जाती है, उदाहरण के लिए, बाँधों द्वारा। इन्हें जल-विद्युत जनित्र (hydroelectric generator) कहते हैं। विकल्पतः, कोयला या अन्य स्रोतों का उपयोग करके, पानी को गर्म करके भाप पैदा करते हैं। उच्च दाब पर भाप को आर्मेचर को घुमाने के लिए प्रयोग में लाते हैं। इन्हें तापीय जनित्र (thermal generator) कहते हैं। कोयले के स्थान पर यदि नाभिकीय ईंधन का प्रयोग किया जाता है तो हमें नाभिकीय शक्ति प्राप्त होती है। आधुनिक जनित्र $500 \mathrm{MW}$ उच्च विद्युत शक्ति उत्पन्न कर सकते हैं, अर्थात् इनसे $100 \mathrm{~W}$ के 50 लाख बल्ब एक साथ जलाए जा सकते हैं। अधिकांश जनित्रों में कुंडलियों को अचर रखा जाता है तथा विद्युत चुंबकों को घुमाया जाता है। भारत में जनित्रों में घूर्णन आवृत्ति $50 \mathrm{~Hz}$ है। कुछ देशों में, जैसे अमेरिका (USA) में यह आवृत्ति $60 \mathrm{~Hz}$ है।
उदाहरण 6.10 कमला एक स्थिर साइकिल के पैडल को घुमाती है। पैडल का संबंध 100 फेरों तथा $0.10 \mathrm{~m}^{2}$ क्षेत्रफल वाली एक कुंडली से है। कुंडली प्रति सेकंड आधा परिक्रमण (चक्कर) कर पाती है तथा यह एक $0.01 \mathrm{~T}$ तीव्रता वाले एकसमान चुंबकीय क्षेत्र में, जो कुंडली के घूर्णन अक्ष के लंबवत है, रखी है। कुंडली में उत्पन्न होने वाली अधिकतम वोल्टता क्या होगी?
हल यहाँ $v=0.5 \mathrm{~Hz} ; N=100, A=0.1 \mathrm{~m}^{2}$ तथा $B=0.01 \mathrm{~T}$ समीकरण (6.19) लगाने पर
$$ \begin{aligned} \varepsilon _{0} & =N B A(2 \pi v) \\ & =100 \times 0.01 \times 0.1 \times 2 \times 3.14 \times 0.5 \\ & =0.314 \mathrm{~V} \end{aligned} $$
अधिकतम वोल्टता $0.314 \mathrm{~V}$ है।
हम आपसे आग्रह करते हैं कि विद्युत शक्ति उत्पादन के लिए वैकल्पिक संभावनाओं का पता लगाएँ।
सारांश
1. क्षेत्रफल $\mathbf{A}$ की किसी सतह को एकसमान चुंबकीय क्षेत्र $\mathbf{B}$ में रखने पर उसमें से गुजरने वाले चुंबकीय फ्लक्स को निम्न प्रकार परिभाषित कर सकते हैं।
$\Phi _{\mathrm{B}}=\mathbf{B} \mathbf{A}=B A \cos \theta$
यहाँ $\theta, \mathbf{B}$ एवं $\mathbf{A}$ के बीच का कोण है।
2. फैराडे के विद्युत चुंबकीय प्रेरण के नियम के अनुसार $N$ फेरे युक्त कुंडली में प्रेरित विद्युत वाहक बल उससे गुजरने वाले चुंबकीय फ्लक्स में परिवर्तन की दर के तुल्य होता है
$\varepsilon=-N \frac{\mathrm{d} \Phi _{\mathrm{B}}}{\mathrm{d} t}$
यहाँ $\Phi _{\mathrm{B}}$ एक फेरे से संबद्ध चुंबकीय फ्लक्स है। यदि परिपथ एक बंद परिपथ हो तो उसमें एक धारा $I=\varepsilon / R$ स्थापित हो जाती है, जहाँ $R$ परिपथ का प्रतिरोध है।
3. लेंज के नियम के अनुसार, प्रेरित विद्युत वाहक बल की ध्रुवता इस प्रकार होती है कि वह उस दिशा में धारा प्रवाहित करे, जो उसी परिवर्तन का विरोध करे जिसके कारण उसकी उत्पत्ति हुई है। फैराडे द्वारा निष्पादित व्यंजक में ऋण चिह्न इसी बात का द्योतक है।
4. यदि एक $l$ लंबाई की धात्विक छड़ को एकसमान चुंबकीय क्षेत्र $B$ के लंबवत रखें तथा इसे क्षेत्र के लंबवत $v$ वेग से चलाएँ तो इसके सिरों के बीच प्रेरित विद्युत वाहक बल (जिसे गतिक विद्युत वाहक बल कहते हैं) का मान है $\varepsilon=B l v$
5. प्रेरकत्व, फ्लक्स बंधता तथा धारा का अनुपात है। इसका मान $N \Phi / I$ होता है।
6. किसी कुंडली (कुंडली 2) में धारा परिवर्तन निकट स्थित कुंडली (कुंडली 1) में प्रेरित विद्युत वाहक बल उत्पन्न कर सकता है। इस संबंध को
$\varepsilon _{1}=-M _{12} \frac{\mathrm{d} I _{2}}{\mathrm{~d} t}$
द्वारा व्यक्त करते हैं। यहाँ राशि $M _{12}$ कुंडली 1 का कुंडली 2 के सापेक्ष अन्योन्य प्रेरकत्व है। $M _{21}$ को भी इसी प्रकार परिभाषित किया जा सकता है। इन दो प्रेरकत्वों में एक सामान्य तुल्यता होती है। $M _{12}=M _{21}$
7. जब किसी कुंडली में धारा परिवर्तन होता है तो वह परिवर्तन कुंडली में एक विरोधी विद्युत वाहक बल को उत्पन्न करता है। इस स्व-प्रेरित विद्युत वाहक बल का मान निम्नलिखित समीकरण द्वारा व्यक्त किया जाता है :
$\varepsilon=-L \frac{\mathrm{d} I}{\mathrm{~d} t}$
यहाँ $L$ कुंडली का स्व-प्रेरकत्व है। यह कुंडली के जड़त्व की माप है जो परिपथ में किसी भी धारा परिवर्तन का विरोध करता है।
8. किसी लंबी परिनालिका जिसकी क्रोड $\mu _{\mathrm{r}}$ सापेक्ष चुंबकशीलता के पदार्थ की है, का स्व-प्रेरकत्व निम्नलिखित समीकरण द्वारा व्यक्त किया जाता है,
$L=\mu _{r} \mu _{0} n^{2} A l$
यहाँ $A$ परिनालिका का अनुप्रस्थ काट, $l$ उसकी लंबाई तथा $n$ उसकी इकाई लंबाई में लपेटों की संख्या को व्यक्त करते हैं।
9. किसी प्रत्यावर्ती धारा जनित्र में विद्युत चुंबकीय प्रेरण द्वारा यांत्रिक ऊर्जा को विद्युत ऊर्जा में रूपांतरित करते हैं। यदि $N$ फेरों वाली तथा $A$ अनुप्रस्थ काट वाली कुंडली एकसमान चुंबकीय क्षेत्र $B$ में प्रति सेकंड $v$ चक्कर लगाए तो गतिक विद्युत वाहक बल का मान $\varepsilon=N B A(2 \pi v) \sin (2 \pi v t)$
द्वारा व्यक्त किया जाता है। यहाँ हमने मान लिया है कि $t=0 \mathrm{~s}$, पर कुंडली चुंबकीय क्षेत्र के अभिलंबवत है।
राशि | प्रतीक | मात्रक | विमाएँ | समीकरण |
---|---|---|---|---|
चुंबकीय फ्लक्स | $\Phi _{\mathrm{B}}$ | $\mathrm{Wb}$ ( वेबर) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$ | $\Phi _{\mathrm{B}}=\mathbf{B} \quad \mathbf{A}$ |
विद्युत वाहक बल (emf) | $\varepsilon$ | V ( वोल्ट) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | $\varepsilon=-\mathrm{d}\left(N \Phi _{\mathrm{B}}\right) / \mathrm{d} t$ |
अन्योन्य प्रेरकत्व | $M$ | $\mathrm{H}$ (हेनरी) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ | $\varepsilon _{1}=-M _{12}\left(\mathrm{~d} I _{2} / \mathrm{d} t\right)$ |
स्व-प्रेरकत्व | $L$ | $\mathrm{H}$ (हेनरी) | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ | $\varepsilon=-L(\mathrm{~d} I / \mathrm{d} t)$ |
विचारणीय विषय
1. विद्युत एवं चुंबकत्व का एक-दूसरे के साथ घनिष्ठ संबंध है। उन्नीसवीं शताब्दी के प्रारंभ में आर्स्टेड, ऐम्पियर एवं अन्य द्वारा किए गए प्रयोगों ने सिद्ध कर दिया कि गतिमान आवेश (धारा) चुंबकीय क्षेत्र की उत्पत्ति करते हैं। कुछ समय पश्चात सन 1830 के आसपास फैराडे तथा हेनरी द्वारा किए गए प्रयोगों ने स्पष्ट रूप से प्रदर्शित किया कि गतिमान चुंबक विद्युत धारा प्रेरित (उत्पन्न) करते हैं। गुरुत्वीय, विद्युत चुंबकीय, क्षीण तथा प्रबल नाभिकीय बल एक-दूसरे से संबंधित हैं?
2. किसी बंद परिपथ में, विद्युत धारा इस प्रकार उत्पन्न होती है जिससे कि यह परिवर्ती चुंबकीय फ्लक्स का विरोध कर सके। यह ऊर्जा संरक्षण के सिद्धांत के अनुरूप है। तथापि, एक खुले परिपथ में प्रेरित विद्युत वाहक बल इसके सिरों पर उत्पन्न होता है। यह फ्लक्स परिवर्तन से किस प्रकार संबंधित है।
3. अनुच्छेद 6.5 में गतिक विद्युत वाहक बल की विवेचना की गई है। इस अवधारणा का निष्पादन हम गतिमान आवेश पर लगने वाले लोरेंज़ बल का प्रयोग करते हुए फैराडे के नियम से भी स्वतंत्रतापूर्वक कर सकते हैं। तथापि, यदि आवेश स्थिर भी हों [तथा लोरेंज़ बल का $q(\mathbf{v} \times \mathbf{B})$ पद क्रियात्मक नहीं है] तब भी समय के साथ परिवर्ती चुंबकीय क्षेत्र के कारण एक प्रेरित विद्युत वाहक बल उत्पन्न होता है। अतः स्थिर चुंबकीय क्षेत्र में गतिमान आवेश एवं समय के साथ परिवर्ती चुंबकीय क्षेत्र में स्थिर आवेश फैराडे के नियम के लिए सममित स्थिति में प्रतीत होते हैं। यह फैराडे के नियम के लिए सापेक्षता के सिद्धांत की प्रासंगिकता पर ललचाने वाला संकेत देता है।
अभ्यास
6.1 चित्र 6.15 (a) से (f) में वर्णित स्थितियों के लिए प्रेरित धारा की दिशा की प्रागुक्ति (predict) कीजिए।
चित्र 6.15
Show Answer
# Content Missing6.2 चित्र 6.16 में वर्णित स्थितियों के लिए लेंज के नियम का उपयोग करते हुए प्रेरित विद्युत धारा की दिशा ज्ञात कीजिए।
(a) जब अनियमित आकार का तार वृत्ताकार लूप में बदल रहा हो;
(b) जब एक वृत्ताकार लूप एक सीधे बारीक तार में विरूपित किया जा रहा हो।
चित्र 6.16
Show Answer
# Content Missing6.3 एक लंबी परिनालिका के इकाई सेंटीमीटर लंबाई में 15 फेरे हैं। उसके अंदर $2.0 \mathrm{~cm}^{2}$ का एक छोटा-सा लूप परिनालिका की अक्ष के लंबवत रखा गया है। यदि परिनालिका में बहने वाली धारा का मान $2.0 \mathrm{~A}$ में $4.0 \mathrm{~A}$ से $0.1 \mathrm{~s}$ कर दिया जाए तो धारा परिवर्तन के समय प्रेरित विद्युत वाहक बल कितना होगा?
Show Answer
# Content Missing6.4 एक आयताकार लूप जिसकी भुजाएँ $8 \mathrm{~cm}$ एवं $2 \mathrm{~cm}$ हैं, एक स्थान पर थोड़ा कटा हुआ है। यह लूप अपने तल के अभिलंबवत $0.3 \mathrm{~T}$ के एकसमान चुंबकीय क्षेत्र से बाहर की ओर निकल रहा है। यदि लूप के बाहर निकलने का वेग $1 \mathrm{~cm} \mathrm{~s}^{-1}$ है तो कटे भाग के सिरों पर उत्पन्न विद्युत वाहक बल कितना होगा, जब लूप की गति अभिलंबवत हो (a) लूप की लंबी भुजा के (b) लूप की छोटी भुजा के। प्रत्येक स्थिति में उत्पन्न प्रेरित वोल्टता कितने समय तक टिकेगी?
Show Answer
# Content Missing6.5 $1 .0 \mathrm{~m}$ लंबी धातु की छड़ उसके एक सिरे से जाने वाले अभिलंबवत अक्ष के परित: $400 \mathrm{rad} \mathrm{s}^{-1}$ की कोणीय आवृत्ति से घूर्णन कर रही है। छड़ का दूसरा सिरा एक धात्विक वलय से संपर्कित है। अक्ष के अनुदिश सभी जगह $0.5 \mathrm{~T}$ का एकसमान चुंबकीय क्षेत्र उपस्थित है। वलय तथा अक्ष के बीच स्थापित विद्युत वाहक बल की गणना कीजिए।
Show Answer
# Content Missing6.6 पूर्व से पश्चिम दिशा में विस्तृत एक $10 \mathrm{~m}$ लंबा क्षैतिज सीधा तार $0.30 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ तीव्रता वाले पृथ्वी के चुंबकीय क्षेत्र के क्षैतिज घटक से लंबवत $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ की चाल से गिर रहा है।
(a) तार में प्रेरित विद्युत वाहक बल का तात्क्षणिक मान क्या होगा?
(b) विद्युत वाहक बल की दिशा क्या है?
(c) तार का कौन-सा सिरा उच्च विद्युत विभव पर है?
Show Answer
# Content Missing6.7 किसी परिपथ में $0.1 \mathrm{~s}$ में धारा $5.0 \mathrm{~A}$ से $0.0 \mathrm{~A}$ तक गिरती है। यदि औसत प्रेरित विद्युत वाहक बल $200 \mathrm{~V}$ है तो परिपथ में स्वप्रेरकत्व का आकलन कीजिए।
Show Answer
# Content Missing6.8 पास-पास रखे कुंडलियों के एक युग्म का अन्योन्य प्रेरकत्व $1.5 \mathrm{H}$ है। यदि एक कुंडली में $0.5 \mathrm{~s}$ में धारा 0 से $20 \mathrm{~A}$ परिवर्तित हो, तो दूसरी कुंडली की फ्लक्स बंधता में कितना परिवर्तन होगा?