Chapter-05 Magnetism and Matter
5.1 INTRODUCTION
Magnetic phenomena are universal in nature. Vast, distant galaxies, the tiny invisible atoms, humans and beasts all are permeated through and through with a host of magnetic fields from a variety of sources. The earth’s magnetism predates human evolution. The word magnet is derived from the name of an island in Greece called magnesia where magnetic ore deposits were found, as early as $600 \mathrm{BC}$.
In the previous chapter we have learned that moving charges or electric currents produce magnetic fields. This discovery, which was made in the early part of the nineteenth century is credited to Oersted, Ampere, Biot and Savart, among others.
In the present chapter, we take a look at magnetism as a subject in its own right. Some of the commonly known ideas regarding magnetism are:
(i) The earth behaves as a magnet with the magnetic field pointing approximately from the geographic south to the north.
(ii) When a bar magnet is freely suspended, it points in the north-south direction. The tip which points to the geographic north is called the north pole and the tip which points to the geographic south is called the south pole of the magnet.
(iii) There is a repulsive force when north poles ( or south poles) of two magnets are brought close together. Conversely, there is an attractive force between the north pole of one magnet and the south pole of the other.
(iv) We cannot isolate the north, or south pole of a magnet. If a bar magnet is broken into two halves, we get two similar bar magnets with somewhat weaker properties. Unlike electric charges, isolated magnetic north and south poles known as magnetic monopoles do not exist.
(v) It is possible to make magnets out of iron and its alloys.
We begin with a description of a bar magnet and its behaviour in an external magnetic field. We describe Gauss’s law of magnetism. We then follow it up with an account of the earth’s magnetic field. We next describe how materials can be classified on the basis of their magnetic properties. We describe para-, dia-, and ferromagnetism. We conclude with a section on electromagnets and permanent magnets.
5.2 The Bar Magnet
FIGURE 5.1 The arrangement of iron filings surrounding a bar magnet. The pattern mimics magnetic field lines. The pattern suggests that the bar magnet is a magnetic dipole.
One of the earliest childhood memories of the famous physicist Albert Einstein was that of a magnet gifted to him by a relative. Einstein was fascinated, and played endlessly with it. He wondered how the magnet could affect objects such as nails or pins placed away from it and not in any way connected to it by a spring or string.
We begin our study by examining iron filings sprinkled on a sheet of glass placed over a short bar magnet. The arrangement of iron filings is shown in Fig. 5.1. The pattern of iron filings suggests that the magnet has two poles similar to the positive and negative charge of an electric dipole. As mentioned in the introductory section, one pole is designated the North pole and the other, the South pole. When suspended freely, these poles point approximately towards the geographic north and south poles, respectively. A similar pattern of iron filings is observed around a current carrying solenoid.
5.2.1 The magnetic field lines
The pattern of iron filings permits us to plot the magnetic field lines*. This is shown both for the bar-magnet and the current-carrying solenoid in Fig. 5.2. For comparison refer to the Chapter 1, Figure 1.17(d). Electric field lines of an electric dipole are also displayed in Fig. 5.2(c). The magnetic field lines are a visual and intuitive realisation of the magnetic field. Their properties are:
(i) The magnetic field lines of a magnet (or a solenoid) form continuous closed loops. This is unlike the electric dipole where these field lines begin from a positive charge and end on the negative charge or escape to infinity.
FIGURE 5.2 The field lines of (a) a bar magnet, (b) a current-carrying finite solenoid and (c) electric dipole. At large distances, the field lines are very similar. The curves labelled (i) and (ii) are closed Gaussian surfaces.
(ii) The tangent to the field line at a given point represents the direction of the net magnetic field $\mathbf{B}$ at that point.
(iii) The larger the number of field lines crossing per unit area, the stronger is the magnitude of the magnetic field $\mathbf{B}$. In Fig. 5.2(a), B is larger around region ii than in region(i).
(iv) The magnetic field lines do not intersect, for if they did, the direction of the magnetic field would not be unique at the point of intersection.
One can plot the magnetic field lines in a variety of ways. One way is to place a small magnetic compass needle at various positions and note its orientation. This gives us an idea of the magnetic field direction at various points in space.
5.2.2 Bar magnet as an equivalent solenoid
FIGURE 5.3 Calculation of (a) The axial field of a finite solenoid in order to demonstrate its similarity to that of a bar magnet. (b) A magnetic needle in a uniform magnetic field $\mathbf{B}$. The arrangement may be used to determine either B or the magnetic moment $\mathbf{m}$ of the needle.
In the previous chapter, we have explained how a current loop acts as a magnetic dipole (Section 4.10). We mentioned Ampere’s hypothesis that all magnetic phenomena can be explained in terms of circulating currents.
The resemblance of magnetic field lines for a bar magnet and a solenoid suggest that a bar magnet may be thought of as a large number of circulating currents in analogy with a solenoid. Cutting a bar magnet in half is like cutting a solenoid. We get two smaller solenoids with weaker magnetic properties. The field lines remain continuous, emerging from one face of the solenoid and entering into the other face. One can test this analogy by moving a small compass needle in the neighbourhood of a bar magnet and a current-carrying finite solenoid and noting that the deflections of the needle are similar in both cases.
To make this analogy more firm we calculate the axial field of a finite solenoid depicted in Fig. 5.3 (a). We shall demonstrate that at large distances this axial field resembles that of a bar magnet.
$$ \begin{equation*} B=\frac{\mu_{0}}{4 \pi} \frac{2 m}{r^{3}} \tag{5.1} \end{equation*} $$
This is also the far axial magnetic field of a bar magnet which one may obtain experimentally. Thus, a bar magnet and a solenoid produce similar magnetic fields. The magnetic moment of a bar magnet is thus equal to the magnetic moment of an equivalent solenoid that produces the same magnetic field.
5.2.3 The dipole in a uniform magnetic field
Let’s place a small compass needle of known magnetic moment $\mathbf{m}$ and allowing it to oscillate in the magnetic field. This arrangement is shown in Fig. 5.3(b).
The torque on the needle is [see Eq. (4.23)],
$$ \begin{equation*} \tau=\mathbf{m} \times \mathbf{B} \tag{5.2} \end{equation*} $$
In magnitude $\tau=m B \sin \theta$
Here $\tau$ is restoring torque and $\theta$ is the angle between $\mathbf{m}$ and $\mathbf{B}$. An expression for magnetic potential energy can also be obtained on lines similar to electrostatic potential energy. The magnetic potential energy $U_{m}$ is given by
$$ \begin{align*} U_{m} & =\int \tau(\theta) d \theta \\ & =\int m B \sin \theta d \theta=-m B \cos \theta \end{align*} $$
$$ \begin{align*} & =-\mathbf{m} \cdot \mathbf{B} \tag{5.3} \end{align*} $$
We have emphasised in Chapter 2 that the zero of potential energy can be fixed at one’s convenience. Taking the constant of integration to be zero means fixing the zero of potential energy at $\theta=90^{\circ}$, i.e., when the needle is perpendicular to the field. Equation (5.6) shows that potential energy is minimum $(=-m B)$ at $\theta=0^{\circ}$ (most stable position) and maximum $(=+m B)$ at $\theta=180^{\circ}$ (most unstable position).
Example 5.1
(a) What happens if a bar magnet is cut into two pieces: (i) transverse to its length, (ii) along its length?
(b) A magnetised needle in a uniform magnetic field experiences a torque but no net force. An iron nail near a bar magnet, however, experiences a force of attraction in addition to a torque. Why?
(c) Must every magnetic configuration have a north pole and a south pole? What about the field due to a toroid?
(d) Two identical looking iron bars A and B are given, one of which is definitely known to be magnetised. (We do not know which one.) How would one ascertain whether or not both are magnetised? If only one is magnetised, how does one ascertain which one? [Use nothing else but the bars A and B.]
Solution
(a) In either case, one gets two magnets, each with a north and south pole.
(b) No force if the field is uniform. The iron nail experiences a nonuniform field due to the bar magnet. There is induced magnetic moment in the nail, therefore, it experiences both force and torque. The net force is attractive because the induced south pole (say) in the nail is closer to the north pole of magnet than induced north pole.
(c) Not necessarily. True only if the source of the field has a net non-zero magnetic moment. This is not so for a toroid or even for a straight infinite conductor.
(d) Try to bring different ends of the bars closer. A repulsive force in some situation establishes that both are magnetised. If it is always attractive, then one of them is not magnetised. In a bar magnet the intensity of the magnetic field is the strongest at the two ends (poles) and weakest at the central region. This fact may be used to determine whether A or B is the magnet. In this case, to see which one of the two bars is a magnet, pick up one, (say, A) and lower one of its ends; first on one of the ends of the other (say, B), and then on the middle of B. If you notice that in the middle of $\mathrm{B}, \mathrm{A}$ experiences no force, then $\mathrm{B}$ is magnetised. If you do not notice any change from the end to the middle of $B$, then A is magnetised.
5.2.4 The electrostatic analog
Comparison of Eqs. (5.2), (5.3) and (5.6) with the corresponding equations for electric dipole (Chapter 1), suggests that magnetic field at large distances due to a bar magnet of magnetic moment $\mathbf{m}$ can be obtained from the equation for electric field due to an electric dipole of dipole moment p, by making the following replacements:
$$ \mathbf{E} \rightarrow \mathbf{B}, \mathbf{p} \rightarrow \mathbf{m}, \frac{1}{4 \pi \varepsilon _{0}} \rightarrow \frac{\mu _{0}}{4 \pi} $$
In particular, we can write down the equatorial field $\left(\mathbf{B_E}\right)$ of a bar magnet at a distance $r$, for $r»l$, where $l$ is the size of the magnet:
$$ \begin{equation*} \mathbf{B_E}=-\frac{\mu_{0} \mathbf{m}}{4 \pi r^{3}} \tag{5.4} \end{equation*} $$
Likewise, the axial field $\left(\mathbf{B_\mathrm{A}}\right)$ of a bar magnet for $r»l$ is:
$$ \begin{equation*} \mathbf{B_A}=\frac{\mu_{0}}{4 \pi} \frac{2 \mathbf{m}}{r^{3}} \tag{5.5} \end{equation*} $$
Equation (5.8) is just Eq. (5.2) in the vector form. Table 5.1 summarises the analogy between electric and magnetic dipoles.
Table 5.1 The dipole analogy
Electrostatics | Magnetism | |
---|---|---|
$1 / \varepsilon_{0}$ | $\mu_{0}$ | |
Dipole moment | $\mathbf{p}$ | $\mathbf{m}$ |
Equatorial Field for a short dipole | $-\mathbf{p} / 4 \pi \varepsilon_{0} r^{3}$ | $-\mu_{0} \mathbf{m} / 4 \pi r^{3}$ |
Axial Field for a short dipole | $2 \mathbf{p} / 4 \pi \varepsilon_{0} r^{3}$ | $\mu_{0} 2 \mathbf{m} / 4 \pi r^{3}$ |
External Field: torque | $\mathbf{p} \times \mathbf{E}$ | $\mathbf{m} \times \mathbf{B}$ |
External Field: Energy | $-\mathbf{p} \cdot \mathbf{E}$ | $\mathbf{- m} \cdot \mathbf{B}$ |
Example 5.2 Figure 5.4 shows a small magnetised needle P placed at a point $\mathrm{O}$. The arrow shows the direction of its magnetic moment. The other arrows show different positions (and orientations of the magnetic moment) of another identical magnetised needle $\mathrm{Q}$.
(a) In which configuration the system is not in equilibrium?
(b) In which configuration is the system in (i) stable, and (ii) unstable equilibrium?
(c) Which configuration corresponds to the lowest potential energy among all the configurations shown?
FIGURE 5.4
Solution Potential energy of the configuration arises due to the potential energy of one dipole (say, Q) in the magnetic field due to other (P). Use the result that the field due to $\mathrm{P}$ is given by the expression [Eqs. (5.7) and (5.8)]:
$\mathbf{B_\mathrm{P}}=-\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m_\mathrm{P}}}{r^{3}} \quad$ (on the normal bisector)
$\mathbf{B_\mathrm{P}}=\frac{\mu_{0} 2}{4 \pi} \frac{\mathbf{m_\mathrm{P}}}{r^{3}} \quad$ (on the axis)
where $\mathbf{m_P}$ is the magnetic moment of the dipole $P$.
Equilibrium is stable when $\mathbf{m_\mathrm{B}}$ is parallel to $\mathbf{B_\mathrm{P}}$, and unstable when it is anti-parallel to $\mathbf{B_\mathrm{P}}$.
for the configuration $Q_{3}$ for which $Q$ is along the perpendicular bisector of the dipole $\mathrm{P}$, the magnetic moment of $\mathrm{Q}$ is parallel to the magnetic field at the position 3 . Hence $Q_{3}$ is stable. Thus,
(a) $\mathrm{PQ_1}$ and $\mathrm{PQ_2}$
(b) (i) $\mathrm{PQ_3}, \mathrm{PQ_6}$ (stable); (ii) $\mathrm{PG_5}, \mathrm{PQ_4}$ (unstable)
(c) $\mathrm{PQ_6}$
5.3 Magnetism and Gauss’s Law
Karl Friedrich Gauss (1777 – 1855) He was a child prodigy and was gifted in mathematics, physics, engineering, astronomy and even land surveying. The properties of numbers fascinated him, and in his work he anticipated major mathematical development of later times. Along with Wilhelm Welser, he built the first electric telegraph in 1833. His mathematical theory of curved surface laid the foundation for the later work of Riemann.
In Chapter 1, we studied Gauss’s law for electrostatics. In Fig 5.3(c), we see that for a closed surface represented by (i), the number of lines leaving the surface is equal to the number of lines entering it. This is consistent with the fact that no net charge is enclosed by the surface. However, in the same figure, for the closed surface(ii), there is a net outward flux, since it does include a net (positive) charge.
The situation is radically different for magnetic fields which are continuous and form closed loops. Examine the Gaussian surfaces represented by (i) or (ii) in Fig 5.3(a) or Fig. 5.3(b). Both cases visually demonstrate that the number of magnetic field lines leaving the surface is balanced by the number of lines entering it. The net magnetic flux is zero for both the surfaces. This is true for any closed surface.
FIGURE 5.5 Consider a small vector area element $\Delta \mathbf{S}$ of a closed surface $S$ as in is the field at $\Delta \mathbf{S}$. We divide $S$ into many small area elements and calculate the individual flux through each. Then, the net flux $\phi_{B}$ is,
$$ \begin{equation*} \phi_{B}=\sum_{a l l} \Delta \phi_{B}=\sum_{\text {all }} \mathbf{B} \cdot \Delta \mathbf{S}=0 \tag{5.6} \end{equation*} $$
where ‘all’ stands for ‘all area elements $\Delta \mathbf{S}$ ‘. Compare this with the Gauss’s law of electrostatics. The flux through a closed surface in that case is given by
$$ \sum \mathbf{E} \cdot \Delta \mathbf{S}=\frac{q}{\varepsilon_{0}} $$
where $q$ is the electric charge enclosed by the surface.
The difference between the Gauss’s law of magnetism and that for electrostatics is a reflection of the fact that isolated magnetic poles (also called monopoles) are not known to exist. There are no sources or sinks of $\mathbf{B}$; the simplest magnetic element is a dipole or a current loop. All magnetic phenomena can be explained in terms of an arrangement of dipoles and/or current loops.
Thus, Gauss’s law for magnetism is:
The net magnetic flux through any closed surface is zero.
Example 5.3 Many of the diagrams given in Fig. 5.7 show magnetic field lines (thick lines in the figure) wrongly. Point out what is wrong with them. Some of them may describe electrostatic field lines correctly. Point out which ones.
FIGURE 5.6
Solution (a) Wrong. Magnetic field lines can never emanate from a point, as shown in figure. Over any closed surface, the net flux of B must always be zero, i.e., pictorially as many field lines should seem to enter the surface as the number of lines leaving it. The field lines shown, in fact, represent electric field of a long positively charged wire. The correct magnetic field lines are circling the straight conductor, as described in Chapter 4.
(b) Wrong. Magnetic field lines (like electric field lines) can never cross each other, because otherwise the direction of field at the point of intersection is ambiguous. There is further error in the figure. Magnetostatic field lines can never form closed loops around empty space. A closed loop of static magnetic field line must enclose a region across which a current is passing. By contrast, electrostatic field lines can never form closed loops, neither in empty space, nor when the loop encloses charges.
(c) Right. Magnetic lines are completely confined within a toroid. Nothing wrong here in field lines forming closed loops, since each loop encloses a region across which a current passes. Note, for clarity of figure, only a few field lines within the toroid have been shown. Actually, the entire region enclosed by the windings contains magnetic field.
(d) Wrong. Field lines due to a solenoid at its ends and outside cannot be so completely straight and confined; such a thing violates Ampere’s law. The lines should curve out at both ends, and meet eventually to form closed loops.
(e) Right. These are field lines outside and inside a bar magnet. Note carefully the direction of field lines inside. Not all field lines emanate out of a north pole (or converge into a south pole). Around both the $\mathrm{N}$-pole, and the $\mathrm{S}$-pole, the net flux of the field is zero.
(f) Wrong. These field lines cannot possibly represent a magnetic field. Look at the upper region. All the field lines seem to emanate out of the shaded plate. The net flux through a surface surrounding the shaded plate is not zero. This is impossible for a magnetic field. The given field lines, in fact, show the electrostatic field lines around a positively charged upper plate and a negatively charged lower plate. The difference between Fig. [5.7(e) and (f)] should be carefully grasped.
(g) Wrong. Magnetic field lines between two pole pieces cannot be precisely straight at the ends. Some fringing of lines is inevitable. Otherwise, Ampere’s law is violated. This is also true for electric field lines.
Example 5.4
(a) Magnetic field lines show the direction (at every point) along which a small magnetised needle aligns (at the point). Do the magnetic field lines also represent the lines of force on a moving charged particle at every point?
(b) If magnetic monopoles existed, how would the Gauss’s law of magnetism be modified?
(c) Does a bar magnet exert a torque on itself due to its own field? Does one element of a current-carrying wire exert a force on another element of the same wire?
(d) Magnetic field arises due to charges in motion. Can a system have magnetic moments even though its net charge is zero?
Solution(a) No. The magnetic force is always normal to $\mathbf{B}$ (remember magnetic force $=q \mathbf{v} \times \mathbf{B}$ ). It is misleading to call magnetic field lines as lines of force.
(b) Gauss’s law of magnetism states that the flux of $\mathbf{B}$ through any closed surface is always zero $\int_{S} \mathbf{B} \cdot \Delta \mathbf{s}=0$. If monopoles existed, the right hand side would be equal to the monopole (magnetic charge) $q_{m}$ enclosed by $\mathrm{S}$. [Analogous to
Gauss’s law of electrostatics, $\int_{\mathrm{S}} \mathbf{B} . \Delta \mathbf{s}=\mu_{0} q_{m}$ where $q_{m}$ is the (monopole) magnetic charge enclosed by $S$.]
(c) No. There is no force or torque on an element due to the field produced by that element itself. But there is a force (or torque) on an element of the same wire. (For the special case of a straight wire, this force is zero.)
(d) Yes. The average of the charge in the system may be zero. Yet, the mean of the magnetic moments due to various current loops may not be zero. We will come across such examples in connection with paramagnetic material where atoms have net dipole moment through their net charge is zero.
5.4 Magnetisation and Magnetic Intensity
The earth abounds with a bewildering variety of elements and compounds. In addition, we have been synthesising new alloys, compounds and even elements. One would like to classify the magnetic properties of these substances. In the present section, we define and explain certain terms which will help us to carry out this exercise.
We have seen that a circulating electron in an atom has a magnetic moment. In a bulk material, these moments add up vectorially and they can give a net magnetic moment which is non-zero. We define magnetisation $\mathbf{M}$ of a sample to be equal to its net magnetic moment per unit volume:
$$ \begin{equation*} \mathbf{M}=\frac{\mathbf{m_net}}{V} \tag{5.7} \end{equation*} $$
$\mathbf{M}$ is a vector with dimensions $\mathrm{L}^{-1} \mathrm{~A}$ and is measured in a units of $\mathrm{A} \mathrm{m}^{-1}$.
Consider a long solenoid of $n$ turns per unit length and carrying a current $I$. The magnetic field in the interior of the solenoid was shown to be given by
$$ \begin{equation*} \mathbf{B_0}=\mu_{0} n I \tag{5.8} \end{equation*} $$
If the interior of the solenoid is filled with a material with non-zero magnetisation, the field inside the solenoid will be greater than $\mathbf{B_0}$. The net $\mathbf{B}$ field in the interior of the solenoid may be expressed as
$$ \begin{equation*} \mathbf{B}=\mathbf{B_0}+\mathbf{B_\mathrm{m}} \tag{5.9} \end{equation*} $$
where $\mathbf{B_\mathrm{m}}$ is the field contributed by the material core. It turns out that this additional field $\mathbf{B_\mathrm{m}}$ is proportional to the magnetisation $\mathbf{M}$ of the material and is expressed as
$$ \begin{equation*} \mathbf{B_\mathrm{m}}=\mu_{0} \mathbf{M} \tag{5.10} \end{equation*} $$
where $\mu_{0}$ is the same constant (permittivity of vacuum) that appears in Biot-Savart’s law.
It is convenient to introduce another vector field $\mathbf{H}$, called the magnetic intensity, which is defined by
$$ \begin{equation*} \mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M} \tag{5.11} \end{equation*} $$
where $\mathbf{H}$ has the same dimensions as $\mathbf{M}$ and is measured in units of $\mathrm{Am}^{-1}$. Thus, the total magnetic field $\mathbf{B}$ is written as
$$ \mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \tag{5.12} $$
We repeat our defining procedure. We have partitioned the contribution to the total magnetic field inside the sample into two parts: one, due to external factors such as the current in the solenoid. This is represented by $\mathbf{H}$. The other is due to the specific nature of the magnetic material, namely $\mathbf{M}$. The latter quantity can be influenced by external factors. This influence is mathematically expressed as
$$ \mathbf{M}=\chi \mathbf{H} \tag{5.13} $$
where $\chi$, a dimensionless quantity, is appropriately called the magnetic susceptibility. It is a measure of how a magnetic material responds to an external field. $\chi$ is small and positive for materials, which are called paramagnetic. It is small and negative for materials, which are termed diamagnetic. In the latter case $\mathbf{M}$ and $\mathbf{H}$ are opposite in direction. From Eqs. (5.12) and (5.13) we obtain,
$$ \begin{align*} & \mathbf{B}=\mu _{0}(1+\chi) \mathbf{H} \tag{5.14}\\ & =\mu _{0} \mu _{\mathrm{r}} \mathbf{H} =\mu \mathbf{H} \tag{5.15} \end{align*} $$
where $\mu_{\mathrm{r}}=1+\chi$, is a dimensionless quantity called the relative magnetic permeability of the substance. It is the analog of the dielectric constant in electrostatics. The magnetic permeability of the substance is $\mu$ and it has the same dimensions and units as $\mu_{0}$;
$$ \mu=\mu_{0} \mu_{r}=\mu_{0}(1+\chi) . $$
The three quantities $\chi, \mu_{\mathrm{r}}$ and $\mu$ are interrelated and only one of them is independent. Given one, the other two may be easily determined.
Example 5.5 A solenoid has a core of a material with relative permeability 400 . The windings of the solenoid are insulated from the core and carry a current of $2 \mathrm{~A}$. If the number of turns is 1000 per metre, calculate (a) $H$, (b) $M$, (c) $B$ and (d) the magnetising current $I_{m}$.
Solution
(a) The field $H$ is dependent of the material of the core, and is $$ H=n I=1000 \times 2.0=2 \times 10^{3} \mathrm{~A} / \mathrm{m}$$.
(b) The magnetic field $B$ is given by $$ \begin{aligned} B & =\mu _{r} \mu _{0} \mathrm{H} \\ & =400 \times 4 \pi \times 10^{-7}\left(\mathrm{~N} / \mathrm{A}^{2}\right) \times 2 \times 10^{3}(\mathrm{~A} / \mathrm{m}) \\ & =1.0 \mathrm{~T} \end{aligned} $$
(c) Magnetisation is given by
$$ \begin{aligned} M & =\left(B-\mu_{0} H\right) / \mu_{0} \\ & =\left(\mu_{r} \mu_{0} H-\mu_{0} H\right) / \mu_{0}=\left(\mu_{r}-1\right) H=399 \times H \\ & \cong 8 \times 10^{5} \mathrm{~A} / \mathrm{m} \end{aligned} $$
(d) The magnetising current $I_{M}$ is the additional current that needs to be passed through the windings of the solenoid in the absence of the core which would give a $B$ value as in the presence of the core. Thus $B=\mu_{r} n\left(I+I_{M}\right)$. Using $I=2 \mathrm{~A}, B=1 \mathrm{~T}$, we get $I_{M}=794 \mathrm{~A}$.
5.5 Magnetic Properties of Materials
The discussion in the previous section helps us to classify materials as diamagnetic, paramagnetic or ferromagnetic. In terms of the susceptibility $\chi$, a material is diamagnetic if $\chi$ is negative, para-if $\chi$ is positive and small, and ferro- if $\chi$ is large and positive.
A glance at Table 5.3 gives one a better feeling for these materials. Here $\varepsilon$ is a small positive number introduced to quantify paramagnetic materials. Next, we describe these materials in some detail.
TABLE 5.3
Diamagnetic | Paramagnetic | Ferromagnetic |
---|---|---|
$-1 \leq \chi<0$ | $0<\chi<\varepsilon$ | $\chi»1$ |
$0 \leq \mu_{r}<1$ | $1<\mu_{r}<1+\varepsilon$ | $\mu_{r}»1$ |
$\mu<\mu_{0}$ | $\mu>\mu_{0}$ | $\mu»\mu_{0}$ |
5.5.1 Diamagnetism
Diamagnetic substances are those which have tendency to move from stronger to the weaker part of the external magnetic field. In other words, unlike the way a magnet attracts metals like iron, it would repel a diamagnetic substance.
FIGURE 5.7
Behaviour of magnetic field lines near a (a) diamagnetic, (b) paramagnetic substance.
Figure 5.7(a) shows a bar of diamagnetic material placed in an external magnetic field. The field lines are repelled or expelled and the field inside the material is reduced. In most cases, this reduction is slight, being one part in $10^{5}$. When placed in a non-uniform magnetic field, the bar will tend to move from high to low field.
The simplest explanation for diamagnetism is as follows. Electrons in an atom orbiting around nucleus possess orbital angular momentum. These orbiting electrons are equivalent to current-carrying loop and thus possess orbital magnetic moment. Diamagnetic substances are the ones in which resultant magnetic moment in an atom is zero. When magnetic field is applied, those electrons having orbital magnetic moment in the same direction slow down and those in the opposite direction speed up. This happens due to induced current in accordance with Lenz’s law which you will study in Chapter 6. Thus, the substance develops a net magnetic moment in direction opposite to that of the applied field and hence repulsion.
Some diamagnetic materials are bismuth, copper, lead, silicon, nitrogen (at STP), water and sodium chloride. Diamagnetism is present in all the substances. However, the effect is so weak in most cases that it gets shifted by other effects like paramagnetism, ferromagnetism, etc.
The most exotic diamagnetic materials are superconductors. These are metals, cooled to very low temperatures which exhibits both perfect conductivity and perfect diamagnetism. Here the field lines are completely expelled! $\chi=-1$ and $\mu_{r}=0$. A superconductor repels a magnet and (by Newton’s third law) is repelled by the magnet. The phenomenon of perfect diamagnetism in superconductors is called the Meissner effect, after the name of its discoverer. Superconducting magnets can be gainfully exploited in variety of situations, for example, for running magnetically levitated superfast trains.
5.5.2 Paramagnetism
Paramagnetic substances are those which get weakly magnetised when placed in an external magnetic field. They have tendency to move from a region of weak magnetic field to strong magnetic field, i.e., they get weakly attracted to a magnet.
The individual atoms (or ions or molecules) of a paramagnetic material possess a permanent magnetic dipole moment of their own. On account of the ceaseless random thermal motion of the atoms, no net magnetisation is seen. In the presence of an external field $\mathbf{B_0}$, which is strong enough, and at low temperatures, the individual atomic dipole moment can be made to align and point in the same direction as $\mathbf{B_0}$. Figure 5.7(b) shows a bar of paramagnetic material placed in an external field. The field lines gets concentrated inside the material, and the field inside is enhanced. In most cases, this enhancement is slight, being one part in $10^{5}$. When placed in a non-uniform magnetic field, the bar will tend to move from weak field to strong.
Some paramagnetic materials are aluminium, sodium, calcium, oxygen (at STP) and copper chloride. For a paramagnetic material both $\chi$ and $\mu_{r}$ depend not only on the material, but also (in a simple fashion) on the sample temperature. As the field is increased or the temperature is lowered, the magnetisation increases until it reaches the saturation value at which point all the dipoles are perfectly aligned with the field.
5.5.3 Ferromagnetism
FIGURE 5.8 (a) Randomly oriented domains, (b) Aligned domains.
Ferromagnetic substances are those which gets strongly magnetised when placed in an external magnetic field. They have strong tendency to move from a region of weak magnetic field to strong magnetic field, i.e., they get strongly attracted to a magnet. The individual atoms (or ions or molecules) in a ferromagnetic material possess a dipole moment as in a paramagnetic material. However, they interact with one another in such a way that they spontaneously align themselves in a common direction over a macroscopic volume called domain. The explanation of this cooperative effect requires quantum mechanics and is beyond the scope of this textbook. Each domain has a net magnetisation. Typical domain size is $1 \mathrm{~mm}$ and the domain contains about $10^{11}$ atoms. In the first instant, the magnetisation varies randomly from domain to domain and there is no bulk magnetisation. This is shown in Fig. 5.8(a). When we apply an external magnetic field $\mathbf{B_0}$, the domains orient themselves in the direction of $\mathbf{B_0}$ and simultaneously the domain oriented in the direction of $\mathbf{B_0}$ grow in size. This existence of domains and their motion in $\mathbf{B_0}$ are not speculations. One may observe this under a microscope after sprinkling a liquid suspension of powdered ferromagnetic substance of samples. This motion of suspension can be observed. Fig. 5.8(b) shows the situation when the domains have aligned and amalgamated to form a single ‘giant’ domain.
Thus, in a ferromagnetic material the field lines are highly concentrated. In non-uniform magnetic field, the sample tends to move towards the region of high field. We may wonder as to what happens when the external field is removed. In some ferromagnetic materials the magnetisation persists. Such materials are called hard magnetic materials or hard ferromagnets. Alnico, an alloy of iron, aluminium, nickel, cobalt and copper, is one such material. The naturally occurring lodestone is another. Such materials form permanent magnets to be used among other things as a compass needle. On the other hand, there is a class of ferromagnetic materials in which the magnetisation disappears on removal of the external field. Soft iron is one such material. Appropriately enough, such materials are called soft ferromagnetic materials. There are a number of elements, which are ferromagnetic: iron, cobalt, nickel, gadolinium, etc. The relative magnetic permeability is $>1000$ !
The ferromagnetic property depends on temperature. At high enough temperature, a ferromagnet becomes a paramagnet. The domain structure disintegrates with temperature. This disappearance of magnetisation with temperature is gradual.
SUMMARY
1. The science of magnetism is old. It has been known since ancient times that magnetic materials tend to point in the north-south direction; like magnetic poles repel and unlike ones attract; and cutting a bar magnet in two leads to two smaller magnets. Magnetic poles cannot be isolated.
2. When a bar magnet of dipole moment $\mathbf{m}$ is placed in a uniform magnetic field $\mathbf{B}$, (a) the force on it is zero, (b) the torque on it is $\mathbf{m} \times \mathbf{B}$, (c) its potential energy is $-\mathbf{m} \cdot \mathbf{B}$, where we choose the zero of energy at the orlentation when $\mathbf{m}$ is perpendicular to $\mathbf{B}$.
3. Consider a bar magnet of size $l$ and magnetic moment $\mathbf{m}$, at a distance $r$ from its mid-point, where $r \gg l$, the magnetic field B due to this bar is,
$$ \begin{aligned} & \mathbf{B}=\frac{\mu_0 \mathbf{m}}{2 \pi r^3} \quad \text { (along axis) } \\ & =-\frac{\mu_0 \mathbf{m}}{4 \pi r^3} \quad \text { (along equator) } \ & \end{aligned} $$
4. Gauss’s law for magnetism states that the net magnetic flux through any closed surface is zero
$$ \phi_B=\sum_{\substack{\text { all area } \ \text { elements } \Delta \mathbf{s}}} \mathbf{B} \cdot \Delta \mathbf{S}=0 $$
5. Consider a material placed in an external magnetic field $\mathbf{B}_0$. The magnetic intensity is defined as,
$$ \mathbf{H}=\frac{\mathbf{B}_0}{\mu_0} $$
The magnetisation $\mathbf{M}$ of the material is its dipole moment per unit volume. The magnetic field $B$ in the material is,
$$ \mathbf{B}=\mu_0(\mathbf{H}+\mathbf{M}) $$
6. For a linear material $\mathbf{M}=\chi \mathbf{H}$. So that $\mathbf{B}=\mu \mathbf{H}$ and $\chi$ is called the magnetic susceptibility of the material. The three quantities, $\chi$, the relative magnetic permeability $\mu_{\mathrm{r}}$, and the magnetic permeability $\mu$ are related as follows: $$ \begin{aligned} & \mu=\mu_0 \mu_r \\ & \mu_r=1+\chi \end{aligned} $$
7. Magnetic materials are broadly classifled as: diamagnetic, paramagnetic, and ferromagnetic. For diamagnetic materials $\chi$ is negative and small and for paramagnetic materials it is positive and small. Ferromagnetic materials have large $\chi$ and are characterised by non-linear relation between $\mathbf{B}$ and $\mathbf{H}$.
8. Substances, which at room temperature, retain their ferromagnetic property for a long period of time are called permanent magnets.
Physical quantity | Symbol | Nature | Dimensions | Units | Remarks |
---|---|---|---|---|---|
Permeability of free space | $\mu_0$ | Scalar | $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$ | $\mathrm{T} \mathrm{m} \mathrm{A}^{-1}$ | $\mu_0 / 4 \pi=10^{-7}$ |
Magnetic field, Magnetic induction, Magnetic flux density |
B | Vector | $\left[\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]$ | T (tesla) | $10^4 \mathrm{G}$ (gauss) $=1 \mathrm{~T}$ |
Magnetic moment | $\mathbf{m}$ | Vector | $\left[\mathrm{L}^{-2} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^2$ | |
Magnetic flux | $\phi_{\mathrm{B}}$ | Scalar | $\left[\mathrm{ML}^2 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$ | $\mathrm{W}$ (weber) | $W=\mathrm{T} \mathrm{m}^2$ |
Magnetisation | $\mathbf{M}$ | Vector | $\left[\mathrm{L}^{-1} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-1}$ | $\frac{\text { Magnetic moment }}{\text { Volume }}$ |
Magnetic intensity Magnetic field strength |
$\mathbf{H}$ | Vector | $\left[\mathrm{L}^{-1} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-1}$ | $\mathbf{B}=\mu_0(\mathbf{H}+\mathbf{M})$ |
Magnetic susceptibility |
$\chi$ | Scalar | - | - | $\mathbf{M}=\chi \mathbf{H}$ |
Relative magnetic permeability |
$\mu_r$ | Scalar | - | - | $\mathbf{M}=\chi \mathbf{H}$ |
Magnetic permeability | $\mu$ | Scalar | $\left[\right.$ MLT $\left.^{-2} \mathrm{~A}^{-2}\right]$ | $\mathrm{Tm} \mathrm{A}^{-1}$ $\mathrm{~N} \mathrm{~A}^{-2}$ |
$\mu=\mu _{0} \mu _{r}$ $\mathbf{B}=\mu \mathbf{H}$ |
POINTS TO PONDER
1. A satisfactory understanding of magnetic phenomenon in terms of moving charges/currents was arrived at after 1800 AD. But technological exploitation of the directional properties of magnets predates this scientific understanding by two thousand years. Thus, scientific understanding is not a necessary condition for engineering applications. Ideally, science and engineering go hand-in-hand, one leading and assisting the other in tandem.
2. Magnetic monopoles do not exist. If you slice a magnet in half, you get two smaller magnets. On the other hand, isolated positive and negative charges exist. There exists a smallest unit of charge, for example, the electronic charge with value $|e|=1.6 \times 10^{-19} \mathrm{C}$. All other charges are integral multiples of this smallest unit charge. In other words, charge is quantised. We do not know why magnetic monopoles do not exist or why electric charge is quantised.
3. A consequence of the fact that magnetic monopoles do not exist is that the magnetic field lines are continuous and form closed loops. In contrast, the electrostatic lines of force begin on a positive charge and terminate on the negative charge (or fade out at infinity).
4. A miniscule difference in the value of $\chi$, the magnetic susceptibility, yields radically different behaviour: diamagnetic versus paramagnetic. For diamagnetic materials $\chi=-10^{-5}$ whereas $\chi=+10^{-5}$ for paramagnetic materials.
5. There exists a perfect diamagnet, namely, a superconductor. This is a metal at very low temperatures. In this case $\chi=-1, \mu_{r}=0, \mu=0$. The external magnetic field is totally expelled. Interestingly, this material is also a perfect conductor. However, there exists no classical theory which ties these two properties together. A quantum-mechanical theory by Bardeen, Cooper, and Schrieffer (BCS theory) explains these effects. The BCS theory was proposed in 1957 and was eventually recognised by a Nobel Prize in physics in 1970.
6. Diamagnetism is universal. It is present in all materials. But it is weak and hard to detect if the substance is para- or ferromagnetic.
7. We have classified materials as diamagnetic, paramagnetic, and ferromagnetic. However, there exist additional types of magnetic material such as ferrimagnetic, anti-ferromagnetic, spin glass, etc. with properties which are exotic and mysterious.
Exercises
5.1 A short bar magnet placed with its axis at $30^{\circ}$ with a uniform external magnetic field of $0.25 \mathrm{~T}$ experiences a torque of magnitude equal to $4.5 \times 10^{-2} \mathrm{~J}$. What is the magnitude of magnetic moment of the magnet?
Show Answer
Answer
Magnetic field strength, $B=0.25 \mathrm{~T}$
Torque on the bar magnet, $T=4.5 \times 10^{-2} \mathrm{~J}$
Angle between the bar magnet and the external magnetic field, $\theta=30^{\circ}$
Torque is related to magnetic moment $(M)$ as:
$T=M B \sin \theta$
$\therefore M=\frac{T}{B \sin \theta}$
$$ =\frac{4.5 \times 10^{-2}}{0.25 \times \sin 30^{\circ}}=0.36 \mathrm{~J} \mathrm{~T}^{-1} $$
Hence, the magnetic moment of the magnet is $0.36 \mathrm{~J} \mathrm{~T}^{-1}$.
5.2 A short bar magnet of magnetic moment $\mathrm{m}=0.32 \mathrm{JT}^{-1}$ is placed in a uniform magnetic field of $0.15 \mathrm{~T}$. If the bar is free to rotate in the plane of the field, which orientation would correspond to its (a) stable, and (b) unstable equilibrium? What is the potential energy of the magnet in each case?
Show Answer
Answer
Moment of the bar magnet, $M=0.32 \mathrm{~J} \mathrm{~T}^{-1}$
External magnetic field, $B=0.15 \mathrm{~T}$
(a)The bar magnet is aligned along the magnetic field. This system is considered as being in stable equilibrium. Hence, the angle $\theta$, between the bar magnet and the magnetic field is $0^{\circ}$.
Potential energy of the system $=-M B \cos \theta$
$=-0.32 \times 0.15 \cos 0^{\circ}$
$=-4.8 \times 10^{-2} \mathrm{~J}$
(b)The bar magnet is oriented $180^{\circ}$ to the magnetic field. Hence, it is in unstable equilibrium.
$\theta=180^{\circ}$
Potential energy $=-M B \cos \theta$
$=-0.32 \times 0.15 \cos 180^{\circ}$
$=4.8 \times 10^{-2} \mathrm{~J}$
5.3 A closely wound solenoid of 800 turns and area of cross section $2.5 \times 10^{-4} \mathrm{~m}^{2}$ carries a current of 3.0 A. Explain the sense in which the solenoid acts like a bar magnet. What is its associated magnetic moment?
Show Answer
Answer
Number of turns in the solenoid, $n=800$
Area of cross-section, $A=2.5 \times 10^{-4} \mathrm{~m}^{2}$
Current in the solenoid, $I=3.0 \mathrm{~A}$
A current-carrying solenoid behaves as a bar magnet because a magnetic field develops along its axis, i.e., along its length.
The magnetic moment associated with the given current-carrying solenoid is calculated as:
$M=n I A$ $=800 \times 3 \times 2.5 \times 10^{-4}$
$=0.6 \mathrm{~J} \mathrm{~T}^{-1}$
5.4 If the solenoid in Exercise 5.5 is free to turn about the vertical direction and a uniform horizontal magnetic field of $0.25 \mathrm{~T}$ is applied, what is the magnitude of torque on the solenoid when its axis makes an angle of $30^{\circ}$ with the direction of applied field?
Show Answer
Answer
Magnetic field strength, $B=0.25 \mathrm{~T}$
Magnetic moment, $M=0.6 \mathrm{~T}^{-1}$
The angle $\theta$, between the axis of the solenoid and the direction of the applied field is $30^{\circ}$.
Therefore, the torque acting on the solenoid is given as:
$$ \begin{aligned} \tau & =M B \sin \theta \\ & =0.6 \times 0.25 \sin 30^{\circ} \\ & =7.5 \times 10^{-2} \mathrm{~J} \end{aligned} $$
5.5 A bar magnet of magnetic moment $1.5 \mathrm{~J} \mathrm{~T}^{-1}$ lies aligned with the direction of a uniform magnetic field of $0.22 \mathrm{~T}$.
(a) What is the amount of work required by an external torque to turn the magnet so as to align its magnetic moment: (i) normal to the field direction, (ii) opposite to the field direction?
(b) What is the torque on the magnet in cases (i) and (ii)?
Show Answer
Answer
(a)Magnetic moment, $M=1.5 \mathrm{~J} \mathrm{~T}^{-1}$
Magnetic field strength, $B=0.22 \mathrm{~T}$
(i)Initial angle between the axis and the magnetic field, $\theta_{1}=0^{\circ}$
Final angle between the axis and the magnetic field, $\theta_{2}=90^{\circ}$
The work required to make the magnetic moment normal to the direction of magnetic field is given as:
$$ \begin{aligned} W & =-M B\left(\cos \theta_{2}-\cos \theta_{1}\right) \\ & =-1.5 \times 0.22\left(\cos 90^{\circ}-\cos 0^{\circ}\right) \\ & =-0.33(0-1) \\ & =0.33 \mathrm{~J} \end{aligned} $$
(ii) Initial angle between the axis and the magnetic field, $\theta_{1}=0^{\circ}$
Final angle between the axis and the magnetic field, $\theta_{2}=180^{\circ}$
The work required to make the magnetic moment opposite to the direction of magnetic field is given as:
$$ \begin{aligned} W & =-M B\left(\cos \theta_{2}-\cos \theta_{1}\right) \\ & =-1.5 \times 0.22\left(\cos 180-\cos 0^{\circ}\right) \\ & =-0.33(-1-1) \\ & =0.66 \mathrm{~J} \end{aligned} $$
(b) For case (i): $\theta=\theta_{2}=90^{\circ}$
$\therefore$ Torque, $\tau=M B \sin \theta$
$=1.5 \times 0.22 \sin 90^{\circ}$
$=0.33 \mathrm{~J}$
$\underline{\text { For case (ii): }} \theta=\theta_{2}=180^{\circ}$
$\therefore$ Torque, $\tau=M B \sin \theta$
$=M B \sin 180^{\circ}=0 \mathrm{~J}$
5.6 A closely wound solenoid of 2000 turns and area of cross-section $1.6 \times 10^{-4} \mathrm{~m}^{2}$, carrying a current of $4.0 \mathrm{~A}$, is suspended through its centre allowing it to turn in a horizontal plane.
(a) What is the magnetic moment associated with the solenoid?
(b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of $7.5 \times 10^{-2} \mathrm{~T}$ is set up at an angle of $30^{\circ}$ with the axis of the solenoid?
Show Answer
Answer
Number of turns on the solenoid, $n=2000$
Area of cross-section of the solenoid, $A=1.6 \times 10^{-4} \mathrm{~m}^{2}$
Current in the solenoid, $I=4 \mathrm{~A}$
(a)The magnetic moment along the axis of the solenoid is calculated as:
$M=n A I$
$=2000 \times 1.6 \times 10^{-4} \times 4$
$=1.28 \mathrm{Am}^{2}$
(b)Magnetic field, $B=7.5 \times 10^{-2} \mathrm{~T}$
Angle between the magnetic field and the axis of the solenoid, $\theta=30^{\circ}$
Torque, $\tau=M B \sin \theta$
$=1.28 \times 7.5 \times 10^{-2} \sin 30^{\circ}$
$=4.8 \times 10^{-2} \mathrm{Nm}$
Since the magnetic field is uniform, the force on the solenoid is zero. The torque on the solenoid is $4.8 \times 10^{-2} \mathrm{Nm}$.
5.7 A short bar magnet has a magnetic moment of $0.48 \mathrm{~J} \mathrm{~T}^{-1}$. Give the direction and magnitude of the magnetic field produced by the magnet at a distance of $10 \mathrm{~cm}$ from the centre of the magnet on (a) the axis, (b) the equatorial lines (normal bisector) of the magnet.
Show Answer
Answer
Magnetic moment of the bar magnet, $M=0.48 \mathrm{~J} \mathrm{~T}^{-1}$
Distance, $d=10 \mathrm{~cm}=0.1 \mathrm{~m}$
The magnetic field at distance $d$, from the centre of the magnet on the axis is given by the relation:
$$ B=\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{3}} $$
Where,
$$ \begin{aligned} & \mu_{0}=\text { Permeability of free space }=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1} \\ & \therefore B=\frac{4 \pi \times 10^{-7} \times 2 \times 0.48}{4 \pi \times(0.1)^{3}} \\ & \quad=0.96 \times 10^{-4} \mathrm{~T}=0.96 \mathrm{G} \end{aligned} $$
The magnetic field is along the $\mathrm{S}-\mathrm{N}$ direction.
The magnetic field at a distance of $10 \mathrm{~cm}$ (i.e., $d=0.1 \mathrm{~m}$ ) on the equatorial line of the magnet is given as:
$$ \begin{aligned} B & =\frac{\mu_{0} \times M}{4 \pi \times d^{3}} \\ & =\frac{4 \pi \times 10^{-7} \times 0.48}{4 \pi(0.1)^{3}} \\ & =0.48 \mathrm{G} \end{aligned} $$
The magnetic field is along the $\mathrm{N}-\mathrm{S}$ direction.
The new null points will be located $11.1 \mathrm{~cm}$ on the normal bisector.
5.1 भूमिका
चुंबकीय परिघटना प्रकृति में सार्वभौमिक है। विशाल दूरस्थ गैलेक्सियाँ, अतिसूक्ष्म अदृश्य परमाणु, मनुष्य और जानवर, सबमें भाँति-भाँति के स्रोतों से उत्पन्न भाँति-भाँति के चुंबकीय क्षेत्र व्याप्त हैं। भू-चुंबकत्व, मानवीय विकास से भी पूर्व से अस्तित्व में है। ‘चुंबक’ शब्द यूनान के एक द्वीप मैग्नेशिया के नाम से व्युत्पन्न है, जहाँ बहुत पहले 600 ईसा पूर्व चुंबकीय अयस्कों के भंडार मिले थे।
पिछले अध्याय में हमने सीखा कि गतिशील आवेश या विद्युत धारा चुंबकीय क्षेत्र उत्पन्न करती है। यह खोज जो उन्नीसवीं शताब्दी के पूर्वार्द्ध में की गई थी, इसका श्रेय ऑर्स्टेड, ऐम्पियर, बायो एवं सावर्ट तथा अन्य कुछ लोगों को दिया जाता है।
प्रस्तुत अध्याय में हम चुंबकत्व पर एक स्वतंत्र विषय के रूप में दृष्टि डालेंगे। चुंबकत्व संबंधी कुछ आम विचार इस प्रकार हैं-
(i) पृथ्वी एक चुंबक की भाँति व्यवहार करती है जिसका चुंबकीय क्षेत्र लगभग भौगोलिक दक्षिण से उत्तर की ओर संकेत करता है।
(ii) जब एक छड़ चुंबक को स्वतंत्रतापूर्वक लटकाया या शांत पानी पर तैराया जाता है तो यह उत्तर-दक्षिण दिशा में ठहरता है। इसका वह सिरा जो भौगोलिक उत्तर की ओर संकेत करता है, उत्तरी ध्रुव और जो भौगोलिक दक्षिण की ओर संकेत करता है, चुंबक का दक्षिणी ध्रुव कहलाता है।
(iii) दो पृथक-पृथक चुंबकों के दो उत्तरी ध्रुव (या दो दक्षिणी ध्रुव) जब पास-पास लाए जाते हैं तो वे एक-दूसरे को विकर्षित करते हैं। इसके विपरीत, एक चुंबक के उत्तर और दूसरे के दक्षिण ध्रुव एक-दूसरे को आकर्षित करते हैं।
(iv) किसी चुंबक के उत्तर और दक्षिण ध्रुवों को अलग-अलग नहीं किया जा सकता। यदि किसी छड़ चुंबक को दो भागों में विभाजित किया जाए तो हमें दो छोटे अलग-अलग छड़ चुंबक मिल जाएँगे, जिनका चुंबकत्व क्षीण होगा। वैद्युत आवेशों की तरह, विलगित चुंबकीय उत्तरी तथा दक्षिणी ध्रुवों जिन्हें चुंबकीय एकध्रुव कहते हैं, का अस्तित्व नहीं है।
(v) लौह और इसकी मिश्र-धातुओं से चुंबक बनाने संभव हैं।
इस अध्याय में हम एक छड़ चुंबक और एक बाह्य चुंबकीय क्षेत्र में इसके व्यवहार के वर्णन से प्रारंभ करेंगे। हम चुंबकत्व संबंधी गाउस का नियम बताएँगे। उसके बाद यह बताएँगे कि चुंबकीय गुणों के आधार पर पदार्थों का वर्गीकरण कैसे किया जाता है और फिर अनुचुंबकत्व, प्रतिचुंबकत्व तथा लौह-चुंबकत्व का वर्णन करेंगे।
5.2 छड़ चुंबक
चित्र 5.1 एक छड़ चुंबक के इर्द-गिर्द लौह रेतन की व्यवस्था। यह पैटर्न चुंबकीय क्षेत्र रेखाओं की अनुकृति है। ये इंगित करते हैं कि छड़ चुंबक एक चुंबकीय द्विध्रुव है।
प्रसिद्ध भौतिक विज्ञानी अल्बर्ट आइंस्टीन की बचपन की सबसे पुरानी यादों में से एक एक चुंबक था जो उन्हें एक रिश्तेदार द्वारा उपहार में दिया गया था। आइंस्टीन मोहित था, और इसके साथ अंतहीन खेला। उन्होंने सोचा कि चुंबक वस्तुओं को कैसे प्रभावित कर सकता है जैसे कि कीलें या पिन इससे दूर रखी जाती हैं और किसी भी तरह से स्प्रिंग या स्ट्रिंग द्वारा इससे जुड़ी नहीं होती हैं।
हम अपने अध्ययन की शुरुआत लौह रेतन से करते हैं जो एक छोटे छड़ चुंबक के ऊपर रखी गई काँच की शीट पर छिड़का गया है। लौह रेतन की यह व्यवस्था चित्र 5.1 में दर्शायी गई है। लौह रेतन के पैटर्न यह इंगित करते हैं कि चुंबक के दो ध्रुव होते हैं, वैसे ही जैसे वैद्युत द्विध्रुव के धनात्मक एवं ऋणात्मक आवेश। जैसा कि पहले भूमिका में बताया जा चुका है, एक ध्रुव को उत्तर और दूसरे को दक्षिण ध्रुव कहते हैं। जब छड़ चुंबक को स्वतंत्रतापूर्वक लटकाया जाता है तो ये ध्रुव क्रमशः लगभग भौगोलिक उत्तरी एवं दक्षिणी ध्रुवों की ओर संकेत करते हैं। लौह रेतन का इसी से मिलता-जुलता पैटर्न एक धारावाही परिनालिका के इर्द-गिर्द भी बनता है।
5.2.1 चुंबकीय क्षेत्र रेखाएँ
लौह रेतन के बने पैटर्नों के आधार पर हम चुंबकीय क्षेत्र रेखाएँ* खींच सकते हैं। चित्र 5.2 में यह चित्र 5.1 एक छड़ चुंबक के छड़ चुंबक और धारावाही परिनालिका, दोनों के लिए दर्शाया गया है। तुलना के लिए अध्याय एक इर्द-गिर्द लौह रेतन की व्यवस्था। यह पैटर्न चुंबकीय क्षेत्र रेखाओं की अनुकृति है। ये इंगित करते हैं कि छड़ चुंबक एक चुंबकीय द्विध्रुव है। चित्र $1.14(\mathrm{~d})$ देखिए। विद्युत द्विध्रुव की वैद्युत बल रेखाएँ चित्र 5.2 (c) में भी दर्शायी गई हैं। चुंबकीय क्षेत्र रेखाएँ, चुंबकीय क्षेत्र का दृश्य और अंतर्दृष्टिपरक प्रस्तुतीकरण हैं। इनके गुण हैं:
(i) किसी चुंबक (या धारावाही परिनालिका) की चुंबकीय क्षेत्र रेखाएँ संतत बंद लूप बनाती हैं। यह वैद्युत-द्विध्रुव के जैसी नहीं है, जहाँ ये रेखाएँ धनावेश से शुरू होकर ऋणावेश पर खत्म हो जाती हैं [चित्र 5.2(c) देखिए] या फिर अनंत की ओर चली जाती हैं।
चित्र 5.2 क्षेत्र रेखाएँ (a) एक छड़ चुंबक की (b) एक सीमित आकार वाली धारावाही परिनालिका की, और (c) एक वैद्युत द्विध्रुव की। बहुत अधिक दूरी पर तीनों रेखा समुच्चय एक से हैं। (i) एवं (ii) अंकित वक्र, बंद गाउसीय पृष्ठ हैं।
(ii) क्षेत्र रेखा के किसी बिंदु पर खींची गई स्पर्श रेखा उस बिंदु पर परिणामी चुंबकीय क्षेत्र $\mathbf{B}$ की दिशा बताती है।
(iii) क्षेत्र के लंबवत रखे गए तल के प्रति इकाई क्षेत्रफल से जितनी अधिक क्षेत्र रेखाएँ गुजरती हैं, उतना ही अधिक उस स्थान पर चुंबकीय क्षेत्र $\mathbf{B}$ का परिमाण होता है। चित्र 5.2 (a) में, क्षेत्र (ii) के आसपास $\mathbf{B}$ का परिमाण क्षेत्र (i) की तुलना में अधिक है।
(iv) चुंबकीय क्षेत्र रेखाएँ एक-दूसरे को काटती नहीं हैं। ऐसा इसलिए है क्योंकि इस स्थिति में कटान बिंदु पर चुंबकीय क्षेत्र की दिशा एक ही नहीं रह जाती।
आप चाहें तो कई तरह से चुंबकीय क्षेत्र रेखाएँ आलेखित कर सकते हैं। एक तरीका यह है कि भिन्न-भिन्न जगहों पर एक छोटी चुंबकीय कंपास सुई रखिए और इसके दिकृविन्यास को अंकित कीजिए। इस तरह आप चुंबक के आस-पास विभिन्न बिंदुओं पर चुंबकीय क्षेत्र की दिशा जान सकेंगे।
5.2.2 छड़ चुंबक का एक धारावाही परिनालिका की तरह व्यवहार
चित्र 5.3 (a) एक सीमित परिनालिका के अक्षीय क्षेत्र का परिकलन ताकि इसकी छड़ चुंबक से साम्यता प्रदर्शित की जा सके। (b) एक समान चुंबकीय क्षेत्र $\mathbf{B}$ में रखी हुई चुंबकीय सूई। यह प्रबंध चुंबकीय क्षेत्र $B$ अथवा चुंबकीय आघूर्ण $m$ का आकलन करने में सहायक है। अधिक दूरी पर यह अक्षीय क्षेत्र छड़ चुंबक के अक्षीय क्षेत्र जैसा ही है।
पिछले अध्याय में हमने यह समझाया है कि किस प्रकार एक धारा लूप एक चुंबकीय द्विध्रुव की तरह व्यवहार करता है (अनुभाग 4.9 देखिए)। हमने ऐम्पियर की इस परिकल्पना का जिक्र भी किया था कि सभी चुंबकीय परिघटनाओं को परिवाही धाराओं के प्रभावों के रूप में समझाया जा सकता है।
एक छड़ चुंबक की चुंबकीय क्षेत्र रेखाओं की, एक धारावाही परिनालिका की चुंबकीय क्षेत्र रेखाओं से साम्यता यह सुझाती है कि जैसे परिनालिका बहुत-सी परिवाही धाराओं का योग है वैसे ही छड़ चुंबक भी बहुत-सी परिसंचारी धाराओं का योग हो सकता है। एक छड़ चुंबक के दो बराबर टुकड़े करना वैसा ही है जैसे एक परिनालिका को काटना। जिससे हमें दो छोटी परिनालिकाएँ मिल जाती हैं जिनके चुंबकीय क्षेत्र अपेक्षाकृत क्षीण होते हैं। क्षेत्र रेखाएँ संतत बनी रहती हैं, एक सिरे से बाहर निकलती हैं और दूसरे सिरे से अंदर प्रवेश करती हैं। एक छोटी चुंबकीय कंपास सुई को एक छड़ चुंबक एवं एक धारावाही सीमित परिनालिका के पास एक जगह से दूसरी जगह ले जाकर यह देखा जा सकता है कि दोनों के लिए चुंबकीय सुई में विक्षेपण एक जैसा है और इस तरह इस साम्यता का परीक्षण आसानी से किया जा सकता है।
इस साम्यता को और अधिक सुदृढ़ करने के लिए हम चित्र 5.3 (a) में दर्शायी गई सीमित परिनालिका के अक्षीय क्षेत्र की गणना कर सकते हैं। हम यह प्रदर्शित कर सकते हैं कि बहुत परिनालिका के कारण बिंदु $\mathrm{P}$ पर चुंबकीय क्षेत्र का परिमाण
$$ \begin{equation*} B=\frac{\mu _{0}}{4 \pi} \frac{2 m}{r^{3}} \tag{5.1} \end{equation*} $$
यही समीकरण छड़ चुंबक की अक्ष पर दूर स्थित बिंदु के लिए भी है जिसे कोई भी प्रयोगात्मक विधि से प्राप्त कर सकता है। इस प्रकार, छड़ चुंबक और धारावाही परिनालिका एक जैसे चुंबकीय क्षेत्र उत्पन्न करते हैं। अतः एक छड़ चुंबक का चुंबकीय आघूर्ण, उतना ही चुंबकीय क्षेत्र उत्पन्न करने वाली समतुल्य धारावाही परिनालिका के चुंबकीय आघूर्ण के बराबर है।
5.2.3 एकसमान चुंबकीय क्षेत्र में द्विध्रुव
हम एक पतली चुंबकीय सुई का, जिसका चुंबकीय आघूर्ण $\mathbf{m}$ ज्ञात हों, इस चुंबकीय क्षेत्र में दोलन कराते हैं। यह व्यवस्था चित्र 5.3 (b) में दर्शायी गई है।
चुंबकीय सुई पर बलआघूर्ण [समीकरण (4.23) देखिए]
$$ \begin{equation*} \tau=\mathbf{m} \times \mathbf{B} \tag{5.2} \end{equation*} $$
जिसका परिमाण $\tau=m B \sin \theta$
यहाँ $\tau$ प्रत्यानयन आघूर्ण है तथा कोण $\theta, \mathbf{m}$ और $\mathbf{B}$ के बीच का कोण है। चुंबकीय स्थितिज ऊर्जा के लिए व्यंजक प्राप्त करने के लिए हम उसी विधि का अनुसरण कर सकते हैं जो हमने वैद्युत स्थितिज ऊर्जा का व्यंजक प्राप्त करने के लिए अपनायी थी। किसी चुंबकीय द्विध्रुव की चुंबकीय स्थितिज ऊर्जा $U _{m}$ इस प्रकार है
$$ \begin{align*} U_{m} & =\int \tau(\theta) d \theta \\ & =\int m B \sin \theta d \theta=-m B \cos \theta \end{align*} $$
$$ \begin{align*} & =-\mathbf{m} \cdot \mathbf{B} \tag{5.3} \end{align*} $$
इस बात को हमने पहले भी काफी जोर देकर कहा था कि स्थितिज ऊर्जा का शून्य हम अपनी सुविधानुसार निर्धारित कर सकते हैं। समाकलन नियंताक को शून्य लेने का अर्थ है कि हमने स्थितिज ऊर्जा का शून्य $\theta=90^{\circ}$ पर, अर्थात उस स्थिति को ले लिया है जिस पर सुई क्षेत्र के लंबवत है। समीकरण (5.3) यह दर्शाती है कि न्यूनतम स्थितिज ऊर्जा $(=-m B)$ (अर्थात सर्वाधिक स्थायी अवस्था) $\theta=0^{\circ}$ पर होती है एवं अधिकतम स्थितिज ऊर्जा $(=+m B$ ) (अर्थात अधिकतम अस्थायी अवस्था) $\theta=180^{\circ}$ पर होती है।
उदाहरण 5.1
(a) क्या होता है जबकि एक चुंबक को दो खंडों में विभाजित करते हैं (i) इसकी लंबाई के लंबवत (ii) लंबाई के अनुदिश?
(b) एकसमान चुंबकीय क्षेत्र में रखी गई किसी चुंबकीय सुई पर बल आघूर्ण तो प्रभावी होता है पर इस पर कोई परिणामी बल नहीं लगता। तथापि, एक छड़ चुंबक के पास रखी लोहे की कील पर बल आघूर्ण के साथ-साथ परिणामी बल भी लगता है। क्यों?
(c) क्या प्रत्येक चुंबकीय विन्यास का एक उत्तरी और एक दक्षिणी ध्रुव होना आवश्यक है? एक टोरॉयड के चुंबकीय क्षेत्र के संबंध में इस विषय में अपनी टिप्पणी दीजिए।
(d) दो एक जैसी दिखाई पड़ने वाली छड़ें $\mathrm{A}$ एवं $\mathrm{B}$ दी गई हैं जिनमें कोई एक निश्चित रूप से चुंबकीय है, यह ज्ञात है (पर, कौन सी यह ज्ञात नहीं है)। आप यह कैसे सुनिश्चित करेंगे कि दोनों छड़ें चुंबकित हैं या केवल एक? और यदि केवल एक छड़ चुंबकित है तो यह कैसे पता लगाएँगे कि वह कौन सी है। [आपको छड़ों $\mathrm{A}$ एवं $\mathrm{B}$ के अतिरिक्त अन्य कोई चीज प्रयोग नहीं करनी है।]
हल
(a) दोनों ही प्रकरणों में आपको दो चुंबक प्राप्त होते हैं जिनमें से प्रत्येक में एक उत्तरी और एक दक्षिणी ध्रुव होता है।
(b) यदि क्षेत्र एकसमान हों केवल तभी चुंबक पर कोई बल नहीं लगता। परंतु छड़ चुंबक के कारण कील पर असमान क्षेत्र आरोपित होता है जिसके कारण कील में चुंबकीय आघूर्ण प्रेरित होता है। अतः इस पर परिणामी बल भी लगता है और बल आघूर्ण भी। परिणामी बल आकर्षण बल होता है, क्योंकि कील में प्रेरित दक्षिण ध्रुव (माना) इसमें प्रेरित उत्तरी ध्रुव की अपेक्षा चुंबक के अधिक निकट होता है।
(c) आवश्यक नहीं है। यह तभी सत्य होगा जब चुंबकीय क्षेत्र के स्रोत का परिणामी चुंबकीय आघूर्ण शून्य नहीं होगा। टोरॉयड या अनंत लंबाई की परिनालिका के लिए ऐसा नहीं होता।
(d) चुंबकों के अलग-अलग सिरों को एक-दूसरे के पास लाने की कोशिश कीजिए। यदि किसी स्थिति में प्रतिकर्षण बल का अनुभव हो तो दोनों छड़ें चुंबकित हैं। यदि हमेशा आकर्षण बल ही लगे तो उनमें से एक छड़ चुंबकित नहीं है। यह देखने के लिए कि कौन-सी छड़ चुंबकित है, एक छड़ $\mathrm{A}$ मान लीजिए और इसका एक सिरा नीचे कीजिए; पहले दूसरी छड़ $\mathrm{B}$ के सिरे के पास लाइए और फिर बीच में। अगर आप पाएँ कि $\mathrm{B}$ के बीच में छड़ $\mathrm{A}$ आकर्षण बल अनुभव नहीं करती तो $\mathrm{B}$ चुंबकित है। और यदि आप पाएँ कि सिरे पर और बीच में आकर्षण बल बराबर है, तो छड़ $\mathrm{A}$ चुंबकित है।
5.2.4 स्थिरवैद्युत अनुरूप
समीकरणों (5.1), (5.2) एवं (5.3) के संगत विद्युत द्विध्रुव के समीकरणों (अध्याय 1 देखिए) से तुलना करने पर हम इस परिणाम पर पहुँचते हैं कि $\mathbf{m}$ चुंबकीय आघूर्ण वाले छड़ चुंबक का चुंबकीय क्षेत्र, इससे बहुत दूरी पर स्थित किसी बिंदु पर ज्ञात करने के लिए, हमें द्विध्रुव आघूर्णों वाले विद्युत द्विध्रुव के कारण उत्पन्न विद्युत क्षेत्र के समीकरण में, केवल निम्नलिखित प्रतिस्थापन करने होंगे-
$$ \mathbf{E} \rightarrow \mathbf{B}, \mathbf{p} \rightarrow \mathbf{m}, \frac{1}{4 \pi \varepsilon _{0}} \rightarrow \frac{\mu _{0}}{4 \pi} $$
विशेषतः, $r$ दूरी ( $r»l$ के लिए, जहाँ $l$ चुंबक की लंबाई है) पर एक छड़ चुंबक का विषुवतीय चुंबकीय क्षेत्र
$$ \begin{equation*} \mathbf{B} _{E}=-\frac{\mu _{0} \mathbf{m}}{4 \pi r^{3}} \tag{5.4} \end{equation*} $$
इसी प्रकार, $r$ दूरी ( $r»l$ के लिए) पर एक छड़ चुंबक का अक्षीय चुंबकीय क्षेत्र
$$ \begin{equation*} \mathbf{B} _{A}=\frac{\mu _{0}}{4 \pi} \frac{2 \mathbf{m}}{r^{3}} \tag{5.5} \end{equation*} $$
समीकरण (5.5), समीकरण (5.1) का सदिश रूप है। सारणी 5.1 विद्युत एवं चुंबकीय द्विध्रुवों के मध्य समानता दर्शाती है।
सारणी 5.1 द्विध्रुवों की सादृश्यता
स्थिर वैद्युत | चुंबकीय | |
---|---|---|
$1 / \varepsilon_{0}$ | $\mu_{0}$ | |
द्विध्रुव आघूर्ण | $\mathbf{p}$ | $\mathbf{m}$ |
विषुवतीय क्षेत्र | $-\mathbf{p} / 4 \pi \varepsilon_{0} r^{3}$ | $-\mu_{0} \mathbf{m} / 4 \pi r^{3}$ |
अक्षीय क्षेत्र | $2 \mathbf{p} / 4 \pi \varepsilon_{0} r^{3}$ | $\mu_{0} 2 \mathbf{m} / 4 \pi r^{3}$ |
बाह्य क्षेत्र-बल आघूर्ण | $\mathbf{p} \times \mathbf{E}$ | $\mathbf{m} \times \mathbf{B}$ |
बाह्य क्षेत्र- स्थितिज ऊर्जा | $-\mathbf{p} \cdot \mathbf{E}$ | $\mathbf{- m} \cdot \mathbf{B}$ |
उदाहरण 5.2 चित्र 5.4 में $\mathrm{O}$ बिंदु पर रखी गई एक छोटी चुंबकीय सुई $\mathrm{P}$ दिखाई गई है। तीर इसके चुंबकीय आघूर्ण की दिशा दर्शाता है। अन्य तीर, दूसरी समरूप चुंबकीय सुई $\mathrm{Q}$ की विभिन्न स्थितियों (एवं चुंबकीय आघूर्ण के दिक्विन्यासों) को प्रदर्शित करते हैं।
(a) किस विन्यास में यह निकाय संतुलन में नहीं होगा?
(b) किस विन्यास में निकाय (i) स्थायी (ii) अस्थायी संतुलन में होंगे?
(c) दिखाए गए सभी विन्यासों में किसमें न्यूनतम स्थितिज ऊर्जा है?
चित्र 5.4
हल किसी विन्यास की स्थितिज ऊर्जा, एक चुंबकीय द्विध्रुव (माना Q) की, दूसरे चुंबकीय द्विध्रुव (माना P) के चुंबकीय क्षेत्र के कारण उत्पन्न स्थितिज ऊर्जा है। आप समीकरण (5.4) एवं (5.5) द्वारा व्यक्त निम्नलिखित परिणाम प्रयोग में ला सकते हैं-
$\mathbf{B} _{\mathrm{P}}=-\frac{\mu _{0}}{4 \pi} \frac{\mathbf{m} _{\mathrm{P}}}{r^{3}}$ (लंब समद्विभाजक पर)
$\mathbf{B} _{\mathrm{P}}=\frac{\mu _{0} 2}{4 \pi} \frac{\mathbf{m} _{\mathrm{P}}}{r^{3}} \quad$ (अक्ष पर)
जहाँ $\mathbf{m} _{\mathrm{P}}$ द्विध्रुव $\mathrm{P}$ का चुंबकीय आघूर्ण है।
संतुलन तब स्थायी होगा जब $\mathbf{m} _{\mathrm{O}}$ एवं $\mathbf{B} _{\mathrm{P}}$ एक-दूसरे के समांतर होंगी और संतुलन अस्थायी तब होगा जब वे प्रतिसमांतर होंगी।
उदाहरणार्थ, विन्यास $\mathrm{Q} _{3}$ में, जिसके लिए $\mathrm{Q}$ द्विध्रुव $\mathrm{P}$ के लंब समद्विभाजक के अनुदिश है, $\mathrm{Q}$ का चुंबकीय आघूर्ण, स्थिति 3 में, चुंबकीय क्षेत्र के समांतर है, अतः $\mathrm{Q} _{3}$ स्थायी है इस प्रकार,
(a) $\mathrm{PQ} _{1}$ एवं $\mathrm{PQ} _{2}$
(b) (i) $\mathrm{PQ} _{3}, \mathrm{PQ} _{6}$ (स्थायी); (ii) $\mathrm{PQ} _{5}, \mathrm{PQ} _{4}$ (अस्थायी)
(c) $\mathrm{PQ} _{6}$
5.3 चुंबकत्व एवं गाउस नियम
कार्ल प्रेड़िक गाउस (1777 1855) वे एक विलक्षण बाल-प्रतिभा थे। गणित, भौतिकी, अभियांत्रिकी, खगोलशास्त्र और यहाँ तक कि भू-सर्वेक्षण में भी उनको प्रकृति की अनुपम देन थी। संख्याओं के गुण उनको लुभाते थे और उनके कार्य में उनके बाद आने वाले जमाने के प्रमुख गणितीय विकास का पूर्वाभास होता है। 1833 में विल्हेम वेलसर के साथ मिलकर उन्होंने पहला विद्युतीय टेलिग्राफ बनाया। वक्र-पृष्ठों से संबंधित उनके गणितीय सिद्धांत ने बाद में रीमन द्वारा किए गए कार्य की आधारशिला रखी।
अध्याय 1 में हमने स्थिरवैद्युत के लिए गाउस के नियम का अध्ययन किया था। चित्र 5.2 (c) में हम देखते हैं कि (i) द्वारा अंकित बंद गाउसीय सतह से क्षेत्र रेखाओं की जितनी संख्या बाहर आती है, उतनी ही इसके अंदर प्रवेश करती है। इस बात की इस तथ्य से संगति बैठती है कि सतह द्वारा परिवेष्ठित कुल आवेश का परिमाण शून्य है। किंतु, उसी चित्र में, बंद सतह (ii) जो किसी धनावेश को घेरती है, के लिए परिणामी निर्गत फ्लक्स होता है।
यह स्थिति उन चुंबकीय क्षेत्रों के लिए पूर्णतः भिन्न है, जो संतत हैं और बंद लूप बनाते हैं। चित्र 5.2 (a) या 5.2 (b) में (i) या (ii) द्वारा अंकित गाउसीय सतहों का निरीक्षण कीजिए। आप पाएँगे कि सतह से बाहर आने वाली बल रेखाओं की संख्या इसके अंदर प्रवेश करने वाली संख्या के बराबर है। दोनों ही सतहों के लिए कुल चुंबकीय फ्लक्स शून्य है और यह बात किसी भी बंद सतह के लिए सत्य है।
चित्र 5.5 किसी बंद सतह $S$ का एक छोटा सदिश क्षेत्रफल अवयव $\Delta \mathbf{S}$ लीजिए। जैसा कि चित्र 5.5 में दर्शाया गया है। $\Delta \mathbf{S}$ से गुजरने वाला चुंबकीय फ्लक्स $\Delta \phi _{\mathrm{B}}=\mathbf{B} \cdot \Delta \mathbf{S}$ है, जहाँ $\mathbf{B}, \Delta \mathbf{S}$ पर चुंबकीय क्षेत्र है। हम $S$ को कई छोटे-छोटे अवयवों में बाँट लेते हैं और उनमें से प्रत्येक से गुजरने वाले फ्लक्सों के मान अलग-अलग निकालते हैं। तब, कुल फ्लक्स $\phi _{\mathrm{B}}$ का मान है,
$$ \begin{equation*} \phi _{B}=\sum _{\text {‘सभी’ }} \Delta \phi _{B}=\sum _{\text {‘सभी’ }} \mathbf{B} \cdot \Delta \mathbf{S}=0 \tag{5.6} \end{equation*} $$
जहाँ ‘सभी’ का अर्थ है सभी क्षेत्रफल अवयव $\Delta \mathbf{S}$ । इसकी तुलना वैद्युतस्थितिकी के गाउस के नियम से कीजिए। जहाँ एक बंद सतह से गुजरने वाला वैद्युत फ्लक्स
$$ \sum \mathbf{E} \cdot \Delta \mathbf{S}=\frac{q}{\varepsilon _{0}} $$
जहाँ $q$ बंद सतह द्वारा परिबद्ध आवेश है।
चुंबकत्व एवं स्थिरवैद्युतिकी के गाउस नियमों के बीच का अंतर इसी तथ्य की अभिव्यक्ति है कि पृथक्कृत चुंबकीय ध्रुवों (जिन्हें एकध्रुव भी कहते हैं) का अस्तित्व नहीं होता। $\mathbf{B}$ का कोई उद्गम या अभिगम नहीं होता है। सरलतम चुंबकीय अवयव एक द्विध्रुव या धारा लूप है। सभी चुंबकीय परिघटनाएँ एक धारा लूप एवं/या द्विध्रुव व्यवस्था के रूप में समझायी जा सकती हैं।
चुंबकत्व के लिए गाउस का नियम है-
किसी भी बंद सतह से गुज़रने वाला कुल चुंबकीय फ्लक्स हमेशा शून्य होता है।
उदाहरण 5.3 नीचे दिए गए चित्रों में से कई में चुंबकीय क्षेत्र रेखाएँ गलत दर्शायी गई हैं [चित्रों में मोटी रेखाएँ]। पहचानिए कि उनमें गलती क्या है? इनमें से कुछ में वैद्युत् क्षेत्र रेखाएँ ठीक-ठीक दर्शायी गई हैं। बताइए, वे कौन से चित्र हैं?
चित्र 5.6
हल (a) गलत है। चुंबकीय बल रेखाएँ एक बिंदु से इस प्रकार नहीं निकल सकतीं जैसा कि चित्र में दिखाया गया है। किसी बंद सतह पर $\mathbf{B}$ का कुल फ्लक्स हमेशा शून्य ही होना चाहिए अर्थात, चित्र में जितनी क्षेत्र रेखाएँ सतह में प्रवेश करें उतनी ही इससे बाहर निकलनी चाहिए। दिखायी गई क्षेत्र रेखाएँ, वास्तव में, एक लंबे धनावेशित तार का विद्युत क्षेत्र प्रदर्शित करती हैं। सही चुंबकीय क्षेत्र रेखाएँ जैसा अध्याय 4 में बताया गया है, सीधे तार को चारों ओर से घेरने वाले वृत्तों के रूप में हैं।
(b) गलत है। चुंबकीय क्षेत्र रेखाएँ (विद्युत क्षेत्र रेखाओं की तरह ही) कभी भी एक-दूसरे को काट नहीं सकतीं। क्योंकि, अन्यथा कटान बिंदु पर क्षेत्र की दिशा संदिग्ध हो जाएगी। चित्र में एक गलती और भी है। स्थिर-चुंबकीय क्षेत्र रेखाएँ मुक्त आकाश में कभी भी बंद वक्र नहीं बना सकतीं। स्थिर-चुंबकीय क्षेत्र रेखा के बंद लूप को निश्चित रूप से एक ऐसे प्रदेश को घेरना चाहिए जिसमें से होकर धारा प्रवाहित हो रही हो [इसके विपरीत वैद्युत क्षेत्र रेखाएँ कभी भी बंद लूप नहीं बना सकतीं, न तो मुक्त आकाश में और न ही तब जब लूप आवेश को घेरते हैं।]
(c) ठीक है। चुंबकीय रेखाएँ पूर्णतः एक टोरॉइड में समाहित हैं। यहाँ चुंबकीय क्षेत्र रेखाओं द्वारा बंद लूप बनाने में कोई त्रुटि नहीं है, क्योंकि प्रत्येक लूप एक ऐसे क्षेत्र को घेरता है जिसमें से होकर धारा गुजरती है। ध्यान दीजिए कि चित्र में स्पष्टता लाने के लिए ही टोरॉइड के अंदर मात्र कुछ क्षेत्र रेखाएँ दिखायी गई हैं। तथ्य यह है कि टोरॉइड के फेरों के अंदर के संपूर्ण भाग में चुंबकीय क्षेत्र मौजूद रहता है।
(d) गलत है। परिनालिका की क्षेत्र रेखाएँ, इसके सिरों पर और इसके बाहर पूर्णतः सीधी और सिमटी हुई नहीं हो सकती हैं। ऐसा होने से ऐम्पियर का नियम भंग होता है। ये रेखाएँ सिरों पर वक्रित हो जानी चाहिए और इनको अंत में मिल कर बंद पाश बनाने चाहिए।
(e) सही है। एक छड़ चुंबक के अंदर एवं बाहर दोनों ओर चुंबकीय क्षेत्र होता है। अंदर क्षेत्र की दिशा पर अच्छी तरह ध्यान दीजिए। सभी क्षेत्र रेखाएँ उत्तर ध्रुव से नहीं निकलतीं (और न ही दक्षिण ध्रुव पर समाप्त होती हैं)। $\mathrm{N}$-ध्रुव एवं $\mathrm{S}$-ध्रुव के चारों तरफ क्षेत्र के कारण कुल फ्लक्स शून्य होता है।
(f) गलत है। संभावना यही है कि ये क्षेत्र रेखाएँ चुंबकीय क्षेत्र प्रदर्शित नहीं करतीं। ऊपरी भाग को देखिए। सभी क्षेत्र रेखाएँ छायित प्लेट से निकलती जान पड़ती हैं। इस प्लेट को घेरने वाली सतह से गुजरने वाले क्षेत्र का कुल फ्लक्स शून्य नहीं है। चुंबकीय क्षेत्र के संदर्भ में ऐसा होना संभव नहीं है। दिखायी गई क्षेत्र रेखाएँ, वास्तव में, धनावेशित ऊपरी प्लेट एवं ऋणावेशित निचली प्लेट के बीच स्थिरवैद्युत क्षेत्र रेखाएँ हैं। [चित्र 5.6(e) एवं (f)] के बीच के अंतर को ध्यानपूर्वक ग्रहण करना चाहिए।
(g) गलत है। दो ध्रुवों के बीच चुंबकीय क्षेत्र रेखाएँ, सिरों पर, ठीक सरल रेखाएँ नहीं हो सकतीं। रेखाओं में कुछ फैलाव अवश्यम्भावी है अन्यथा, ऐम्पियर का नियम भंग होता है। यह बात वैद्युत क्षेत्र रेखाओं के लिए भी लागू होती है।
उदाहरण 5.4
(a) चुंबकीय क्षेत्र रेखाएँ (हर बिंदु पर) वह दिशा बताती हैं जिसमें (उस बिंदु पर रखी) चुंबकीय सुई संकेत करती है। क्या चुंबकीय क्षेत्र रेखाएँ प्रत्येक बिंदु पर गतिमान आवेशित कण पर आरोपित बल रेखाएँ भी हैं?
(b) यदि चुंबकीय एकल ध्रुवों का अस्तित्व होता तो चुंबकत्व संबंधी गाउस का नियम क्या रूप ग्रहण करता?
(c) क्या कोई छड़ चुंबक अपने क्षेत्र की वजह से अपने ऊपर बल आघूर्ण आरोपित करती है? क्या किसी धारावाही तार का एक अवयव उसी तार के दूसरे अवयव पर बल आरोपित करता है।
(d) गतिमान आवेशों के कारण चुंबकीय क्षेत्र उत्पन्न होते हैं। क्या कोई ऐसी प्रणाली है जिसका चुंबकीय आघूर्ण होगा, यद्यपि उसका नेट आवेश शून्य है?
हल (a) नहीं। चुंबकीय बल सदैव $\mathbf{B}$ के लंबवत होता है (क्योंकि चुंबकीय बल $=q(\mathbf{v} \times \mathbf{B})$ अत: B की क्षेत्र रेखाओं को बल रेखाएँ कहना भ्रामक वक्तव्य है।
(b) चुंबकत्व संबंधी गाउस का नियम यह कहता है कि क्षेत्र $\mathbf{B}$ के कारण, किसी बंद सतह से गुज़रने वाला कुल फ्लक्स सदैव शून्य होता है। किसी बंद सतह $S$ के लिए $\int _{S}$ B.ds $=0$ यदि एकल ध्रुवों का अस्तित्व होता तो (स्थिरवैद्युतिकी के गाउस नियम के अनुरूप) समीकरण के दायीं ओर सतह $S$ से घिरे एकल ध्रुवों (चुंबकीय आवेशों) $q _{m}$ का योग आता। अर्थात समीकरण का रूप होता
$\int _{S} \mathbf{B} \cdot \mathrm{d} \mathbf{s}=\mu _{0} q _{m}$ जहाँ $q _{m}, S$ से घिरा चुंबकीय आवेश (एकल ध्रुव) है।
(c) नहीं। तार के अल्पांश द्वारा उत्पन्न चुंबकीय क्षेत्र के कारण इसके स्वयं के ऊपर कोई बल या बल आघूर्ण नहीं लगता। लेकिन इसके कारण उसी तार के दूसरे अल्पांश पर बल (या बल आघूर्ण) लगता है। (सीधे तार के विशेष मामले में, यह बल शून्य ही होता है)।
(d) हाँ। संपूर्ण व्यवस्था को देखें तो सभी आवेशों का औसत शून्य हो सकता है। फिर भी, यह हो सकता है कि विभिन्न धारा लूपों के कारण उत्पन्न चुंबकीय आघूर्णों का औसत शून्य न हो। हमारे समक्ष अनुचुंबकीय पदार्थों के संदर्भ में ऐसे कई उदाहरण आएँगे जहाँ परमाणुओं का आवेश शून्य है लेकिन उनका द्विध्रुव-आघूर्ण शून्य नहीं है।
5.4 चुंबकीकरण एवं चुंबकीय तीव्रता
पृथ्वी तत्वों एवं यौगिकों की विस्मयकारी विभिन्नताओं से भरपूर है। इसके अतिरिक्त, हम नए-नए मिश्रधातु, यौगिक, यहाँ तक कि तत्व भी संश्लेषित करते जा रहे हैं। आप इन सब पदार्थों को चुंबकीय गुणों के आधार पर वर्गीकृत करना चाहेंगे। प्रस्तुत अनुभाग में हम ऐसे कुछ पदों की परिभाषा देंगे और उनके बारे में समझाएँगे जो इस वर्गीकरण में हमारी सहायता करेंगे।
हम यह देख चुके हैं कि परमाणु में परिक्रमण करते इलेक्ट्रॉन का एक चुंबकीय आघूर्ण होता है। पदार्थ के किसी बड़े टुकड़े में ये चुंबकीय आघूर्ण सदिश रूप से समाकलित होकर शून्येतर परिणामी चुंबकीय आघूर्ण प्रदान कर सकते हैं। किसी दिए गए नमूने का चुंबकन $\mathbf{M}$ हम इस प्रकार उत्पन्न हुए प्रति इकाई आयतन परिणामी चुंबकीय आघूर्ण के रूप में परिभाषित कर सकते हैं,
$$ \begin{equation*} \mathbf{M}=\frac{\mathbf{m} _{\text {नेट }}}{V} \tag{5.7} \end{equation*} $$
$\mathbf{M}$ एक सदिश राशि है जिसका विमीय सूत्र $\mathrm{L}^{-1} \mathrm{~A}$ एवं मात्रक $\mathrm{A} \mathrm{m}^{-1}$ है।
एक लंबी परिनालिका लीजिए जिसकी प्रति इकाई लंबाई में $n$ फेरे हों, और जिसमें $I$ धारा प्रवाहित हो रही हो। इस परिनालिका के अंदर चुंबकीय क्षेत्र का परिमाण है,
$$ \begin{equation*} \mathbf{B_0}=\mu_{0} n I \tag{5.8} \end{equation*} $$
यदि परिनालिका के अंदर शून्येतर चुंबकन का कोई पदार्थ भरा हो तो यहाँ क्षेत्र $\mathbf{B} _{0}$ से अधिक होगा। परिनालिका के अंदर परिणामी क्षेत्र $\mathbf{B}$ को लिख सकते हैं
$$ \begin{equation*} \mathbf{B}=\mathbf{B} _{0}+\mathbf{B} _{\mathrm{m}} \tag{5.9} \end{equation*} $$
जहाँ $\mathbf{B} _{\mathrm{m}}$ क्रोड के पदार्थ द्वारा प्रदत्त क्षेत्र है। यह पाया गया है कि यह अतिरिक्त क्षेत्र $\mathbf{B} _{\mathrm{m}}$ पदार्थ के चुंबकन $\mathbf{M}$ के अनुक्रमानुपाती होता है और इसको हम निम्नवत व्यक्त कर सकते हैं
$$ \begin{equation*} \mathbf{B} _{\mathrm{m}}=\mu _{0} \mathbf{M} \tag{5.10} \end{equation*} $$
जहाँ $\mu _{0}$ वही नियंताक है (निर्वात की पारगम्यता) जो बायो-सावर्ट के नियम में उपयोग किया गया था।
सुविधा के लिए हम एक अन्य सदिश क्षेत्र $\mathbf{H}$ की बात करते हैं जिसे चुंबकीय तीव्रता कहा जाता है और जिसको निम्नलिखित समीकरण द्वारा परिभाषित किया जाता है
$$ \begin{equation*} \mathbf{H}=\frac{\mathbf{B}}{\mu _{0}}-\mathbf{M} \tag{5.11} \end{equation*} $$
जहाँ $\mathbf{H}$ की विमाएँ वहीं हैं जो $\mathbf{M}$ की और इसका मात्रक भी $\mathrm{A} \mathrm{m}^{-1}$ ही है। इस प्रकार कुल चुंबकीय क्षेत्र $\mathbf{B}$ को लिख सकते हैं
$$ \begin{equation*} \mathbf{B}=\mu _{0}(\mathbf{H}+\mathbf{M}) \tag{5.12} \end{equation*} $$
उपरोक्त विवरण में आए पदों को व्युत्पन्न करने में हमने जिस पद्धति का प्रयोग किया है उसको दोहराते हैं। परिनालिका के अंदर के कुल चुंबकीय क्षेत्र को हमने दो अलग-अलग योगदानों के रूप में प्रस्तुत किया- पहला बाह्य कारक, जैसे कि परिनालिका में प्रवाहित होने वाली धारा का योगदान। यह $\mathbf{H}$ द्वारा व्यक्त किया गया है; और दूसरा चुंबकीय पदार्थ की विशेष प्रकृति के कारण अर्थात $\mathbf{M}$ । बाद वाली राशि $(\mathbf{M})$ बाह्य कारकों द्वारा प्रभावित की जा सकती है। यह प्रभाव गणितीय रूप में इस प्रकार व्यक्त कर सकते हैं:
$$ \begin{equation*} \mathbf{M}=\chi \mathbf{H} \tag{5.13} \end{equation*} $$
जहाँ $\chi$ एक विमाविहीन राशि है और इसे चुंबकीय प्रवृत्ति कहते हैं। यह किसी चुंबकीय पदार्थ पर बाह्य चुंबकीय क्षेत्र के प्रभाव का माप है। $\chi$ बहुत छोटे परिमाण वाली राशि है। कुछ पदार्थों के लिए इसका मान छोटा और धनात्मक है जिन्हें अनुचुंबकीय पदार्थ कहते हैं। कुछ पदार्थों के लिए इसका मान छोटा एवं ऋणात्मक है जिन्हें प्रतिचुंबकीय पदार्थ कहते हैं। प्रतिचुंबकीय पदार्थों में $\mathbf{M}$ एवं $\mathbf{H}$ विपरीत दिशाओं में होते हैं। समीकरण (5.12) एवं (5.13) से हम पाते हैं,
$$ \begin{align*} & \mathbf{B}=\mu _{0}(1+\chi) \mathbf{H} \tag{5.14}\\ & =\mu _{0} \mu _{\mathrm{r}} \mathbf{H} =\mu \mathbf{H} \tag{5.15} \end{align*} $$
जहाँ, $\mu _{r}=(1+\chi)$ एक विमाविहीन राशि है जिसे हम पदार्थ की आपेक्षिक चुंबकशीलता या ‘आपेक्ष चुंबकीय पारगम्यता’ कहते हैं। यह स्थिरवैद्युतिकी के परावैद्युतांक के समतुल्य राशि है। पदार्थ की चुंबकशीलता $\mu$ है और इसकी विमाएँ तथा मात्रक वही हैं जो $\mu _{0}$ के हैं।
$$ \mu=\mu _{0} \mu _{r}=\mu _{0}(1+\chi) $$
$\chi, \mu _{\mathrm{r}}$ एवं $\mu$ में तीन राशियाँ परस्पर संबंधित हैं। यदि इनमें से किसी एक का मान ज्ञात हो तो बाकी दोनों के मान ज्ञात किए जा सकते हैं।
उदाहरण 5.5 एक परिनालिका के क्रोड में भरे पदार्थ की आपेक्षिक चुंबकशीलता 400 है। परिनालिका के विद्युतीय रूप से पृथक्कृत फेरों में $2 \mathrm{~A}$ की धारा प्रवाहित हो रही है। यदि इसकी प्रति $1 \mathrm{~m}$ लंबाई में फेरों की संख्या 1000 है तो (a) $H$, (b) $M$, (c) $B$ एवं (d) चुंबककारी धारा $I _{m}$ की गणना कीजिए।
हल
(a) क्षेत्र $H$ क्रोड के पदार्थ पर निर्भर करता है और इसके लिए सूत्र है $$ H=n I=1000 \times 2.0=2 \times 10^{3} \mathrm{~A} / \mathrm{m} $$
(b) चुंबकीय क्षेत्र $B$ के लिए सूत्र है $$ \begin{aligned} B & =\mu _{r} \mu _{0} \mathrm{H} \\ & =400 \times 4 \pi \times 10^{-7}\left(\mathrm{~N} / \mathrm{A}^{2}\right) \times 2 \times 10^{3}(\mathrm{~A} / \mathrm{m}) \\ & =1.0 \mathrm{~T} \end{aligned} $$
(c) चुंबकन
$$ \begin{aligned} M & =\left(B-\mu _{0} H\right) / \mu _{0} \\ & =\left(\mu _{r} \mu _{0} H-\mu _{0} H\right) / \mu _{0}=\left(\mu _{r}-1\right) H=399 \times H \\ & \cong 8 \times 10^{5} \mathrm{~A} / \mathrm{m} \end{aligned} $$
(d) चुंबकन धारा $I _{M}$ वह अतिरिक्त धारा है जो क्रोड की अनुपस्थिति में परिनालिका के फेरों में प्रवाहित किए जाने पर इसके अंदर उतना ही क्षेत्र $B$ उत्पन्न करेगी जितना क्रोड की उपस्थिति में होता। अत: $B=\mu _{r} n\left(I+I _{M}\right)$ लेने पर $I=2 \mathrm{~A}, B=1 \mathrm{~T}$ हमें प्राप्त होता है $I _{M}=794 \mathrm{~A}$
5.5 पदार्थों के चुंबकीय गुण
पिछले अनुभाग में वर्णित विचार हमें पदार्थों को प्रतिचुंबकीय, अनुचुंबकीय एवं लोहचुंबकीय श्रेणियों में वर्गीकृत करने में सहायता प्रदान करते हैं। चुंबकीय प्रवृत्ति $\chi$ की दृष्टि से देखें तो कोई पदार्थ प्रतिचुंबकीय है यदि इसके लिए $\chi$ ॠणात्मक है, अनुचुंबकीय होगा यदि $\chi$ धनात्मक एवं अल्प मान वाला है, और लोहचुंबकीय होगा यदि $\chi$ धनात्मक एवं अधिक मान वाला है।
अधिक मूर्त रूप में सारणी 5.2 पर एक दृष्टि हमें इन पदार्थों का एक अच्छा अनुभव प्रदान करती है। यहाँ $\varepsilon$ एक छोटी धन संख्या है जो अनुचुंबकत्व का परिमाण निर्धारित करने के लिए लाई गई है। अब हम इन पदार्थों के बारे में कुछ विस्तार से चर्चा करेंगे।
सारणी 5.3
प्रतिचुंबकीय | अनुचुंबकीय | लोहचुंबकीय |
---|---|---|
$-1 \leq \chi<0$ | $0<\chi<\varepsilon$ | $\chi»1$ |
$0 \leq \mu _{r}<1$ | $1<\mu _{r}<1+\varepsilon$ | $\mu _{r}»1$ |
$\mu<\mu _{0}$ | $\mu>\mu _{0}$ | $\mu»\mu _{0}$ |
5.5.1 प्रतिचुंबकत्व
प्रतिचुंबकीय पदार्थ वह होते हैं जिनमें बाह्य चुंबकीय क्षेत्र में अधिक तीव्रता वाले भाग से कम तीव्रता वाले भाग की ओर जाने की प्रवृत्ति होती है। दूसरे शब्दों में कहें तो चुंबक लोहे जैसी धातुओं को तो अपनी ओर आकर्षित करता है, परंतु यह प्रतिचुंबकीय पदार्थों को विकर्षित करेगा।
चित्र 5.7
एक (a) प्रतिचुंबकीय (b) अनुचुंबकीय पदार्थ के निकट किसी बाह्य चुंबकीय क्षेत्र के कारण चुंबकीय क्षेत्र
चित्र 5.7 (a), बाह्य चुंबकीय क्षेत्र में रखी प्रतिचुंबकीय पदार्थ की एक छड़ दर्शाता है। क्षेत्र रेखाएँ विकर्षित होती हैं या दूर हटती हैं इसलिए पदार्थ के अन्दर क्षेत्र कम हो जाता है अधिकांश मामलों में क्षेत्र की तीव्रता में यह कमी अत्यल्प होती है ( $10^{5}$ भागों में एक भाग)। छड़ को किसी असमान चुंबकीय क्षेत्र में रखने पर इसकी प्रवृत्ति अधिक क्षेत्र से कम क्षेत्र की ओर जाने की होती है।
प्रतिचुंबकत्व की सरलतम व्याख्या इस प्रकार है-नाभिक के चारों ओर घूमते इलेक्ट्रॉनों के कारण कक्षीय कोणीय संवेग होता है। ये प्ररिक्रमण करते इलेक्ट्रॉन एक धारावाही लूप के समतुल्य होते हैं और इस कारण इनका कक्षीय चुंबकीय आघूर्ण होता है, प्रतिचुंबकीय पदार्थ वे होते हैं जिनके परमाणु में परिणामी चुंबकीय आघूर्ण शून्य होता है। जब कोई बाह्य चुंबकीय क्षेत्र आरोपित किया जाता है तो जिन इलेक्ट्रॉनों के कक्षीय चुंबकीय आघूर्ण क्षेत्र की दिशा में होते हैं उनकी गति मंद हो जाती है और जिनके चुंबकीय आघूर्ण क्षेत्र के विपरीत दिशा में होते हैं उनकी गति बढ़ जाती है। ऐसा लेंज के नियम के अनुसार प्रेरित धारा के कारण होता है जिसके विषय में आप अध्याय 6 में अध्ययन करेंगे। इस प्रकार पदार्थ में परिणामी चुंबकीय आघूर्ण आरोपित क्षेत्र के विपरीत दिशा में विकसित होता है और इस कारण यह प्रतिकर्षित होता है।
कुछ प्रतिचुंबकीय पदार्थ हैं- बिस्मथ, ताँबा, सीसा, सिलिकन, नाइट्रोजन (STP पर), पानी एवं सोडियम क्लोराइड। प्रति चुंबकत्व सभी पदार्थों में विद्यमान होता है। परंतु, अधिकांश पदार्थों के लिए यह इतना क्षीण होता है कि अनुचुंबकत्व एवं लौह चुंबकत्व जैसे प्रभाव इस पर हावी हो जाते हैं।
सबसे अधिक असामान्य प्रतिचुंबकीय पदार्थ हैं अति चालक। ये ऐसी धातुएँ हैं, जिनको यदि बहुत निम्न ताप तक ठंडा कर दिया जाता है तो ये पूर्ण चालकता एवं पूर्ण प्रतिचुंबकत्व दोनों प्रदर्शित करती हैं। चुंबकीय क्षेत्र रेखाएँ पूर्णतः इनके बाहर रहती हैं, $\chi=-1$ एवं $\mu _{r}=0$ । एक अतिचालक, एक चुंबक को प्रतिकर्षित करेगा और (न्यूटन के तृतीय नियमानुसार) स्वयं इसके द्वारा प्रतिकर्षित होगा। अतिचालकों में पूर्ण प्रतिचुंबकत्व की यह परिघटना इसके आविष्कारक के नाम पर माइस्नर रेखाओं का व्यवहार। प्रभाव कहलाती है। अनेक भिन्न परिस्थितियों में जैसे कि, चुंबकीकृत अधरगामी अति तीव्र रेलगाड़ियों को चलाने में अतिचालक चुंबकों का लाभ उठाया जा सकता है।
5.5.2 अनुचुंबकत्व
अनुचुंबकीय पदार्थ ऐसे पदार्थ होते हैं जो बाह्य चुंबकीय क्षेत्र में रखे जाने पर क्षीण चुंबकत्व प्राप्त कर लेते हैं। उनमें क्षीण चुंबकीय क्षेत्र से सशक्त चुंबकीय क्षेत्र की ओर जाने की प्रवृत्ति होती है अर्थात ये चुंबक की ओर क्षीण बल द्वारा आकर्षित होते हैं।
किसी अनुचुंबकीय पदार्थ के परमाणुओं (या आयनों या अणुओं) का अपना स्वयं का स्थायी चुंबकीय द्विध्रुव आघूर्ण होता है। परमाणुओं की सतत यादृच्छिक तापीय गति के कारण कोई परिणामी चुंबकीकरण दृष्टिगत नहीं होता। पर्याप्त शक्तिशाली बाह्य चुंबकीय क्षेत्र $\mathbf{B} _{0}$ की उपस्थिति में एवं निम्न तापों पर अलग-अलग परमाणुओं के द्विध्रुव आघूर्ण सरल रेखाओं में और $\mathbf{B} _{0}$ की दिशा के अनुदिश संरेखित किए जा सकते हैं। चित्र 5.7 (b) बाह्य चुंबकीय क्षेत्र में रखी हुई अनुचुंबकीय पदार्थ की एक छड़ प्रदर्शित करता है। चुंबकीय क्षेत्र रेखाएँ पदार्थ के अंदर संकेंद्रित हो जाती हैं और अंदर चुंबकीय क्षेत्र बढ़ जाता है। अधिकतर मामलों में यह वृद्धि अति न्यून है, $10^{5}$ भागों में एक भाग। असमान चुंबकीय क्षेत्र में रखने पर यह छड़ निम्न क्षेत्र से उच्च क्षेत्र की ओर चलने की चेष्टा करेगी।
कुछ अनुचुंबकीय पदार्थ हैं-ऐलुमिनियम, सोडियम, कैल्शियम, ऑक्सीजन (STP पर) एवं कॉपर क्लोराइड। किसी अनुचुंबकीय पदार्थ के लिए $\chi$ एवं $\mu _{r}$ दोनों का मान न केवल पदार्थ पर निर्भर करता है, वरन् (एक सरल रूप में) इसके ताप पर भी निर्भर करता है। बहुत उच्च चुंबकीय क्षेत्रों में या बहुत निम्न ताप पर, चुंबकन अपना अधिकतम मान ग्रहण करने लगता है, जबकि सभी परमाण्वीय द्विध्रुव आघूर्ण चुंबकीय क्षेत्र में रेखाओं के अनुदिश संरेखित हो जाते हैं। यह संतृप्त चुंबकन मान कहलाता है।
5.5.3 लौह चुंबकत्व
चित्र 5.8 (a) यादृच्छिक अभिविन्यासित डोमेन, (b) संरेखित डोमेन।
लौह चुंबकीय पदार्थ ऐसे पदार्थ होते हैं जो बाह्य चुंबकीय क्षेत्र में रखे जाने पर शक्तिशाली चुंबक बन जाते हैं। उनमें चुंबकीय क्षेत्र के क्षीण भाग शक्तिशाली भाग की ओर चलने की तीव्र प्रवृत्ति होती है अर्थात वे चुंबक की ओर भारी आकर्षण बल का अनुभव करते हैं। किसी लौह चुंबकीय पदार्थ के एकल परमाणुओं (या आयनों या अणुओं) का भी अनुचुंबकीय पदार्थों की तरह ही चुंबकीय द्विध्रुव आघूर्ण होता है। परंतु, वे एक-दूसरे के साथ इस प्रकार अन्योन्य क्रिया करते हैं कि एक स्थूल आयतन में (जिसे डोमेन कहते हैं) सब एक साथ एक दिशा में संरेखित हो जाते हैं। इस सहकारी प्रभाव की व्याख्या के लिए क्वांटम यांत्रिकी की आवश्यकता होती है, जो इस पाठ्यपुस्तक के क्षेत्र से बाहर है। प्रत्येक डोमेन का अपना परिणामी चुंबकन होता है। प्रारूपी डोमेन का आकार $1 \mathrm{~mm}$ है, और एक डोमेन में लगभग $10^{11}$ परमाणु होते हैं। प्रथमदृष्टया चुंबकन एक डोमेन से दूसरे डोमेन तक जाने पर यादृच्छिक रूप से बदलता है तथा कुल पदार्थ में कोई चुंबकन नहीं होता। यह चित्र 5.8 (a) में दिखाया गया है। जब हम बाह्य चुंबकीय क्षेत्र $\mathbf{B} _{0}$ लगाते हैं, तो डोमेन $\mathbf{B} _{0}$ के अनुदिश उन्मुख होने लगते हैं और साथ ही वे डोमेन जो $\mathbf{B} _{0}$ की दिशा में हैं, साइज़ में बढ़ने लगते हैं। डोमेनों का अस्तित्व और $\mathbf{B} _{0}$ के अनुदिश उनके होने वाली गति केवल अनुमान नहीं है। लौह चुंबकीय पदार्थ के पाउडर को किसी द्रव में छिड़क कर उसके निलंबन को सूक्ष्मदर्शी के द्वारा उसकी यादृच्छिक गति को देखा जा सकता है। चित्र 5.7 (b) वह स्थिति दर्शाता है जब सभी डोमेन पंक्तिबद्ध हो गए हैं और उन्होंने घुल-मिलकर एक अकेला विशाल डोमेन बना लिया है।
इस प्रकार एक लौह चुंबकीय पदार्थ में चुंबकीय क्षेत्र रेखाएँ बहुत अधिक संकेंद्रित हो जाती हैं। एक असमान चुंबकीय क्षेत्र में इस पदार्थ का नमूना अधिक शक्तिशाली चुंबकीय क्षेत्र वाले भाग की ओर चलने को प्रवृत्त होता है। हम यह सोच सकते हैं कि बाह्य क्षेत्र हटा लेने पर क्या होगा? कुछ चुंबकीय पदार्थों में चुंबकन बना रह जाता है। ऐसे पदार्थों को कठोर चुंबकीय पदार्थ या कठोर लौह चुंबक कहा जाता है। एलनिको ( लोहे, ऐलुमिनियम, निकल, कोबाल्ट एवं ताँबे का एक मिश्रातु) ऐसा ही एक पदार्थ है और प्राकृतिक रूप में उपलब्ध लोडस्टोन दूसरा। इन पदार्थों से स्थायी चुंबक बनते हैं और इनका उपयोग चुंबकीय सुई बनाने के अलावा अन्य कार्यों में भी होता है। दूसरी ओर लौह चुंबकीय पदार्थों की एक श्रेणी ऐसी है जिनका चुंबकन बाह्य क्षेत्र को हटाते ही खत्म हो जाता है। नर्म लोहा ऐसा ही एक पदार्थ है। उचित रूप से ही, ऐसे पदार्थों को नर्म लौह चुंबकीय पदार्थ कहा जाता है। बहुत से तत्व लौह चुंबकीय हैं; जैसे-लोहा, कोबाल्ट, निकल, गैडोलिनियम आदि। इनकी आपेक्षिक चुंबकशीलता 1000 से अधिक है।
लौह चुंबकीय गुण भी ताप पर निर्भर करता है। पर्याप्त उच्च ताप पर एक लौह चुंबक, अनुचुंबक बन जाता है। ताप बढ़ने पर डोमेन संरचनाएँ विघटित होने लगती हैं। ताप बढ़ने पर चुंबकन का विलोपन धीरे-धीरे होता है।
सारांश
1. चुंबकत्व विज्ञान एक प्राचीन विज्ञान है। यह अत्यंत प्राचीन काल से ज्ञात रहा है कि चुंबकीय पदार्थों में उत्तर-दक्षिण दिशा में संकेत करने की प्रवृत्ति होती है। समान ध्रुव एक-दूसरे को प्रतिकर्षित करते हैं और विपरीत ध्रुव आकर्षित। किसी छड़ चुंबक को काटकर दो भागों में विभाजित करें तो दो छोटे चुंबक बन जाते हैं। चुंबक के ध्रुव अलग नहीं किए जा सकते।
2. जब $\mathbf{m}$ चुंबकीय द्विध्रुव आघूर्ण वाले छड़ चुंबक को समांग चुंबकीय क्षेत्र $\mathbf{B}$ में रखते हैं, तो (a) इस पर लगने वाला कुल बल शून्य होता है। (b) बल आघूर्ण $\mathbf{m} \times \mathbf{B}$ होता है। (c) इसकी स्थितिज ऊर्जा $-\mathbf{m} \cdot \mathbf{B}$ होती है, जहाँ हमने शून्य ऊर्जा को उस विन्यास में लिया है जब $\mathbf{m}$ चुंबकीय क्षेत्र $B$ के लंबवत है।
3. लंबाई $l$ एवं चुंबकीय आघूर्ण $\mathbf{m}$ का एक छड़ चुंबक लीजिए। इसके मध्य बिंदु से $r$ दूरी पर, जहाँ $r»l$, इस छड़ के कारण चुंबकीय क्षेत्र $\mathbf{B}$ का मान होगा,
$$ \begin{aligned} & \mathbf{B}=\frac{\mu_0 \mathbf{m}}{2 \pi r^3} \quad \text { (अक्ष के अनुदिश) } \\ & =-\frac{\mu_0 \mathbf{m}}{4 \pi r^3} \quad \text { (विषुवत वृत्त के अनुदिश) } \ & \end{aligned} $$
4. चुंबकत्व संबंधी गाउस के नियमानुसार, किसी बंद पृष्ठ में से गुजरने वाला कुल चुंबकीय फ्लक्स हमेशा शून्य होता है
$$ \phi _{\mathrm{B}}=\sum _{\substack{\text { सभी क्षेत्रफल } \ \text { अंशों } \Delta \mathbf{S} \text { के लिए }}} \mathbf{B} \cdot \Delta \mathbf{S}=0 $$
5. माना कि कोई पदार्थ एक बाह्य चुंबकीय क्षेत्र $\mathbf{B} _{0}$ में रखा है। चुंबकीय तीव्रता की परिभाषा है,
$$\mathbf{H}=\frac{\mathbf{B} _{0}}{\mu _{0}}$$
पदार्थ का चुंबकन $\mathbf{M}$ इसका द्विध्रुव आघूर्ण प्रति इकाई आयतन है। पदार्थ के अंदर चुंबकीय क्षेत्र
$$\mathbf{B}=\mu _{0}(\mathbf{H}+\mathbf{M})$$
6. रैखिक पदार्थ के लिए, $\mathbf{M}=\chi \mathbf{H}$ जिससे कि $\mathbf{B}=\mu \mathbf{H}$ एवं $\chi$ पदार्थ की चुंबकीय प्रवृत्ति कहलाती है। राशियों $\chi$, आपेक्षिक चुंबकशीलता $\mu _{r}$ एवं चुंबकशीलता $\mu$ में निम्नलिखित संबंध हैं- $$\mu=\mu _{0} \mu _{r}$$ $$\mu _{r}=1+\chi$$
7. चुंबकीय पदार्थों को मोटे तौर पर तीन श्रेणियों में विभाजित करते हैं : प्रतिचुंबकीय, अनुचुंबकीय एवं लौह चुंबकीय। प्रतिचुंबकीय पदार्थों के लिए $\chi$ का मान ऋणात्मक और प्रायः बहुत कम होता है, अनुचुंबकीय पदार्थों के लिए $\chi$ धनात्मक एवं बहुत कम है। लौह चुंबकों के लिए $\chi$ धनात्मक एवं बहुत अधिक मान वाला है और ये $\mathbf{B}$ एवं $\mathbf{H}$ के रैखिक संबंधों से भी पहचाने जाते हैं।
8. वे पदार्थ जो सामान्य ताप पर लंबे समय के लिए लौह चुंबकीय गुण दर्शाते हैं, स्थायी चुंबक कहलाते हैं।
भौतिक राशि | प्रतीक | प्रकृति | विमाएँ | मात्रक | टिप्पणी |
---|---|---|---|---|---|
निर्वात की चुंबकशीलता | $\mu _{0}$ | अदिश | $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$ | $\mathrm{Tm} \mathrm{A} \mathrm{A}^{-1}$ | $\mu _{0} / 4 \pi=10^{-7}$ |
चुंबकीय क्षेत्र; चुंबकीय प्रेरण; चुंबकीय फ्लक्स घनत्व |
B | सदिश | $\left[\mathrm{M} \mathrm{T}^{-2} \mathrm{~A}^{-1}\right]$ | $\mathrm{T}$ (टेस्ला) | $10^{4} \mathrm{G}$ (गाउस) $=1 \mathrm{~T}$ |
चुंबकीय आघूर्ण | m | सदिश | $\left[\mathrm{L}^{-2} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{2}$ | |
चुंबकीय फ्लक्स | $\phi _{\mathrm{B}}$ | अदिश | $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$ | $\mathrm{W}$ ( वेबर) | $\mathrm{W}=\mathrm{T} \mathrm{m}^{2}$ |
चुंबकन | $\mathbf{M}$ | सदिश | $\left[\mathrm{L}^{-1} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-1}$ | $\frac{\text { चुंबकीय आघूर्ण }}{\text { आयतन }}$ |
चुंबकीय तीव्रता चुंबकीय क्षेत्र सामर्थ्य |
$\mathbf{H}$ | सदिश | $\left[\mathrm{L}^{-1} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-1}$ | $\mathbf{B}=\mu _{0}(\mathbf{H}+\mathbf{M})$ |
चुंबकीय प्रवृत्ति | $\chi$ | अदिश | $\mathbf{M}=\chi \mathbf{H}$ | ||
आपेक्षिक चुंबकशीलता | $\mu _{\mathrm{r}}$ | अदिश | $\mathbf{B}=\mu _{0} \mu _{r} \mathbf{H}$ | ||
चुंबकशीलता | $\mu$ | अदिश | $\left[\right.$ MLT $\left.^{-2} \mathrm{~A}^{-2}\right]$ | $\mathrm{Tm} \mathrm{A}^{-1}$ $\mathrm{~N} \mathrm{~A}^{-2}$ |
$\mu=\mu _{0} \mu _{r}$ $\mathbf{B}=\mu \mathbf{H}$ |
विचारणीय विषय
1. गतिमान आवेशों/धाराओं के माध्यम से चुंबकीय प्रक्रमों की संतोषजनक समझ सन 1800 ई. के बाद पैदा हुई। लेकिन, चुंबकों के दैशिक गुणों का प्रौद्योगिकीय उपयोग इस वैज्ञानिक समझ से दो हजार वर्ष पूर्व होने लगा था। अतः अभियांत्रिक अनुप्रयोगों के लिए, वैज्ञानिक समझ का होना कोई आवश्यक शर्त नहीं है। आदर्श स्थिति यह है कि विज्ञान और अभियांत्रिकी एक-दूसरे से सहयोग करते हुए चलते हैं। कभी विज्ञान अभियांत्रिकी को आगे बढ़ाता है तो कभी अभियांत्रिकी विज्ञान को।
2. एकल चुंबकीय ध्रुवों का अस्तित्व नहीं होता। यदि आप एक चुंबक को काट कर दो टुकड़े करते हैं तो आपको दो छोटे चुंबक प्राप्त होते हैं। इसके विपरीत पृथक्कृत धनात्मक एवं ऋणात्मक विद्युत आवेशों का अस्तित्व है। एक इलेक्ट्रॉन पर आवेश का परिमाण $|e|=1.6 \times 10^{-19} \mathrm{C}$ होता है जो आवेश का सूक्ष्मतम मान है। अन्य सभी आवेश इस न्यूनतम इकाई आवेश के पूर्ण गुणांक होते हैं। दूसरे शब्दों में, आवेश क्वांटीकृत होते हैं। हमें ज्ञात नहीं है कि एकल चुंबकीय ध्रुवों का अस्तित्व क्यों नहीं है अथवा विद्युत आवेश क्वांटीकृत क्यों होता है?
3. इस तथ्य का कि चुंबकीय एकल ध्रुवों का अस्तित्व नहीं होता, एक परिणाम यह है कि चुंबकीय क्षेत्र रेखाएँ संतत हैं और बंद लूप बनाती हैं। इसके विपरीत, वैद्युत बल रेखाएँ धनावेश से शुरू होकर ऋणावेश पर समाप्त हो जाती हैं (या अनंत में लीन हो जाती हैं)।
4. चुंबकीय प्रवृत्ति $\chi$ के मान में अत्यल्प अंतर से पदार्थ के व्यवहार में मूलभूत अंतर पाया जाता है, जैसे प्रतिचुंबक और अनुचुंबक के व्यवहारों में अंतर। प्रतिचुंबकीय पदार्थों के लिए $\chi=-10^{-5}$ जबकि अनुचुंबकीय पदार्थों के लिए $\chi=+10^{-5}$ ।
5. अतिचालक, परिपूर्ण प्रतिचुंबक (perfect diamagnetic) भी होते हैं। इसके लिए $\chi=-1$, $\mu _{r}=0, \mu=0$ । बाह्य चुंबकीय क्षेत्र पूर्णतः इसके बाहर ही रहता है। एक मनोरंजक तथ्य यह है कि यह पदार्थ एक परिपूर्ण चालक भी है। परंतु, ऐसा कोई चिरसम्मत सिद्धांत नहीं है जो इन दोनों गुणों में एक सूत्रता ला सके। बार्डीन, कूपर एवं श्रीफर ने एक क्वांटम यांत्रिकीय सिद्धांत (BCS सिद्धांत) दिया है, जो इन प्रभावों की व्याख्या कर सकता है। BCS सिद्धांत 1957 में प्रस्तावित किया गया था और बाद में, 1970 में, भौतिकी के नोबेल पुरस्कार के रूप में इसको मान्यता प्राप्त हुई।
6. प्रतिचुंबकत्व सार्वत्रिक है। यह सभी पदार्थों में विद्यमान है। परंतु अनुचुंबकीय एवं लौह चुंबकीय पदार्थों में यह बहुत क्षीण होता है और इसका पता लगाना बहुत कठिन है।
7. हमने पदार्थों का प्रतिचुंबकीय, अनुचुंबकीय एवं लौह चुंबकीय रूपों में वर्गीकरण किया है। लेकिन चुंबकीय पदार्थों के इनके अलावा भी कुछ प्रकार हैं; जैसे-लघु लौह चुंबकीय (फेरी चुंबकीय), प्रतिलौह चुंबकीय, स्पिन-काँच आदि जिनके गुण बहुत ही असामान्य एवं रहस्यमय हैं।
अभ्यास
5.1 एक छोटा छड़ चुंबक जो एकसमान बाह्य चुंबकीय क्षेत्र $0.25 \mathrm{~T}$ के साथ $30^{\circ}$ का कोण बनाता है, पर $4.5 \times 10^{-2} \mathrm{~J}$ का बल आघूर्ण लगता है। चुंबक के चुंबकीय आघूर्ण का परिमाण क्या है?
Show Answer
# Content Missing5.2 चुंबकीय आघूर्ण $\mathrm{m}=0.32 \mathrm{JT}^{-1}$ वाला एक छोटा छड़ चुंबक, $0.15 \mathrm{~T}$ के एकसमान बाह्य चुंबकीय क्षेत्र में रखा है। यदि यह छड़ क्षेत्र के तल में घूमने के लिए स्वतंत्र हो, तो क्षेत्र के किस विन्यास में यह (i) स्थायी संतुलन और (ii) अस्थायी संतुलन में होगा? प्रत्येक स्थिति में चुंबक की स्थितिज ऊर्जा का मान बताइए।
Show Answer
# Content Missing5.3 एक परिनालिका में पास-पास लपेटे गए 800 फेरे हैं, तथा इसका अनुप्रस्थ काट का क्षेत्रफल $2.5 \times 10^{-4} \mathrm{~m}^{2}$ है और इसमें $3.0 \mathrm{~A}$ धारा प्रवाहित हो रही है। समझाइए कि किस अर्थ में यह परिनालिका एक छड़ चुंबक की तरह व्यवहार करती है? इसके साथ जुड़ा हुआ चुंबकीय आघूर्ण कितना है?
Show Answer
# Content Missing5.4 यदि प्रश्न 5.5 में बताई गई परिनालिका ऊध्ध्वाधर दिशा के परितः घूमने के लिए स्वतंत्र हो और इस पर क्षैतिज दिशा में एक $0.25 \mathrm{~T}$ का एकसमान चुंबकीय क्षेत्र लगाया जाए, तो इस परिनालिका पर लगने वाले बल आघूर्ण का परिमाण उस समय क्या होगा, जब इसकी अक्ष आरोपित क्षेत्र की दिशा से $30^{\circ}$ का कोण बना रही हो?
Show Answer
# Content Missing5.5 एक छड़ चुंबक जिसका चुंबकीय आघूर्ण $1.5 \mathrm{~J} \mathrm{~T}^{-1}$ है, $0.22 \mathrm{~T}$ के एक एकसमान चुंबकीय क्षेत्र के अनुदिश रखा है।
(a) एक बाह्य बल आघूर्ण कितना कार्य करेगा यदि यह चुंबक को चुंबकीय क्षेत्र के (i) लंबवत (ii) विपरीत दिशा में संरेखित करने के लिए घुमा दे।
(b) स्थिति (i) एवं (ii) में चुंबक पर कितना बल आघूर्ण होता है?
Show Answer
# Content Missing5.6 एक परिनालिका जिसमें पास-पास 2000 फेरे लपेटे गए हैं तथा जिसके अनुप्रस्थ काट का क्षेत्रफल $1.6 \times 10^{-4} \mathrm{~m}^{2}$ है और जिसमें $4.0 \mathrm{~A}$ की धारा प्रवाहित हो रही है, इसके केंद्र से इस प्रकार लटकायी गई है कि यह एक क्षैतिज तल में घूम सके।
(a) परिनालिका के चुंबकीय आघूर्ण का मान क्या है?
(b) परिनालिका पर लगने वाला बल एवं बल आघूर्ण क्या है, यदि इस पर, इसकी अक्ष से $30^{\circ}$ का कोण बनाता हुआ $7.5 \times 10^{-2} \mathrm{~T}$ का एकसमान क्षैतिज चुंबकीय क्षेत्र लगाया जाए?
Show Answer
# Content Missing5.7 किसी छोटे छड़ चुंबक का चुंबकीय आघूर्ण $0.48 \mathrm{JT}^{-1}$ है। चुंबक के केंद्र से $10 \mathrm{~cm}$ की दूरी पर स्थित किसी बिंदु पर इसके चुंबकीय क्षेत्र का परिमाण एवं दिशा बताइए यदि यह बिंदु (i) चुंबक के अक्ष पर स्थित हो (ii) चुंबक के अभिलंब समद्विभाजक पर स्थित हो।