Chapter-03 Current Electricity
3.1 INTRODUCTION
In Chapter 1, all charges whether free or bound, were considered to be at rest. Charges in motion constitute an electric current. Such currents occur naturally in many situations. Lightning is one such phenomenon in which charges flow from the clouds to the earth through the atmosphere, sometimes with disastrous results. The flow of charges in lightning is not steady, but in our everyday life we see many devices where charges flow in a steady manner, like water flowing smoothly in a river. A torch and a cell-driven clock are examples of such devices. In the present chapter, we shall study some of the basic laws concerning steady electric currents.
3.2 Electric Current
Imagine a small area held normal to the direction of flow of charges. Both the positive and the negative charges may flow forward and backward across the area. In a given time interval $t$, let $q_{+}$be the net amount (i.e., forward minus backward) of positive charge that flows in the forward direction across the area. Similarly, let $q_{-}$be the net amount of negative charge flowing across the area in the forward direction. The net amount of charge flowing across the area in the forward direction in the time interval $t$, then, is $q=q_{+}-q_{-}$. This is proportional to $t$ for steady current and the quotient
$$ \begin{equation*} I=\frac{q}{t} \tag{3.1} \end{equation*} $$
is defined to be the current across the area in the forward direction. (If it turn out to be a negative number, it implies a current in the backward direction.)
Currents are not always steady and hence more generally, we define the current as follows. Let $\Delta Q$ be the net charge flowing across a crosssection of a conductor during the time interval $\Delta t [$ i.e., between times $t$ and $(t+\Delta t)]$. Then, the current at time $t$ across the cross-section of the conductor is defined as the value of the ratio of $\Delta Q$ to $\Delta t$ in the limit of $\Delta t$ tending to zero,
$$ \begin{equation*} I(t) \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t} \tag{3.2} \end{equation*} $$
In SI units, the unit of current is ampere. An ampere is defined through magnetic effects of currents that we will study in the following chapter. An ampere is typically the order of magnitude of currents in domestic appliances. An average lightning carries currents of the order of tens of thousands of amperes and at the other extreme, currents in our nerves are in microamperes.
3.3 Electric Currents in Conductors
An electric charge will experience a force if an electric field is applied. If it is free to move, it will thus move contributing to a current. In nature, free charged particles do exist like in upper strata of atmosphere called the ionosphere. However, in atoms and molecules, the negatively charged electrons and the positively charged nuclei are bound to each other and are thus not free to move. Bulk matter is made up of many molecules, a gram of water, for example, contains approximately $10^{22}$ molecules. These molecules are so closely packed that the electrons are no longer attached to individual nuclei. In some materials, the electrons will still be bound, i.e., they will not accelerate even if an electric field is applied. In other materials, notably metals, some of the electrons are practically free to move within the bulk material. These materials, generally called conductors, develop electric currents in them when an electric field is applied.
If we consider solid conductors, then of course the atoms are tightly bound to each other so that the current is carried by the negatively charged electrons. There are, however, other types of conductors like electrolytic solutions where positive and negative charges both can move. In our discussions, we will focus only on solid conductors so that the current is carried by the negatively charged electrons in the background of fixed positive ions.
Consider first the case when no electric field is present. The electrons will be moving due to thermal motion during which they collide with the fixed ions. An electron colliding with an ion emerges with the same speed as before the collision. However, the direction of its velocity after the collision is completely random. At a given time, there is no preferential direction for the velocities of the electrons. Thus on the average, the number of electrons travelling in any direction will be equal to the number of electrons travelling in the opposite direction. So, there will be no net electric current.
Let us now see what happens to such a piece of conductor if an electric field is applied. To focus our thoughts, imagine the conductor in the shape of a cylinder of radius $R$ (Fig. 3.1). Suppose we now take two thin circular discs of a dielectric of the same radius and put positive charge $+Q$ distributed over one disc and similarly $-Q$ at the other disc. We attach the two discs on the two flat surfaces of the cylinder. An electric field will be created and is directed from the positive towards the negative charge. The electrons will be accelerated due to this field towards $+Q$. They will thus move to neutralise the charges. The electrons, as long as they are moving, will constitute an electric current. Hence in the situation considered, there will be a current for a very short while and no current thereafter.
FIGURE 3.1 Charges $+Q$ and $-Q$ put at the ends of a metallic cylinder. The electrons will drift because of the electric field created to neutralise the charges. The current thus will stop after a while unless the charges $+Q$ and $-Q$ are continuously replenished.
We can also imagine a mechanism where the ends of the cylinder are supplied with fresh charges to make up for any charges neutralised by electrons moving inside the conductor. In that case, there will be a steady electric field in the body of the conductor. This will result in a continuous current rather than a current for a short period of time. Mechanisms, which maintain a steady electric field are cells or batteries that we shall study later in this chapter. In the next sections, we shall study the steady current that results from a steady electric field in conductors.
3.4 OHM’s LAW
FIGURE 3.2 Illustrating the relation $\mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ for a rectangular slab of length $l$ and area of cross-section A.
A basic law regarding flow of currents was discovered by G.S. Ohm in 1828 , long before the physical mechanism responsible for flow of currents was discovered. Imagine a conductor through which a current $I$ is flowing and let $V$ be the potential difference between the ends of the conductor. Then Ohm’s law states that
$$ \begin{align*} V & \propto I \\ \text { or, } V & =R I \tag{3.3} \end{align*} $$
where the constant of proportionality $R$ is called the resistance of the conductor. The SI units of resistance is ohm, and is denoted by the symbol $\Omega$. The resistance $R$ not only depends on the material of the conductor but also on the dimensions of the conductor. The dependence of $R$ on the dimensions of the conductor can easily be determined as follows.
Georg Simon Ohm (1787– 1854) German physicist, professor at Munich. Ohm was led to his law by an analogy between the conduction of heat: the electric field is analogous to the temperature gradient, and the electric current is analogous to the heat flow.
Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of length $l$ and cross sectional area $A$ [Fig. 3.2(a)]. Imagine placing two such identical slabs side by side [Fig. 3.2(b)], so that the length of the combination is $2 l$. The current flowing through the combination is the same as that flowing through either of the slabs. If $V$ is the potential difference across the ends of the first slab, then $V$ is also the potential difference across the ends of the second slab since the second slab is identical to the first and the same current I flows through both. The potential difference across the ends of the combination is clearly sum of the potential difference across the two individual slabs and hence equals $2 V$. The current through the combination is $I$ and the resistance of the combination $R_{\mathrm{C}}$ is [from Eq. (3.3)],
$$ \begin{equation*} R_{C}=\frac{2 V}{I}=2 R \tag{3.4} \end{equation*} $$
since $V / I=R$, the resistance of either of the slabs. Thus, doubling the length of a conductor doubles the resistance. In general, then resistance is proportional to length,
$$ \begin{equation*} R \propto l \tag{3.5} \end{equation*} $$
Next, imagine dividing the slab into two by cutting it lengthwise so that the slab can be considered as a combination of two identical slabs of length $l$, but each having a cross sectional area of $A / 2$ [Fig. 3.2(c)].
For a given voltage $V$ across the slab, if $I$ is the current through the entire slab, then clearly the current flowing through each of the two half-slabs is $I / 2$. Since the potential difference across the ends of the half-slabs is $V$, i.e., the same as across the full slab, the resistance of each of the half-slabs $R_{1}$ is
$$ \begin{equation*} R_{1}=\frac{V}{(I / 2)}=2 \frac{V}{I}=2 R \tag{3.6} \end{equation*} $$
Thus, halving the area of the cross-section of a conductor doubles the resistance. In general, then the resistance $R$ is inversely proportional to the cross-sectional area,
$$ \begin{equation*} R \propto \frac{1}{A} \tag{3.7} \end{equation*} $$
Combining Eqs. (3.5) and (3.7), we have
$$ \begin{equation*} R \propto \frac{l}{A} \tag{3.8} \end{equation*} $$
and hence for a given conductor
$$ \begin{equation*} R=\rho \frac{l}{A} \tag{3.9} \end{equation*} $$
where the constant of proportionality $\rho$ depends on the material of the conductor but not on its dimensions. $\rho$ is called resistivity. Using the last equation, Ohm’s law reads
$$ \begin{equation*} V=I \times R=\frac{I \rho}{A} \tag{3.10} \end{equation*} $$
Current per unit area (taken normal to the current), $I / A$, is called current density and is denoted by $j$. The SI units of the current density are $\mathrm{A} / \mathrm{m}^{2}$. Further, if $E$ is the magnitude of uniform electric field in the ends is $E l$. Using these, the last equation reads
$$ \begin{align*} & E l=j \rho l \\ \text { or, } & E=j \rho \tag{3.11} \end{align*} $$
The above relation for magnitudes $E$ and $j$ can indeed be cast in a vector form. The current density, (which we have defined as the current through unit area normal to the current) is also directed along $\mathbf{E}$, and is also a vector $\mathbf{j}(\equiv j \mathbf{E} / \mathrm{E})$ . Thus, the last equation can be written as,
$$ \begin{align*} \mathbf{E} & =\mathbf{j} \rho \tag{3.12}\\ \text { or, } & \mathbf{j}=\sigma \mathbf{E} \tag{3.13} \end{align*} $$
where $\sigma \equiv 1 / \rho$ is called the conductivity. Ohm’s law is often stated in an equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we will try to understand the origin of the Ohm’s law as arising from the characteristics of the drift of electrons.
3.5 Drift of Electrons and the Origin OF RESISTIVITY
As remarked before, an electron will suffer collisions with the heavy fixed ions, but after collision, it will emerge with the same speed but in random directions. If we consider all the electrons, their average velocity will be zero since their directions are random. Thus, if there are $N$ electrons and the velocity of the $i^{\text {th }}$ electron $(i=1,2,3, \ldots N)$ at a given time is $\mathbf{v}_{i}$, then
$$ \begin{equation*} \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{i}=0 \tag{3.14} \end{equation*} $$
Consider now the situation when an electric field is present. Electrons will be accelerated due to this field by
$$ \begin{equation*} \mathbf{a}=\frac{-e \mathbf{E}}{m} \tag{3.15} \end{equation*} $$
where $-e$ is the charge and $\boldsymbol{m}$ is the mass of an electron. Consider again the $\boldsymbol{i^\text {th }}$ electron at a given time $\boldsymbol{t}$. This electron would have had its last collision some time before $t$, and let $t_{i}$ be the time elapsed after its last collision. If $\mathbf{v_i}$ was its velocity immediately after the last collision, then its velocity $\mathbf{V}_{i}$ at time $t$ is
$$ \begin{equation*} \mathbf{v} _{i}=\mathbf{v} _{i}+\left(-\frac{e \mathbf{E}}{m}\right) t _{i} \tag{3.16} \end{equation*} $$
since starting with its last collision it was accelerated (Fig. 3.3) with an acceleration given by Eq. (3.15) for a time interval $t_{i}$. The average velocity of the electrons at time $t$ is the average of all the $\mathbf{v_i}$ ’s. The average of $\mathbf{v_i}$ ’s is zero [Eq. (3.14)] since immediately after any collision, the direction of the velocity of an electron is completely random. The collisions of the electrons do not occur at regular intervals but at random times. Let us denote by $\tau$, the average time between successive collisions. Then at a given time, some of the electrons would have spent time more than $\tau$ and some less than $\tau$. In other words, the time $\boldsymbol{t_i}$ in Eq. (3.16) will be less than $\tau$ for some and more than $\tau$ for others as we go through the values of $\boldsymbol{i}=1,2 \ldots . . N$. The average value of $t_{i}$ then is $\tau$ (known as relaxation time). Thus, averaging Eq. (3.16) over the $N$-electrons at any given time $\boldsymbol{t}$ gives us for the average velocity $\mathbf{v_{\boldsymbol{d}}}$
FIGURE 3.3 A schematic picture of an electron moving from a point $A$ to another point B through repeated collisions, and straight line travel between collisions (full lines). If an electric field is applied as shown, the electron ends up at point $\mathrm{B}^{\prime}$ (dotted lines). A slight drift in a direction opposite the electric field is visible.
$$ \begin{align*} & \mathbf{v_d} \equiv\left(\mathbf{V_i}\right)_{\text {average }}=\left(\mathbf{v_i}\right)-\frac{e \mathbf{E}}{m}\left(t_i\right)\\ & =0-\frac{e \mathbf{E}}{m} \tau =-\frac{e \mathbf{E}}{m} \tau \tag{3.17} \end{align*} $$
FIGURE 3.4 Current in a metallic conductor. The magnitude of current density in a metal is the magnitude of charge contained in a cylinder of unit area and length $v_{d}$.
This last result is surprising. It tells us that the electrons move with an average velocity which is independent of time, although electrons are accelerated. This is the phenomenon of drift and the velocity $\mathbf{v _\mathbf{d}}$ in Eq. (3.17) is called the $\mathbf{d}$ rift velocity.
Because of the drift, there will be net transport of charges across any area perpendicular to $\mathbf{E}$. Consider a planar area $A$, located inside the conductor such that the normal to the area is parallel to $\mathbf{E}$ (Fig. 3.4). Then because of the drift, in an infinitesimal amount of time $\Delta \mathbf{t}$, all electrons to the left of the area at distances upto $\left|\mathbf{v_\mathbf{d}}\right| \Delta \mathbf{t}$ would have crossed the area. If $\mathbf{n}$ is the number of free electrons per unit volume in the metal, then there are $\mathbf{n} \Delta \mathbf{t}\left|\mathbf{v_\mathbf{d}}\right| \mathbf{A}$ such electrons. Since each electron carries a charge $-\mathbf{e}$, the total charge transported across this area $\mathbf{A}$ to the right in time $\Delta t$ is $-n e A\left|\mathrm{v_d}\right| \Delta t$. $\mathbf{E}$ is directed towards the left and hence the total charge transported along $\mathbf{E}$ across the area is negative of this. The amount of charge crossing the area $A$ in time $\Delta t$ is by definition [Eq. (3.2)] $I \Delta t$, where $I$ is the magnitude of the current. Hence,
$$ \begin{equation*} I \Delta t=+n \text { e } A\left|\mathrm{v}_{d}\right| \Delta t \tag{3.18} \end{equation*} $$
Substituting the value of $\left|\mathbf{v}_{d}\right|$ from Eq. (3.17)
$$ \begin{equation*} I \Delta t=\frac{e^{2} A}{m} \ln \Delta t|\mathrm{E}| \tag{3.19} \end{equation*} $$
By definition $I$ is related to the magnitude $|j|$ of the current density by
$$ \begin{equation*} I=|\mathrm{j}| A \tag{3.20} \end{equation*} $$
Hence, from Eqs.(3.19) and (3.20),
$$ \begin{equation*} |\mathrm{j}|=\frac{n e^{2}}{m} \tau|\mathrm{E}| \tag{3.21} \end{equation*} $$
The vector $\mathbf{j}$ is parallel to $\mathbf{E}$ and hence we can write Eq. (3.21) in the vector form
$$ \begin{equation*} \mathbf{j}=\frac{n e^{2}}{m} \tau \mathbf{E} \tag{3.22} \end{equation*} $$
Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s law, if we identify the conductivity $\sigma$ as
$$ \begin{equation*} \sigma=\frac{n e^{2}}{m} \tau \tag{3.23} \end{equation*} $$
We thus see that a very simple picture of electrical conduction reproduces Ohm’s law. We have, of course, made assumptions that $\tau$ and $n$ are constants, independent of $E$. We shall, in the next section, discuss the limitations of Ohm’s law.
Example 3.1 (a) Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area $1.0 \times 10^{-7} \mathrm{~m}^{2}$ carrying a current of 1.5 A. Assume that each copper atom contributes roughly one conduction electron. The density of copper is $9.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, and its atomic mass is $63.5 \mathrm{u}$. (b) Compare the drift speed obtained above with, (i) thermal speeds of copper atoms at ordinary temperatures, (ii) speed of propagation of electric field along the conductor which causes the drift motion.
Solution (a) The direction of drift velocity of conduction electrons is opposite to the electric field direction, i.e., electrons drift in the direction of increasing potential. The drift speed $v_{d}$ is given by Eq. (3.18) $v_{d}=(I / n e A)$
Now, $e=1.6 \times 10^{-19} \mathrm{C}, A=1.0 \times 10^{-7} \mathrm{~m}^{2}, I=1.5 \mathrm{~A}$. The density of conduction electrons, $n$ is equal to the number of atoms per cubic metre (assuming one conduction electron per $\mathrm{Cu}$ atom as is reasonable from its valence electron count of one). A cubic metre of copper has a mass of $9.0 \times 10^{3} \mathrm{~kg}$. Since $6.0 \times 10^{23}$ copper atoms have a mass of $63.5 \mathrm{~g}$,
$$ \begin{aligned} n & =\frac{6.0 \times 10^{23}}{63.5} \times 9.0 \times 10^{6} \\ & =8.5 \times 10^{28} \mathrm{~m}^{-3} \end{aligned} $$
which gives,
$$ \begin{aligned} v_{d} & =\frac{1.5}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \\ & =1.1 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \\ & =1.1 \mathrm{~mm} \mathrm{~s}^{-1} \end{aligned} $$
(b) (i) At a temperature $T$, the thermal speed* of a copper atom of mass $M$ is obtained from $\left[<(1 / 2) M v^{2}>=(3 / 2) k_{\mathrm{B}} T\right]$ and is thus typically of the order of $\sqrt{k_{B} T / M}$, where $k_{B}$ is the Boltzmann constant. For copper at $300 \mathrm{~K}$, this is about $2 \times 10^{2} \mathrm{~m} / \mathrm{s}$. This figure indicates the random vibrational speeds of copper atoms in a conductor. Note that the drift speed of electrons is much smaller, about $10^{-5}$ times the typical thermal speed at ordinary temperatures.
(ii) An electric field travelling along the conductor has a speed of an electromagnetic wave, namely equal to $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (You will learn about this in Chapter 8). The drift speed is, in comparison, extremely small; smaller by a factor of $10^{-11}$.
Example 3.2 (a) In Example 3.1, the electron drift speed is estimated to be only a few $\mathrm{mm} \mathrm{s}^{-1}$ for currents in the range of a few amperes? How then is current established almost the instant a circuit is closed?
(b) The electron drift arises due to the force experienced by electrons in the electric field inside the conductor. But force should cause acceleration. Why then do the electrons acquire a steady average drift speed?
(c) If the electron drift speed is so small, and the electron’s charge is small, how can we still obtain large amounts of current in a conductor?
(d) When electrons drift in a metal from lower to higher potential, does it mean that all the ‘free’ electrons of the metal are moving in the same direction?
(e) Are the paths of electrons straight lines between successive collisions (with the positive ions of the metal) in the (i) absence of electric field, (ii) presence of electric field?
Solution (a) Electric field is established throughout the circuit, almost instantly (with the speed of light) causing at every point a local electron drift. Establishment of a current does not have to wait for electrons from one end of the conductor travelling to the other end. However, it does take a little while for the current to reach its steady value.
(b) Each ‘free’ electron does accelerate, increasing its drift speed until it collides with a positive ion of the metal. It loses its drift speed after collision but starts to accelerate and increases its drift speed again only to suffer a collision again and so on. On the average, therefore, electrons acquire only a drift speed.
(c) Simple, because the electron number density is enormous, $\sim 10^{29} \mathrm{~m}^{-3}$.
(d) By no means. The drift velocity is superposed over the large random velocities of electrons.
(e) In the absence of electric field, the paths are straight lines; in the presence of electric field, the paths are, in general, curved.
3.5.1 Mobility
As we have seen, conductivity arises from mobile charge carriers. In metals, these mobile charge carriers are electrons; in an ionised gas, they are electrons and positive charged ions; in an electrolyte, these can be both positive and negative ions.
An important quantity is the mobility $\mu$ defined as the magnitude of the drift velocity per unit electric field:
$$ \begin{equation*} \mu=\frac{\left|\mathbf{v}_{d}\right|}{E} \tag{3.24} \end{equation*} $$
The SI unit of mobility is $\mathrm{m}^{2} / \mathrm{Vs}$ and is $10^{4}$ of the mobility in practical units $\left(\mathrm{cm}^{2} / \mathrm{Vs}\right)$. Mobility is positive. From Eq. (3.17), we have
$$ v_{d}=\frac{e \tau E}{m} $$
Hence,
$$ \begin{equation*} \mu=\frac{v _{d}}{E}=\frac{e \tau}{m} \tag{3.25} \end{equation*} $$
where $\tau$ is the average collision time for electrons.
3.6 Limitations of Ohm’s Law
Although Ohm’s law has been found valid over a large class of materials, there do exist materials and devices used in electric circuits where the proportionality of $V$ and $I$ does not hold. The deviations broadly are one or more of the following types:
(a) $V$ ceases to be proportional to $I$ (Fig. 3.5).
(b) The relation between $V$ and $I$ depends on the sign of $V$. In other words, if $I$ is the current for a certain $V$, then reversing the direction of $V$ keeping its magnitude fixed, does not produce a current of the same magnitude as $I$ in the opposite direction (Fig. 3.6). This happens, for example, in a diode which we will study in Chapter 14.
FIGURE 3.5 The dashed line represents the linear Ohm’s law. The solid line is the voltage $V$ versus current $I$ for a good conductor.
FIGURE 3.6 Characteristic curve of a diode. Note the different scales for negative and positive values of the voltage and current.
FIGURE 3.7 Variation of current versus voltage for GaAs.
(c) The relation between $V$ and $I$ is not unique, i.e., there is more than one value of $V$ for the same current $I$ (Fig. 3.7). A material exhibiting such behaviour is GaAs.
Materials and devices not obeying Ohm’s law in the form of Eq. (3.3) are actually widely used in electronic circuits. In this and a few subsequent chapters, however, we will study the electrical currents in materials that obey Ohm’s law.
3.7 Resistivity of Various Materials
The materials are classified as conductors, semiconductors and insulators depending on their resistivities, in an increasing order of their values. Metals have low resistivities in the range of $10^{-8} \Omega \mathrm{m}$ to $10^{-6} \Omega \mathrm{m}$. At the other end are insulators like ceramic, rubber and plastics having resistivities $10^{18}$ times greater than metals or more. In between the two are the semiconductors. These, however, have resistivities characteristically decreasing with a rise in temperature. The resistivities of semiconductors can be decreased by adding small amount of suitable impurities. This last feature is exploited in use of semiconductors for electronic devices.
3.8 Temperature Dependence of Resistivity
The resistivity of a material is found to be dependent on the temperature. Different materials do not exhibit the same dependence on temperatures. Over a limited range of temperatures, that is not too large, the resistivity of a metallic conductor is approximately given by,
$$ \begin{equation*} \rho_{\mathrm{T}}=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \tag{3.26} \end{equation*} $$
where $\rho_{\mathrm{T}}$ is the resistivity at a temperature $T$ and $\rho_{0}$ is the same at a reference temperature $T_{0} . \alpha$ is called the temperature co-efficient of resistivity, and from Eq. (3.26), the dimension of $\alpha$ is (Temperature) ${ }^{-1}$. For metals, $\alpha$ is positive.
The relation of Eq. (3.26) implies that a graph of $\rho_{\mathrm{T}}$ plotted against $T$ would be a straight line. At temperatures much lower than $0^{\circ} \mathrm{C}$, the graph, however, deviates considerably from a straight line (Fig. 3.8).
Equation (3.26) thus, can be used approximately over a limited range of $T$ around any reference temperature $T_{0}$, where the graph can be approximated as a straight line.
FIGURE 3.8 Resistivity $\rho_{T}$ of copper as a function of temperature $T$.
FIGURE 3.9 Resistivity $\rho_{T}$ of nichrome as a function of absolute temperature $T$.
FIGURE 3.10 Temperature dependence of resistivity for a typical semiconductor.
Some materials like Nichrome (which is an alloy of nickel, iron and chromium) exhibit a very weak dependence of resistivity with temperature (Fig. 3.9). Manganin and constantan have similar properties. These materials are thus widely used in wire bound standard resistors since their resistance values would change very little with temperatures.
Unlike metals, the resistivities of semiconductors decrease with increasing temperatures. A typical dependence is shown in Fig. 3.10.
We can qualitatively understand the temperature dependence of resistivity, in the light of our derivation of Eq. (3.23). From this equation, resistivity of a material is given by
$$ \begin{equation*} \rho=\frac{1}{\sigma}=\frac{m}{n e^{2} \tau} \tag{3.27} \end{equation*} $$
$\rho$ thus depends inversely both on the number $n$ of free electrons per unit volume and on the average time $\tau$ between collisions. As we increase temperature, average speed of the electrons, which act as the carriers of current, increases resulting in more frequent collisions. The average time of collisions $\tau$, thus decreases with temperature.
In a metal, $n$ is not dependent on temperature to any appreciable extent and thus the decrease in the value of $\tau$ with rise in temperature causes $\rho$ to increase as we have observed.
For insulators and semiconductors, however, $n$ increases with temperature. This increase more than compensates any decrease in $\tau$ in Eq.(3.23) so that for such materials, $\rho$ decreases with temperature.
Example 3.3 An electric toaster uses nichrome for its heating element. When a negligibly small current passes through it, its resistance at room temperature $\left(27.0^{\circ} \mathrm{C}\right)$ is found to be $75.3 \Omega$. When the toaster is connected to a $230 \mathrm{~V}$ supply, the current settles, after a few seconds, to a steady value of $2.68 \mathrm{~A}$. What is the steady temperature of the nichrome element? The temperature coefficient of resistance of nichrome averaged over the temperature range involved, is $1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.
Solution When the current through the element is very small, heating effects can be ignored and the temperature $T_{1}$ of the element is the same as room temperature. When the toaster is connected to the supply, its initial current will be slightly higher than its steady value of $2.68 \mathrm{~A}$. But due to heating effect of the current, the temperature will rise. This will cause an increase in resistance and a slight decrease in current. In a few seconds, a steady state will be reached when temperature will rise no further, and both the resistance of the element and the current drawn will achieve steady values. The resistance $R_{2}$ at the steady temperature $T_{2}$ is
$$ R_{2}=\frac{230 \mathrm{~V}}{2.68 \mathrm{~A}}=85.8 \Omega $$
Using the relation
$$ R_{2}=R_{1}\left[1+\alpha\left(T_{2}-T_{1}\right)\right] $$
with
$\alpha=1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$, we get
$$ T_{2}-T_{1}=\frac{(85.8-75.3)}{(75.3) \times 1.70 \times 10^{-4}}=820^{\circ} \mathrm{C} $$
that is, $$ T _{2}=(820+27.0)^{\circ} \mathrm{C}=847^{\circ} \mathrm{C} $$
Thus, the steady temperature of the heating element (when heating effect due to the current equals heat loss to the surroundings) is $847^{\circ} \mathrm{C}$.
Example 3.4 The resistance of the platinum wire of a platinum resistance thermometer at the ice point is $5 \Omega$ and at steam point is $5.23 \Omega$. When the thermometer is inserted in a hot bath, the resistance of the platinum wire is $5.795 \Omega$. Calculate the temperature of the bath.
Solution
$$ \begin{aligned} & R _{0}=5 \Omega, R _{100}=5.23 \Omega \text { and } R _{\mathrm{t}}=5.795 \Omega \\ & \text { Now, } \quad t=\frac{R _{t}-R _{o}}{R _{100}-R _{o}} \times 100, \quad R _{t}=R _{o}(1+\alpha t) \\ & =\frac{5.795-5}{5.23-5} \times 100 \\ & =\frac{0.795}{0.23} \times 100=345.65^{\circ} \mathrm{C} \end{aligned} $$
3.9 Electrical Energy, Power
Consider a conductor with end points $\mathrm{A}$ and $\mathrm{B}$, in which a current $I$ is flowing from $\mathrm{A}$ to $\mathrm{B}$. The electric potential at $\mathrm{A}$ and $\mathrm{B}$ are denoted by $V(\mathrm{~A})$ and $V(\mathrm{~B})$ respectively. Since current is flowing from $\mathrm{A}$ to $\mathrm{B}, V(\mathrm{~A})>V(\mathrm{~B})$ and the potential difference across $A B$ is $V=V(\mathrm{~A})-V(\mathrm{~B})>0$.
In a time interval $\Delta t$, an amount of charge $\Delta Q=I \Delta t$ travels from $A$ to $B$. The potential energy of the charge at $A$, by definition, was $Q V(A)$ and similarly at $\mathrm{B}$, it is $\mathrm{Q} V(\mathrm{~B})$. Thus, change in its potential energy $\Delta U_{\text {pot }}$ is
$$ \begin{align*} \Delta U _{p o t} & =\text { Final potential energy - Initial potential energy } \\ & =\Delta \mathrm{Q}[(V(\mathrm{~B})-V(\mathrm{~A})]=-\Delta Q V \\ & =-I V \Delta t<0 \tag{3.28} \end{align*} $$
If charges moved without collisions through the conductor, their kinetic energy would also change so that the total energy is unchanged. Conservation of total energy would then imply that,
$$ \begin{equation*} \Delta K=-\Delta U_{\text {pot }} \tag{3.29} \end{equation*} $$
that is,
$$ \begin{equation*} \Delta K=I V \Delta t>0 \tag{3.30} \end{equation*} $$
Thus, in case charges were moving freely through the conductor under the action of electric field, their kinetic energy would increase as they move. We have, however, seen earlier that on the average, charge carriers do not move with acceleration but with a steady drift velocity. This is because of the collisions with ions and atoms during transit. During collisions, the energy gained by the charges thus is shared with the atoms. The atoms vibrate more vigorously, i.e., the conductor heats up. Thus, in an actual conductor, an amount of energy dissipated as heat in the conductor during the time interval $\Delta t$ is,
$\Delta W=I V \Delta t$
The energy dissipated per unit time is the power dissipated $P=\Delta W / \Delta t$ and we have,
Using Ohm’s law $V=I R$, we get
$$ \begin{equation*} P=I^{2} R=V^{2} / R \tag{3.33} \end{equation*} $$
as the power loss (“ohmic loss”) in a conductor of resistance $R$ carrying a current I. It is this power which heats up, for example, the coil of an electric bulb to incandescence, radiating out heat and light.
Where does the power come from? As we have reasoned before, we need an external source to keep a steady current through the conductor. It is clearly this source which must supply this power. In the simple circuit shown with a cell (Fig.3.11), it is the chemical energy of the cell which supplies this power for as long as it can.
The expressions for power, Eqs. (3.32) and (3.33), show the dependence of the power dissipated in a resistor $R$ on the current through it and the voltage across it.
FIGURE 3.11 Heat is produced in the resistor $R$ which is connected across the terminals of a cell. The energy dissipated in the resistor $R$ comes from the chemical energy of the electrolyte.
Equation (3.33) has an important application to power transmission. Electrical power is transmitted from power stations to homes and factories, which may be hundreds of miles away, via transmission cables. One obviously wants to minimise the power loss in the transmission cables connecting the power stations to homes and factories. We shall see now how this can be achieved. Consider a device $R$, to which a power $P$ is to be delivered via transmission cables having a resistance $R_{c}$ to be dissipated by it finally. If $V$ is the voltage across $R$ and $I$ the current through it, then
$$ \begin{align*} P=V I \quad {(3.34)} \end{align*} $$
The connecting wires from the power station to the device has a finite resistance $R_{c}$. The power dissipated in the connecting wires, which is wasted is $P_{c}$ with
$$ \begin{align*} P_{c} & =I^{2} R_{c} \\ & =\frac{P^{2} R_{c}}{V^{2}} \tag{3.35} \end{align*} $$
from Eq. (3.32). Thus, to drive a device of power $P$, the power wasted in the connecting wires is inversely proportional to $V^{2}$. The transmission cables from power stations are hundreds of miles long and their resistance $R_{c}$ is considerable. To reduce $P_{c}$, these wires carry current at enormous values of $V$ and this is the reason for the high voltage danger signs on transmission lines - a common sight as we move away from populated areas. Using electricity at such voltages is not safe and hence at the other end, a device called a transformer lowers the voltage to a value suitable for use.
3.10 Cells, emF, Internal Resistance
We have already mentioned that a simple device to maintain a steady current in an electric circuit is the electrolytic cell. Basically a cell has two electrodes, called the positive $(\mathrm{P})$ and the negative $(\mathrm{N})$, as shown in
FIGURE 3.12 (a) Sketch of an electrolyte cell with positive terminal $\mathrm{P}$ and negative terminal $\mathrm{N}$. The gap between the electrodes is exaggerated for clarity. A and $B$ are points in the electrolyte typically close to $\mathrm{P}$ and $\mathrm{N}$. (b) the symbol for a cell, + referring to $\mathrm{P}$ and - referring to the $\mathrm{N}$ electrode. Electrical connections to the cell are made at $\mathrm{P}$ and $\mathrm{N}$.
Fig. 3.12. They are immersed in an electrolytic solution. Dipped in the solution, the electrodes exchange charges with the electrolyte. The positive electrode has a potential difference $V_{+}\left(V_{+}>0\right)$ between itself and the electrolyte solution immediately adjacent to it marked A in the figure. Similarly, the negative electrode develops a negative potential $-\left(V_{-}\right)\left(V_{-} \geq 0\right)$ relative to the electrolyte adjacent to it, marked as $B$ in the figure. When there is no current, the electrolyte has the same potential throughout, so that the potential difference between $\mathrm{P}$ and $\mathrm{N}$ is $V_{+}-\left(-V_{-}\right)=V_{+}+V_{-}$. This difference is called the electromotive force ( $\mathrm{emf}$ ) of the cell and is denoted by $\varepsilon$. Thus
$$ \begin{equation*} \varepsilon=V_{+}+V_{-}>0 \tag{3.36} \end{equation*} $$
Note that $\varepsilon$ is, actually, a potential difference and not a force. The name emf, however, is used because of historical reasons, and was given at a time when the phenomenon was not understood properly.
To understand the significance of $\varepsilon$, consider a resistor $R$ connected across the cell (Fig. 3.12). A current $I$ flows across $R$ from $\mathrm{C}$ to $\mathrm{D}$. As explained before, a steady current is maintained because current flows from $\mathrm{N}$ to $\mathrm{P}$ through the electrolyte. Clearly, across the electrolyte the same current flows through the electrolyte but from $\mathrm{N}$ to $\mathrm{P}$, whereas through $R$, it flows from $\mathrm{P}$ to $\mathrm{N}$.
The electrolyte through which a current flows has a finite resistance $r$, called the internal resistance. Consider first the situation when $R$ is infinite so that $I=V / R=0$, where $V$ is the potential difference between $P$ and $N$. Now,
$$ \begin{align*} V= & \text { Potential difference between } \mathrm{P} \text { and } \mathrm{A} \\ & + \text { Potential difference between } \mathrm{A} \text { and } \mathrm{B} \\ & + \text { Potential difference between }\mathrm{B} \text { and } \mathrm{N} \\ = & \varepsilon \tag{3.37} \end{align*} $$
Thus, emf $\varepsilon$ is the potential difference between the positive and negative electrodes in an open circuit, i.e., when no current is flowing through the cell.
If however $R$ is finite, $I$ is not zero. In that case the potential difference between $\mathrm{P}$ and $\mathrm{N}$ is
$$ \begin{align*} V & =V_{+}+V_{-}-I r \\ & =\varepsilon-I r \tag{3.38} \end{align*} $$
Note the negative sign in the expression (Ir) for the potential difference between A and B. This is because the current I flows from B to A in the electrolyte.
In practical calculations, internal resistances of cells in the circuit may be neglected when the current $I$ is such that $\varepsilon \gg I r$. The actual values of the internal resistances of cells vary from cell to cell. The internal resistance of dry cells, however, is much higher than the common electrolytic cells.
We also observe that since $V$ is the potential difference across $R$, we have from Ohm’s law
$V=I R$ (3.39)
Combining Eqs. (3.38) and (3.39), we get
$I R=\varepsilon-I r$
Or, $I=\frac{\varepsilon}{R+r}$ (3.40)
The maximum current that can be drawn from a cell is for $R=0$ and it is $I_{\max }=\varepsilon / r$. However, in most cells the maximum allowed current is much lower than this to prevent permanent damage to the cell.
3.11 Cells in Series and in Parallel
Like resistors, cells can be combined together in an electric circuit. And like resistors, one can, for calculating currents and voltages in a circuit, replace a combination of cells by an equivalent cell.
FIGURE 3.13 Two cells of emf’s $\varepsilon_{1}$ and $\varepsilon_{2}$ in the series. $r_{1}, r_{2}$ are their internal resistances. For connections across $\mathrm{A}$ and $\mathrm{C}$, the combination can be considered as one cell of emf $\varepsilon_{e q}$ and an internal resistance $r_{e q}$.
Consider first two cells in series (Fig. 3.13), where one terminal of the two cells is joined together leaving the other terminal in either cell free. $\varepsilon_{1}, \varepsilon_{2}$ are the emf’s of the two cells and $r_{1}, r_{2}$ their internal resistances, respectively.
Let $V(\mathrm{~A}), V(\mathrm{~B}), V(\mathrm{C})$ be the potentials at points $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ shown in Fig. 3.13. Then $V(\mathrm{~A})-V(\mathrm{~B})$ is the potential difference between the positive and negative terminals of the first cell. We have already calculated it in Eq. (3.38) and hence,
$$ \begin{equation*} V_{\mathrm{AB}} \equiv V(\mathrm{~A}) \quad V(\mathrm{~B})=\varepsilon_{1} \quad I r_{1} \tag{3.41} \end{equation*} $$
Similarly,
$$ \begin{equation*} V_{\mathrm{BC}} \equiv V(\mathrm{~B}) \quad V(\mathrm{C})=\varepsilon_{2} \quad I r_{2} \tag{3.42} \end{equation*} $$
Hence, the potential difference between the terminals $\mathrm{A}$ and $\mathrm{C}$ of the combination is
$$ \begin{align*} V_{\mathrm{AC}} & \equiv V(\mathrm{~A})-V(\mathrm{C})=V(\mathrm{~A})-V(\mathrm{~B})+V(\mathrm{~B})-V(\mathrm{C}) \\ & =\left(\varepsilon_{1}+\varepsilon_{2}\right)-I\left(r_{1}+r_{2}\right) \tag{3.43} \end{align*} $$
If we wish to replace the combination by a single cell between $\mathrm{A}$ and $\mathrm{C}$ of emf $\varepsilon_{e q}$ and internal resistance $r_{e q}$, we would have
$$ \begin{equation*} V_{A C}=\varepsilon_{e q}-I r_{e q} \tag{3.44} \end{equation*} $$
$$ \begin{equation*} r _{e q}=r _{1}+r _{2} \tag{3.46} \end{equation*} $$
$$ \begin{equation*} \varepsilon_{\text {eq }}=\varepsilon_{1}+\varepsilon_{2} \tag{3.45} \end{equation*} $$ and $$ \begin{equation*} r _{e q}=r _{1}+r _{2} \tag{3.46} \end{equation*} $$
In Fig.3.13, we had connected the negative electrode of the first to the positive electrode of the second. If instead we connect the two negatives, Eq. (3.42) would change to $V_{B C}=-\varepsilon_{2}-I r_{2}$ and we will get
$$ \begin{equation*} \varepsilon_{\text {eq }}=\varepsilon_{1}-\varepsilon_{2} \quad\left(\varepsilon_{1}>\varepsilon_{2}\right) \tag{3.47} \end{equation*} $$
The rule for series combination clearly can be extended to any number of cells:
(i) The equivalent emf of a series combination of $n$ cells is just the sum of their individual emf’s, and
(ii) The equivalent internal resistance of a series combination of $n$ cells is just the sum of their internal resistances.
FIGURE 3.14 Two cells in parallel. For connections across $\mathrm{A}$ and $\mathrm{C}$, the combination can be replaced by one cell of emf $\varepsilon_{e q}$ and internal resistances $r_{e q}$ whose values are given in Eqs. (3.54) and (3.55).
This is so, when the current leaves each cell from the positive electrode. If in the combination, the current leaves any cell from the negative electrode, the emf of the cell enters the expression for $\varepsilon_{e q}$ with a negative sign, as in Eq. (3.47).
Next, consider a parallel combination of the cells (Fig. 3.14). $I_{1}$ and $I_{2}$ are the currents leaving the positive electrodes of the cells. At the point $\mathrm{B_{1}}, I_{1}$ and $I_{2}$ flow in whereas the current $I$ flows out. Since as much charge flows in as out, we have
$$ \begin{equation*} I=I_{1}+I_{2} \tag{3.48} \end{equation*} $$
Let $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$ be the potentials at $B_{1}$ and $B_{2}$, respectively. Then, considering the first cell, the potential difference across its terminals is $V\left(B_{1}\right)-V\left(B_{2}\right)$. Hence, from Eq. (3.38)
$$ \begin{equation*} V \equiv V\left(B_{1}\right)-V\left(B_{2}\right)=\varepsilon_{1}-I_{1} r_{1} \tag{3.49} \end{equation*} $$
Points $B_{1}$ and $B_{2}$ are connected exactly similarly to the second cell. Hence considering the second cell, we also have
$$ \begin{equation*} V \equiv V\left(B_{1}\right)-V\left(B_{2}\right)=\varepsilon_{2}-I_{2} r_{2} \tag{3.50} \end{equation*} $$
Combining the last three equations
$$ \begin{align*} I & =I _{1}+I _{2} \\ & =\frac{\varepsilon _{1}-V}{r _{1}}+\frac{\varepsilon _{2}-V}{r _{2}} \end{align*} $$
$$ \begin{align*} =\left(\frac{\varepsilon _{1}}{r _{1}}+\frac{\varepsilon _{2}}{r _{2}}\right)-V\left(\frac{1}{r _{1}}+\frac{1}{r _{2}}\right) \tag{3.51} \end{align*} $$
Hence, $V$ is given by, $$ \begin{equation*} V=\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}}-I \frac{r_{1} r_{2}}{r_{1}+r_{2}} \tag{3.52} \end{equation*} $$
If we want to replace the combination by a single cell, between $B_{1}$ and $B_{2}$, of emf $\varepsilon_{e q}$ and internal resistance $r_{e q}$, we would have
$$V=\varepsilon_{e q}-I r_{e q} \tag{3.53}$$
The last two equations should be the same and hence
$$ \begin{align*} & \varepsilon_{e q}=\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}} \tag{3.54}\\ & r_{e q}=\frac{r_{1} r_{2}}{r_{1}+r_{2}} \tag{3.55} \end{align*} $$
We can put these equations in a simpler way,
$$ \begin{align*} & \frac{1}{r_{e q}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \tag{3.56}\\ & \frac{\varepsilon_{e q}}{r_{e q}}=\frac{\varepsilon_{1}}{r_{1}}+\frac{\varepsilon_{2}}{r_{2}} \tag{3.57} \end{align*} $$
In Fig. (3.14), we had joined the positive terminals together and similarly the two negative ones, so that the currents $I_{1}, I_{2}$ flow out of positive terminals. If the negative terminal of the second is connected to positive terminal of the first, Eqs. (3.56) and (3.57) would still be valid with $\varepsilon_{2} \rightarrow-\varepsilon_{2}$
Equations (3.56) and (3.57) can be extended easily. If there are $\mathrm{n}$ cells of emf $\varepsilon_{1}, \ldots \varepsilon_{\mathrm{n}}$ and of internal resistances $r_{1}, \ldots r_{\mathrm{n}}$ respectively, connected in parallel, the combination is equivalent to a single cell of emf $\varepsilon_{e q}$ and internal resistance $r_{e q}$, such that
$$ \begin{align*} & \frac{1}{r_{e q}}=\frac{1}{r_{1}}+\ldots+\frac{1}{r_{n}} \tag{3.58}\\ & \frac{\varepsilon_{e q}}{r_{e q}}=\frac{\varepsilon_{1}}{r_{1}}+\ldots+\frac{\varepsilon_{n}}{r_{n}} \tag{3.59} \end{align*} $$
3.12 KiRCHHOFF’s Rules
Gustav Robert Kirchhoff (1824 – 1887) German physicist, professor at Heidelberg and at Berlin. Mainly known for his development of spectroscopy, he also made many important contributions to mathe- matical physics, among them, his first and second rules for circuits.
Electric circuits generally consist of a number of resistors and cells interconnected sometimes in a complicated way. The formulae we have derived earlier for series and parallel combinations of resistors are not always sufficient to determine all the currents and potential differences in the circuit. Two rules, called Kirchhoff’s rules, are very useful for analysis of electric circuits.
Given a circuit, we start by labelling currents in each resistor by a symbol, say $I$, and a directed arrow to indicate that a current $I$ flows along the resistor in the direction indicated. If ultimately $I$ is determined to be positive, the actual current in the resistor is in the direction of the arrow. If I turns out to be negative, the current actually flows in a direction opposite to the arrow. Similarly, for each source (i.e., cell or some other source of electrical power) the positive and negative electrodes are labelled, as well as, a directed arrow with a symbol for the current flowing through the cell. This will tell us the potential difference, $V=V(\mathrm{P})-V(\mathrm{~N})=\varepsilon-I r$ [Eq. (3.38) between the positive terminal $\mathrm{P}$ and the negative terminal $\mathrm{N} ; I$ here is the current flowing from $\mathrm{N}$ to $\mathrm{P}$ through the cell]. If, while labelling the current $I$ through the cell one goes from $\mathrm{P}$ to $\mathrm{N}$, then of course
$$ \begin{equation*} V=\varepsilon+I r \tag{3.60} \end{equation*} $$
Having clarified labelling, we now state the rules and the proof:
(a) Junction rule: At any junction, the sum of the currents entering the junction is equal to the sum of currents leaving the junction (Fig. 3.15).
FIGURE 3.15 At junction a the current leaving is $I_{1}+I_{2}$ and current entering is $I_{3}$. The junction rule says $I_{3}=I_{1}+I_{2}$. At point h current entering is $I_{1}$. There is only one current leaving $\mathrm{h}$ and by junction rule that will also be $I_{1}$. For the loops ‘ahdcba’ and ‘ahdefga’, the loop rules give $-30 I_{1}-$ $41 I_{3}+45=0$ and $-30 I_{1}+21 I_{2}-80=0$.
This applies equally well if instead of a junction of several lines, we consider a point in a line. The proof of this rule follows from the fact that when currents are steady, there is no accumulation of charges at any junction or at any point in a line. Thus, the total current flowing in, (which is the rate at which charge flows into the junction), must equal the total current flowing out.
(b) Loop rule: The algebraic sum of changes in potential around any closed loop involving resistors and cells in the loop is zero (Fig. 3.15).
This rule is also obvious, since electric potential is dependent on the location of the point. Thus starting with any point if we come back to the same point, the total change must be zero. In a closed loop, we do come back to the starting point and hence the rule.
Example 3.5 A battery of $10 \mathrm{~V}$ and negligible internal resistance is connected across the diagonally opposite corners of a cubical network consisting of 12 resistors each of resistance $1 \Omega$ (Fig. 3.16). Determine the equivalent resistance of the network and the current along each edge of the cube.
FIGURE 3.16
Solution The network is not reducible to a simple series and parallel combinations of resistors. There is, however, a clear symmetry in the problem which we can exploit to obtain the equivalent resistance of the network.
The paths $\mathrm{AA}^{\prime}, \mathrm{AD}$ and $\mathrm{AB}$ are obviously symmetrically placed in the network. Thus, the current in each must be the same, say, I. Further, at the corners $\mathrm{A}^{\prime}, \mathrm{B}$ and $\mathrm{D}$, the incoming current I must split equally into the two outgoing branches. In this manner, the current in all the 12 edges of the cube are easily written down in terms of $I$, using Kirchhoffs first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC’EA, and apply Kirchhoff’s second rule:
$$ -I R-(1 / 2) I R-I R+\varepsilon=0 $$
where $R$ is the resistance of each edge and $\varepsilon$ the emf of battery.
Thus, $$ \varepsilon=\frac{5}{2} I R $$
The equivalent resistance $R_{e q}$ of the network is
$$ R_{e q}=\frac{\varepsilon}{3 I}=\frac{5}{6} R $$
For $R=1 \Omega, R_{e q}=(5 / 6) \Omega$ and for $\varepsilon=10 \mathrm{~V}$, the total current $(=3 I)$ in the network is
$$ 3 I=10 \mathrm{~V} /(5 / 6) \Omega=12 \text { A, i.e., } I=4 \mathrm{~A} $$
The current flowing in each edge can now be read off from the Fig. 3.16.
It should be noted that because of the symmetry of the network, the great power of Kirchhoff’s rules has not been very apparent in Example 3.5. In a general network, there will be no such simplification due to symmetry, and only by application of Kirchhoff’s rules to junctions and closed loops (as many as necessary to solve the unknowns in the network) can we handle the problem. This will be illustrated in Example 3.6.
Example 3.6 Determine the current in each branch of the network shown in Fig. 3.17.
FIGURE 3.17
Solution Each branch of the network is assigned an unknown current to be determined by the application of Kirchhoff’s rules. To reduce the number of unknowns at the outset, the first rule of Kirchhoff is used at every junction to assign the unknown current in each branch. We then have three unknowns $I_{1}, I_{2}$ and $I_{3}$ which can be found by applying the second rule of Kirchhoff to three different closed loops. Kirchhoffs second rule for the closed loop ADCA gives,
$$ \begin{equation*} 10-4\left(I_{1}-I_{2}\right)+2\left(I_{2}+I_{3}-I_{1}\right)-I_{1}=0 \tag{3.61 a} \end{equation*} $$
that is, $7 I_{1}-6 I_{2}-2 I_{3}=10$
For the closed loop ABCA, we get
$$ \begin{equation*} 10-4 I_{2}-2\left(I_{2}+I_{3}\right)-I_{1}=0 \tag{3.62 b} \end{equation*} $$
that is, $I_{1}+6 I_{2}+2 I_{3}=10$
For the closed loop BCDEB, we get
$$ \begin{equation*} 5-2\left(I_{2}+I_{3}\right)-2\left(I_{2}+I_{3}-I_{1}\right)=0 \tag{3.63 c} \end{equation*} $$
that is, $2 I_{1}-4 I_{2}-4 I_{3}=-5$
Equations ( $3.61 \mathrm{a}, \mathrm{b}, \mathrm{c}$ ) are three simultaneous equations in three unknowns. These can be solved by the usual method to give
$$ I_{1}=2.5 \mathrm{~A}, \quad I_{2}=\frac{5}{8} \mathrm{~A}, \quad I_{3}=1 \frac{7}{8} \quad \mathrm{~A} $$
The currents in the various branches of the network are
$$ \begin{aligned} & \mathrm{AB}: \frac{5}{8} \mathrm{~A}, \quad \mathrm{CA}: 2 \frac{1}{2} \mathrm{~A}, \quad \mathrm{DEB}: 1 \frac{7}{8} \mathrm{~A} \\ & \mathrm{AD}: 1 \frac{7}{8} \mathrm{~A}, \mathrm{CD}: 0 \mathrm{~A}, \quad \mathrm{BC}: 2 \frac{1}{2} \mathrm{~A} \end{aligned} $$
It is easily verified that Kirchhoff’s second rule applied to the remaining closed loops does not provide any additional independent equation, that is, the above values of currents satisfy the second rule for every closed loop of the network. For example, the total voltage drop over the closed loop BADEB
$$ 5 \mathrm{~V}+\left(\frac{5}{8} \times 4\right) \mathrm{V}-\left(\frac{15}{8} \times 4\right) \mathrm{V} $$
equal to zero, as required by Kirchhoff’s second rule.
3.13 Wheatstone Bridge
FIGURE 3.18
As an application of Kirchhoff’s rules consider the circuit shown in Fig. 3.18, which is called the Wheatstone bridge. The bridge has four resistors $R_{1}, R_{2}, R_{3}$ and $R_{4}$. Across one pair of diagonally opposite points ( $\mathrm{A}$ and $\mathrm{C}$ in the figure) a source is connected. This (i.e., $\mathrm{AC}$ ) is called the battery arm. Between the other two vertices, B and D, a galvanometer $\mathrm{G}$ (which is a device to detect currents) is connected. This line, shown as BD in the figure, is called the galvanometer arm.
For simplicity, we assume that the cell has no internal resistance. In general there will be currents flowing across all the resistors as well as a current $I_{g}$ through G. Of special interest, is the case of a balanced bridge where the resistors are such that $I_{\mathrm{g}}=0$. We can easily get the balance condition, such that there is no current through G. In this case, the Kirchhoff’s junction rule applied to junctions D and B (see the figure) immediately gives us the relations $I_{1}=I_{3}$ and $I_{2}=I_{4}$. Next, we apply Kirchhoff’s loop rule to closed loops ADBA and CBDC. The first loop gives
$$ \begin{equation*} -I_{1} R_{1}+0+I_{2} R_{2}=0 \quad\left(I_{g}=0\right) \tag{3.62} \end{equation*} $$
and the second loop gives, upon using $I_{3}=I_{1}, I_{4}=I_{2}$
$$ \begin{equation*} I_{2} R_{4}+0-I_{1} R_{3}=0 \tag{3.63} \end{equation*} $$
From Eq. (3.62), we obtain,
$$ \frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}} $$
whereas from Eq. (3.63), we obtain,
$$ \frac{I_{1}}{I_{2}}=\frac{R_{4}}{R_{3}} $$
Hence, we obtain the condition
$$ \begin{equation*} \frac{\mathrm{R_2}}{\mathrm{R_1}}=\frac{\mathrm{R_4}}{\mathrm{R_3}} \tag{64a} \end{equation*} $$
FIGURE 3.18
This last equation relating the four resistors is called the balance condition for the galvanometer to give zero or null deflection.
The Wheatstone bridge and its balance condition provide a practical method for determination of an unknown resistance. Let us suppose we have an unknown resistance, which we insert in the fourth arm; $R_{4}$ is thus not known. Keeping known resistances $R_{1}$ and $R_{2}$ in the first and second arm of the bridge, we go on varying $R_{3}$ till the galvanometer shows a null deflection. The bridge then is balanced, and from the balance condition the value of the unknown resistance $R_{4}$ is given by,
$$ \begin{equation*} R_{4}=R_{3} \frac{R_{2}}{R_{1}} \tag{64b} \end{equation*} $$
A practical device using this principle is called the meter bridge.
Example 3.7 The four arms of a Wheatstone bridge (Fig. 3.19) have the following resistances:
$\mathrm{AB}=100 \Omega, \mathrm{BC}=10 \Omega, \mathrm{CD}=5 \Omega$, and $\mathrm{DA}=60 \Omega$.
FIGURE 3.19
A galvanometer of $15 \Omega$ resistance is connected across BD. Calculate the current through the galvanometer when a potential difference of $10 \mathrm{~V}$ is maintained across AC.
Solution Considering the mesh BADB, we have
$$ \begin{array}{ll} & 100 I_{1}+15 I_{g}-60 I_{2}=0 \end{array} $$
अथवा $$ \begin{array}{ll} & 20 I_{1}+3 I_{g}-12 I_{2}=0 \tag{3.65a} \end{array} $$
Considering the mesh BCDB, we have
$$ \begin{align*} & 10\left(I_{1}-I_{g}\right)-15 I_{g}-5\left(I_{2}+I_{g}\right)=0 \\ & 10 I_{1}-30 I_{g}-5 I_{2}=0 \\ & 2 I_{1}-6 I_{g}-I_{2}=0 \tag{65b} \end{align*} $$
Considering the mesh ADCEA,
$$ \begin{align*} & 60 I_{2}+5\left(I_{2}+I_{g}\right)=10 \\ & 65 I_{2}+5 I_{g}=10 \\ & 13 I_{2}+I_{g}=2 \tag{65c} \end{align*} $$
Multiplying Eq. (3.65b) by 10
$$ \begin{equation*} 20 I_{1}-60 I_{g}-10 I_{2}=0 \tag{65d} \end{equation*} $$
From Eqs. (3.65d) and (3.65a) we have
$$ \begin{align*} & 63 I_{g}-2 I_{2}=0 \\ & I_{2}=31.5 I_{g} \tag{65 e} \end{align*} $$
Substituting the value of $I_{2}$ into Eq. [3.65(c)], we get
$$ \begin{aligned} & 13\left(31.5 I_{g}\right)+I_{g}=2 \\ & 410.5 I_{g}=2 \\ & I_{g}=4.87 \mathrm{~mA} . \end{aligned} $$
SUMMARY
1. Current through a given area of a conductor is the net charge passing per unit time through the area.
2. To maintain a steady current, we must have a closed circuit in which an external agency moves electric charge from lower to higher potential energy. The work done per unit charge by the source in taking the charge from lower to higher potential energy (i.e., from one terminal of the source to the other) is called the electromotive force, or emf, of the source. Note that the emf is not a force; it is the voltage difference between the two terminals of a source in open circuit.
3. Ohm’s law: The electric current $I$ flowing through a substance is proportional to the voltage $V$ across its ends, i.e., $V \propto I$ or $V=R I$, where $R$ is called the resistance of the substance. The unit of resistance is ohm: $1 \Omega=1 \mathrm{~V} \mathrm{~A}^{-1}$.
4 The resistance $R$ of a conductor depends on its length $l$ and cross-sectional area $A$ through the relation,
$$R=\frac{\rho l}{A}$$
where $\rho$, called resistivity is a property of the material and depends on temperature and pressure.
5. Electrical resistivity of substances varies over a very wide range. Metals have low resistivity, in the range of $10^{-8} \Omega \mathrm{m}$ to $10^{-6} \Omega \mathrm{m}$. Insulators like glass and rubber have $10^{22}$ to $10^{24}$ times greater resistivity. Semiconductors like $\mathrm{Si}$ and Ge lie roughly in the middle range of resistivity on a logarithmic scale.
6. In most substances, the carriers of current are electrons; in some cases, for example, ionic crystals and electrolytic liquids, positive and negative ions carry the electric current.
7. Current density $\mathbf{j}$ gives the amount of charge flowing per second per unit area normal to the flow,
$$\mathbf{j}=n q \boldsymbol{v}_{\mathrm{d}}$$
where $n$ is the number density (number per unit volume) of charge carriers each of charge $q$, and $\boldsymbol{v_\mathrm{d}}$ is the drift velocity of the charge carriers. For electrons $q=-e$. If $\mathbf{j}$ is normal to a cross-sectional area A and is constant over the area, the magnitude of the current $I$ through the area is $n e v_{\mathrm{d}} A$.
8. Using $E=V / l, I=n e v_{d} A$, and Ohm’s law, one obtains
$$\frac{e E}{m}=\rho \frac{n e^{2}}{m} v_{d}$$
The proportionality between the force $e E$ on the electrons in a metal due to the external field $E$ and the drift velocity $v_{d}$ (not acceleration) can be understood, if we assume that the electrons suffer collisions with ions in the metal, which deflect them randomly. If such collisions occur on an average at a time interval $\tau$,
$$v_{d}=a \tau=e E \tau / m$$
where $a$ is the acceleration of the electron. This gives
$$\rho=\frac{m}{n e^{2} \tau}$$
9. In the temperature range in which resistivity increases linearly with temperature, the temperature coefficient of resistivity $\alpha$ is defined as the fractional increase in resistivity per unit increase in temperature.
10. Ohm’s law is obeyed by many substances, but it is not a fundamental law of nature. It fails if
(a) $V$ depends on $I$ non-linearly.
(b) the relation between $V$ and $I$ depends on the sign of $V$ for the same absolute value of $V$.
(c) The relation between $V$ and $I$ is non-unique.
An example of (a) is when $\rho$ increases with $I$ (even if temperature is kept fixed). A rectifier combines features (a) and (b). GaAs shows the feature (c).
11. When a source of emf $\varepsilon$ is connected to an external resistance $R$, the voltage $V_{\text {ext }}$ across $R$ is given by(where $r$ is the internal resistance of the source.)
$$V_{\text {ext }}=I R=\frac{\varepsilon}{R+r} R$$
12. Kirchhoff’s Rules -
(a) Junction Rule: At any junction of circuit elements, the sum of currents entering the junction must equal the sum of currents leaving it.
(b) Loop Rule: The algebraic sum of changes in potential around any closed loop must be zero.
13. The Wheatstone bridge is an arrangement of four resistances $-R_{1}, R_{2}$, $R_{3}, R_{4}$ as shown in the text. The null-point condition is given by
$$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$$
using which the value of one resistance can be determined, knowing the other three resistances.
Physical Quantity | Symbol | Dimensions | Unit | Remark |
---|---|---|---|---|
Electric current | $I$ | $[\mathrm{~A}]$ | A | SI base unit |
Charge | $Q, q$ | [T A] | $\mathrm{C}$ | |
Voltage, Electric potential difference |
V | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | V | Work/charge |
Electromotive force | $\varepsilon$ | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | V | Work/charge |
Resistance | $R$ | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ | $\Omega$ | $R=V / I$ |
Resistivity | $\rho$ | $\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ | $\Omega \mathrm{m}$ | $R=\rho l / A$ |
Electrical conductivity |
$\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}\right]$ | $\mathrm{S}$ | $\sigma=1 / \rho$ | |
Electric field | $\mathbf{E}$ | $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-3} \mathrm{~A}^{-1}\right]$ | $\mathrm{V} \mathrm{m}^{-1}$ | $\frac{\text { Electric force }}{\text { charge }}$ |
Drift speed | $\left[\mathrm{L} \mathrm{T}^{-1}\right]$ | $\mathrm{m} \mathrm{s}^{-1}$ | $v_{d}=\frac{e E \tau}{m}$ | |
Relaxation time | $\tau$ | $[\mathrm{T}]$ | $\mathrm{s}$ | |
Current density | j | $\left[\mathrm{L}^{-2} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-2}$ | current/area |
Mobility | $\mu$ | $\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-4} \mathrm{~A}^{-1}\right]$ | $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ | $v_{d} / E$ |
POINTS TO PONDER
1. Current is a scalar although we represent current with an arrow. Currents do not obey the law of vector addition. That current is a scalar also follows from it’s definition. The current $I$ through an area of cross-section is given by the scalar product of two vectors:
$I=\mathbf{j} \cdot \Delta \mathbf{S}$
where $\mathbf{j}$ and $\Delta \mathbf{S}$ are vectors.
2. Refer to V-I curves of a resistor and a diode as drawn in the text. A resistor obeys Ohm’s law while a diode does not. The assertion that $V=I R$ is a statement of Ohm’s law is not true. This equation defines resistance and it may be applied to all conducting devices whether they obey Ohm’s law or not. The Ohm’s law asserts that the plot of $I$ versus $V$ is linear i.e., $R$ is independent of $V$.
Equation $\mathbf{E}=\rho \mathbf{j}$ leads to another statement of Ohm’s law, i.e., a conducting material obeys Ohm’s law when the resistivity of the material does not depend on the magnitude and direction of applied electric field.
3. Homogeneous conductors like silver or semiconductors like pure germanium or germanium containing impurities obey Ohm’s law within some range of electric field values. If the field becomes too strong, there are departures from Ohm’s law in all cases.
4. Motion of conduction electrons in electric field $\mathbf{E}$ is the sum of (i) motion due to random collisions and (ii) that due to $\mathbf{E}$. The motion due to random collisions averages to zero and does not contribute to $v_{d}$ (Chapter 11, Textbook of Class XI). $v_{d}$, thus is only due to applied electric field on the electron.
5. The relation $\mathbf{j}=\rho \mathbf{v}$ should be applied to each type of charge carriers separately. In a conducting wire, the total current and charge density arises from both positive and negative charges:
$$ \begin{aligned} & \mathbf{j}=\rho _{+} \mathbf{v} _{+}+\rho _{-} \mathbf{v} _{-} \\ & \rho=\rho _{+}+\rho _{-} \end{aligned} $$
Now in a neutral wire carrying electric current,
$$ \rho _{+}=-\rho _{-} $$
Further, $v_{+} \sim 0$ which gives
$$ \begin{aligned} & \rho=0 \\ & \mathbf{j}=\rho _{-} \mathbf{v} \end{aligned} $$
Thus, the relation $\mathbf{j}=\rho \mathbf{v}$ does not apply to the total current charge density.
6. Kirchhoffs junction rule is based on conservation of charge and the outgoing currents add up and are equal to incoming current at a junction. Bending or reorienting the wire does not change the validity of Kirchhoff’s junction rule.
Exercises
3.1 The storage battery of a car has an emf of $12 \mathrm{~V}$. If the internal resistance of the battery is $0.4 \Omega$, what is the maximum current that can be drawn from the battery?
Show Answer
Answer
Emf of the battery, $E=12 \mathrm{~V}$
Internal resistance of the battery, $r=0.4 \Omega$
Maximum current drawn from the battery $=I$
According to Ohm’s law,
$$ \begin{aligned} E & =I r \\ I & =\frac{E}{r} \\ & =\frac{12}{0.4}=30 \mathrm{~A} \end{aligned} $$
The maximum current drawn from the given battery is $30 \mathrm{~A}$.
3.2 A battery of emf $10 \mathrm{~V}$ and internal resistance $3 \Omega$ is connected to a resistor. If the current in the circuit is $0.5 \mathrm{~A}$, what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?
Show Answer
Answer
Emf of the battery, $E=10 \mathrm{~V}$
Internal resistance of the battery, $r=3 \Omega$
Current in the circuit, $I=0.5 \mathrm{~A}$
Resistance of the resistor $=R$
The relation for current using Ohm’s law is,
$I=\frac{E}{R+r}$
$R+r=\frac{E}{I}$
$=\frac{10}{0.5}=20 \Omega$
$\therefore R=20-3=17 \Omega$
Terminal voltage of the resistor $=V$
According to Ohm’s law,
$V=I R$
$=0.5 \times 17$
$=8.5 \mathrm{~V}$
Therefore, the resistance of the resistor is $17 \Omega$ and the terminal voltage is
$8.5 \mathrm{~V}$.
3.3 At room temperature $\left(27.0{ }^{\circ} \mathrm{C}\right)$ the resistance of a heating element is $100 \Omega$. What is the temperature of the element if the resistance is found to be $117 \Omega$, given that the temperature coefficient of the material of the resistor is $1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.
Show Answer
Answer
Room temperature, $T=27^{\circ} \mathrm{C}$
Resistance of the heating element at $T, R=100 \Omega$
Let $T_{1}$ is the increased temperature of the filament.
Resistance of the heating element at $T_{1}, R_{1}=117 \Omega$
Temperature co-efficient of the material of the filament,
$\alpha=1.70 \times 10^{-4 \circ} \mathrm{C}^{-1}$
$\alpha$ is given by the relation,
$\alpha=\frac{R_{1}-R}{R\left(T_{1}-T\right)}$
$T_{1}-T=\frac{R_{1}-R}{R \alpha}$
$T_{1}-27=\frac{117-100}{100\left(1.7 \times 10^{-4}\right)}$
$T_{1}-27=1000$
$T_{1}=1027^{\circ} \mathrm{C}$
Therefore, at $1027^{\circ} \mathrm{C}$, the resistance of the element is $117 \Omega$.
3.4 A negligibly small current is passed through a wire of length $15 \mathrm{~m}$ and uniform cross-section $6.0 \times 10^{-7} \mathrm{~m}^{2}$, and its resistance is measured to be $5.0 \Omega$. What is the resistivity of the material at the temperature of the experiment?
Show Answer
Answer
Length of the wire, $l=15 \mathrm{~m}$
Area of cross-section of the wire, $a=6.0 \times 10^{-7} \mathrm{~m}^{2}$
Resistance of the material of the wire, $R=5.0 \Omega$
Resistivity of the material of the wire $=\rho$
Resistance is related with the resistivity as
$$ \begin{aligned} R & =\rho \frac{l}{A} \\ \rho & =\frac{R A}{l} \\ & =\frac{5 \times 6 \times 10^{-7}}{15}=2 \times 10^{-7} \Omega \mathrm{m} \end{aligned} $$
Therefore, the resistivity of the material is $2 \times 10^{-7} \Omega \mathrm{m}$.
3.5 A silver wire has a resistance of $2.1 \Omega$ at $27.5^{\circ} \mathrm{C}$, and a resistance of $2.7 \Omega$ at $100{ }^{\circ} \mathrm{C}$. Determine the temperature coefficient of resistivity of silver.
Show Answer
Answer
Temperature, $T_{1}=27.5^{\circ} \mathrm{C}$
Resistance of the silver wire at $T_{1}, R_{1}=2.1 \Omega$
Temperature, $T_{2}=100^{\circ} \mathrm{C}$
Resistance of the silver wire at $T_{2}, R_{2}=2.7 \Omega$
Temperature coefficient of silver $=\alpha$
It is related with temperature and resistance as
$$ \begin{aligned} \alpha & =\frac{R_{2}-R_{1}}{R_{1}\left(T_{2}-T_{1}\right)} \\ & =\frac{2.7-2.1}{2.1(100-27.5)}=0.0039^{\circ} \mathrm{C}^{-1} \end{aligned} $$
Therefore, the temperature coefficient of silver is $0.0039^{\circ} \mathrm{C}^{-1}$.
3.6 A heating element using nichrome connected to a $230 \mathrm{~V}$ supply draws an initial current of 3.2 A which settles after a few seconds to a steady value of $2.8 \mathrm{~A}$. What is the steady temperature of the heating element if the room temperature is $27.0 ^{\circ} \mathrm{C}$ ? Temperature coefficient of resistance of nichrome averaged over the temperature range involved is $1.70 \times 10 ^{-4}{ }^{\circ} \mathrm{C} ^{-1}$.
Show Answer
Answer
Supply voltage, $V=230 \mathrm{~V}$
Initial current drawn, $I_{1}=3.2 \mathrm{~A}$
Initial resistance $=R_{1}$, which is given by the relation,
$$ \begin{aligned} R_{1} & =\frac{V}{I} \\ & =\frac{230}{3.2}=71.87 \Omega \end{aligned} $$
Steady state value of the current, $I_{2}=2.8 \mathrm{~A}$
Resistance at the steady state $=R_{2}$, which is given as $R_{2}=\frac{230}{2.8}=82.14 \Omega$
Temperature co-efficient of nichrome, $\alpha=1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$
Initial temperature of nichrome, $T_{1}=27.0^{\circ} \mathrm{C}$
Study state temperature reached by nichrome $=T_{2}$
$T_{2}$ can be obtained by the relation for $\alpha$,
$\alpha=\frac{R_{2}-R_{1}}{R_{1}\left(T_{2}-T_{1}\right)}$
$T_{2}-27^{\circ} \mathrm{C}=\frac{82.14-71.87}{71.87 \times 1.7 \times 10^{-4}}=840.5$
$T_{2}=840.5+27=867.5^{\circ} \mathrm{C}$
Therefore, the steady temperature of the heating element is $867.5^{\circ} \mathrm{C}$
3.7 Determine the current in each branch of the network shown in Fig. 3.20:
FIGURE 3.20
Show Answer
# Content Missing3.8 A storage battery of emf $8.0 \mathrm{~V}$ and internal resistance $0.5 \Omega$ is being charged by a $120 \mathrm{~V}$ dc supply using a series resistor of $15.5 \Omega$. What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?
Show Answer
Answer
Emf of the storage battery, $E=8.0 \mathrm{~V}$
Internal resistance of the battery, $r=0.5 \Omega$
DC supply voltage, $V=120 \mathrm{~V}$
Resistance of the resistor, $R=15.5 \Omega$
Effective voltage in the circuit $=V^{1}$
$R$ is connected to the storage battery in series. Hence, it can be written as
$V^{1}=V-E$
$V^{1}=120-8=112 \mathrm{~V}$
Current flowing in the circuit $=I$, which is given by the relation,
$$ \begin{aligned} I & =\frac{V^{1}}{R+r} \\ & =\frac{112}{15.5+5}=\frac{112}{16}=7 \mathrm{~A} \end{aligned} $$
Voltage across resistor $R$ given by the product, $I R=7 \times 15.5=108.5 \mathrm{~V}$
DC supply voltage $=$ Terminal voltage of battery + Voltage drop across $R$
Terminal voltage of battery $=120-108.5=11.5 \mathrm{~V}$
A series resistor in a charging circuit limits the current drawn from the external source. The current will be extremely high in its absence. This is very dangerous.
3.9 The number density of free electrons in a copper conductor estimated in Example 3.1 is $8.5 \times 10^{28} \mathrm{~m}^{-3}$. How long does an electron take to drift from one end of a wire $3.0 \mathrm{~m}$ long to its other end? The area of cross-section of the wire is $2.0 \times 10^{-6} \mathrm{~m}^{2}$ and it is carrying a current of $3.0 \mathrm{~A}$.
Show Answer
Answer
Number density of free electrons in a copper conductor, $n=8.5 \times 10^{28} \mathrm{~m}^{-3}$ Length of the copper wire, $l=3.0 \mathrm{~m}$
Area of cross-section of the wire, $A=2.0 \times 10^{-6} \mathrm{~m}^{2}$
Current carried by the wire, $I=3.0 \mathrm{~A}$, which is given by the relation,
$I=n A \mathrm{e} V_{\mathrm{d}}$
Where,
$\mathrm{e}=$ Electric charge $=1.6 \times 10^{-19} \mathrm{C}$
$V_{\mathrm{d}}=$ Drift velocity $=\frac{\text { Length of the wire }(l)}{\text { Time taken to cover } l(t)}$
$I=n A \mathrm{e} \frac{l}{t}$
$t=\frac{n A \mathrm{e} l}{I}$
$=\frac{3 \times 8.5 \times 10^{28} \times 2 \times 10^{-6} \times 1.6 \times 10^{-19}}{3.0}$
$=2.7 \times 10^{4} \mathrm{~s}$
Therefore, the time taken by an electron to drift from one end of the wire to the other is $2.7 \times 10^{4} \mathrm{~s}$.
3.1 भूमिका
अध्याय 1 में सभी आवेशों को चाहे वे स्वतंत्र हों अथवा परिबद्ध, विरामावस्था में माना गया था। गतिमान आवेश विद्युत धारा का निर्माण करते हैं। ऐसी ही धारा प्रकृति में बहुत-सी स्थितियों में पाई जाती है। तड़ित एक ऐसी परिघटना है जिसमें आवेश बादलों से पृथ्वी तक वायुमंडल से होकर पहुँचते हैं, जिनका परिणाम कभी-कभी भयंकर होता है। तड़ित में आवेश का प्रवाह स्थायी नहीं होता, परंतु हम अपने दैनिक जीवन में बहुत-सी युक्तियों में आवेशों को उसी प्रकार प्रवाहित होते हुए देखते हैं जिस प्रकार नदियों में जल प्रवाहित होता रहता है। टॉर्च तथा सेल से चलने वाली घड़ी इस प्रकार की युक्तियों के कुछ उदाहरण हैं। इस अध्ययन में हम अपरिवर्ती अथवा स्थायी विद्युत धारा से संबंधित कुछ मूल नियमों का अध्ययन करेंगे।
3.2 विद्युत धारा
आवेश प्रवाह के लंबवत एक लघु क्षेत्रफल की कल्पना कीजिए। इस क्षेत्र से होकर धनात्मक और ॠणात्मक दोनों ही प्रकार के आवेश अग्र अथवा पश्च दिशा में प्रवाहित हो सकते हैं। मान लीजिए, किसी काल-अंतराल $t$ में इस क्षेत्र से प्रवाहित होने वाला नेट अग्रगामी धनावेश $q _{+}$(अर्थात अग्रगामी तथा पश्चगामी का अंतर) है। इसी प्रकार, मान लीजिए इसी क्षेत्र से प्रवाहित होने वाला नेट अग्रगामी ॠणावेश $q _{-}$है। तब इस काल अंतराल $t$ में इस क्षेत्र से प्रवाहित होने वाला नेट आवेश $q=q _{+}-q _{-}$है। स्थायी धारा के लिए यह $t$ के अनुक्रमानुपाती है और भागफल
$$ \begin{equation*} I=\frac{q}{t} \tag{3.1} \end{equation*} $$
क्षेत्र से होकर अग्रगामी दिशा में प्रवाहित विद्युत धारा को परिभाषित करता है। (यदि यह संख्या ॠणात्मक है तो इससे यह संकेत प्राप्त होता है कि विद्युत धारा पश्चदिशा में है।)
विद्युत धाराएँ सदैव अपरिवर्ती नहीं होतीं, इसलिए अधिक व्यापक रूप में हम विद्युत धारा को निम्न प्रकार से परिभाषित करते हैं। मान लीजिए काल-अंतराल $\Delta t$ [अर्थात काल $t$ तथा $(t+\Delta t)$ के बीच] में किसी चालक की अनुप्रस्थ काट से प्रवाहित होने वाला नेट आवेश $\Delta Q$ है। तब काल $t$ पर चालक के इस अनुप्रस्थ काट से प्रवाहित विद्युत धारा को $\Delta Q$ या $\Delta t$ के अनुपात के मान के रूप में इस प्रकार परिभाषित किया जाता है जिसमें $\Delta t$ की सीमा शून्य की ओर प्रवृत्त है,
$$ \begin{equation*} I(t) \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t} \tag{3.2} \end{equation*} $$
S I मात्रकों में विद्युत धारा का मात्रक ऐम्पियर है। एक ऐम्पियर को विद्युत धारा के चुंबकीय प्रभाव द्वारा परिभाषित किया जाता है जिसका हम अगले अनुच्छेद में अध्ययन करेंगे। घरेलू वैद्युत-साधित्रों में प्रवाहित होने वाली प्रतिरूपी विद्युत धारा के परिमाण की कोटि एक ऐम्पियर होती है। जहाँ एक ओर किसी औसत तड़ित में हज़ारों ऐम्पियर कोटि की धारा प्रवाहित हो जाती है, वहीं दूसरी ओर हमारी तंत्रिकाओं से प्रवाहित होने वाली धाराएँ कुछ माइक्रोऐम्पियर कोटि की होती हैं।
3.3 चालक में विद्युत धारा
यदि किसी वैद्युत आवेश पर कोई विद्युत क्षेत्र को अनुप्रुयुक्त किया जाए तो वह एक बल का अनुभव करेगा। यदि यह गति करने के लिए स्वतंत्र है तो यह भी गतिमान होकर विद्युत धारा उत्पन्न करेगा। वायुमंडल के ऊपरी स्तर जिसे आयनमंडल कहते हैं, की भाँति प्रकृति में मुक्त आवेशित कण पाए जाते हैं। तथापि, अणुओं तथा परमाणुओं में ऋणावेशित इलेक्ट्रॉन तथा धनावेशित इलेक्ट्रॉन एक-दूसरे से परिबद्ध होने के कारण गति करने के लिए स्वतंत्र नहीं होते हैं। स्थूल पदार्थ अनेक अणुओं से निर्मित होते हैं, उदाहरण के लिए, एक ग्राम जल में लगभग $10^{22}$ अणु होते हैं। ये अणु इतने संकुलित होते हैं कि इलेक्ट्रॉन अब एक व्यष्टिगत नाभिक से ही जुड़ा नहीं रहता। कुछ पदार्थों में इलेक्ट्रॉन अभी भी परिबद्ध होते हैं, अर्थात विद्युत-क्षेत्र अनुप्रयुक्त करने पर भी त्वरित नहीं होते। कुछ दूसरे पदार्थों में विशेषकर धातुओं में कुछ इलेक्ट्रॉन स्थूल पदार्थ के भीतर वास्तविक रूप से, गति करने के लिए स्वतंत्र होते हैं। इन पदार्थों जिन्हें सामान्यतः चालक कहते हैं, में विद्युत क्षेत्र अनुप्रयुक्त करने पर विद्युत धारा उत्पन्न हो जाती है।
यदि हम ठोस चालक पर विचार करें तो वास्तव में इनमें परमाणु आपस में निकट रूप से, कस कर आबद्ध होते हैं जिसके कारण ऋण आवेशित इलेक्ट्रॉन विद्युत धारा का वहन करते हैं। तथापि, अन्य प्रकार के चालक भी होते हैं जैसे विद्युत अपघटनी विलयन, जिनमें धनावेश तथा ऋणावेश दोनों गति कर सकते हैं। हम अपनी चर्चा को ठोस चालकों पर ही केंद्रित रखेंगे जिसमें स्थिर धनायनों की पृष्ठभूमि में ऋण आवेशित इलेक्ट्रॉन विद्युत धारा का वहन करते हैं।
पहले हम ऐसी स्थिति पर विचार करते हैं जहाँ कोई विद्युत क्षेत्र उपस्थित नहीं है। इलेक्ट्रॉन तापीय गति करते समय आबद्ध आयनों से संघट्ट करते हैं। संघट्ट के पश्चात इलेक्ट्रॉन की चाल अपरिवर्तित रहती है। अतः टकराने के बाद चाल की दिशा पूर्णतया यादृच्छिक होती है। किसी दिए हुए समय पर इलेक्ट्रॉनों की चाल की कोई अधिमानिक दिशा नहीं होती है। अतः औसत रूप से किसी एक विशेष दिशा में गमन करने वाले इलेक्ट्रॉनों की संख्या, उस दिशा के ठीक विपरीत दिशा में गमन करने वाले इलेक्ट्रॉनों की संख्या के ठीक बराबर होती है। अतः कोई नेट विद्युत धारा नहीं होगी।
आइए अब हम यह देखें कि इस प्रकार के चालक के किसी टुकड़े पर कोई विद्युत क्षेत्र अनुप्रयुक्त करने पर क्या होता है। अपने विचारों को केंद्रित करने के लिए $R$ त्रिज्या के बेलनाकार चालक की कल्पना कीजिए (चित्र 3.1)। मान हो जाएगा। लीजिए परावैद्युत पदार्थ की बनी दो पतली वृत्ताकार डिस्क लेते हैं जिनकी त्रिज्याएँ चालक के समान हैं और जिनमें एक पर धनावेश $+Q$ तथा दूसरे पर ऋणावेश $-Q$ एकसमान रूप से वितरित हैं। इन दोनों डिस्कों को बेलन की दो चपटी पृष्ठों से जोड़ देते हैं। ऐसा करने पर एक विद्युत क्षेत्र उत्पन्न हो जाएगा जिसकी दिशा धनावेश से ऋणावेश की ओर होगी। इस क्षेत्र के कारण इलेक्ट्रॉन $+Q$ की तरफ त्वरित होंगे। इस प्रकार वे आवेशों को उदासीन करने के लिए गति करेंगे। जब तक इलेक्ट्रॉन का प्रवाह बना रहेगा, विद्युत धारा बनी रहेगी। इस प्रकार विचाराधीन परिस्थिति में बहुत अल्प समय के लिए विद्युत धारा बहेगी और उसके पश्चात कोई धारा नहीं होगी।
चित्र 3.1 धात्विक बेलन के सिरों पर रखे $+B$ और $-Q$ आवेश। आवेशों को उदासीन करने के लिए उत्पन्न विद्युत क्षेत्र के कारण इलेक्ट्रॉनों का अपवाह होगा। यदि आवेश $+B$ और $-C$ की पुन: पूर्ति सतत न की गई तो कुछ देर में विद्युत धारा प्रवाह समाप्त
हम ऐसी युक्तियों की भी कल्पना कर सकते हैं जो बेलन के सिरों पर, चालक के अंदर गतिमान इलेक्ट्रॉनों द्वारा उदासीन सभी आवेशों की नए आवेशों से पुनः पूर्ति कराएँ। उस प्रकाश में चालक में एक स्थायी विद्युत क्षेत्र स्थापित होगा, जिसके परिणामस्वरूप जो धारा उत्पन्न होगी वह अल्पावधि की न होकर, सतत विद्युत धारा होगी। इस प्रकार स्थायी विद्युत क्षेत्र उत्पन्न करने वाली युक्तियाँ विद्युत सेल अथवा बैटरियाँ होती हैं जिनके विषय में हम इस अध्याय में आगे अध्ययन करेंगे। अगले अनुभागों में हम चालकों में स्थायी विद्युत-क्षेत्रों से प्राप्त स्थायी विद्युत धारा का अध्ययन करेंगे।
3.4 ओम का नियम
चित्र 3.2 लंबाई $l$ तथा अनुप्रस्थ काट क्षेत्रफल $A$ की आयताकार सिल्ली के संबंध
विद्युत धारा के प्रवाह के लिए उत्तरदायी भौतिक युक्तियों की खोज से काफी पहले जी. एस. ओम ने सन् 1828 में धारा प्रवाह से संबद्ध एक मूल नियम की खोज कर ली थी। एक चालक की परिकल्पना कीजिए जिससे धारा $I$ प्रवाहित हो रही है और मान लीजिए $V$, चालक के सिरों के मध्य विभवान्तर है। तब ओम के नियम का कथन है कि
$$ \begin{align*} V & \propto I \\ \text { अथवा , } V & =R I \tag{3.3} \end{align*} $$
यहाँ आनुपातिकता स्थिरांक $R$, चालक का प्रतिरोध कहलाता है। प्रतिरोध का SI मात्रक ओम है और यह प्रतीक $\Omega$ द्वारा निर्दिष्ट किया जाता है। प्रतिरोध $R$ चालक के केवल पदार्थ पर ही नहीं बल्कि चालक के विस्तार पर भी निर्भर करता है। प्रतिरोध की चालक के विस्तार पर निर्भरता नीचे दिए अनुसार आसानी से ज्ञात की जा सकती है।
जॉर्ज साइमन ओम (1787-1854) जर्मन भौतिकविज्ञानी, म्यूनिख में प्रोफ़ेसर थे। ओम ने अपने नियम की खोज ऊष्मा-चालन से सदृश्य के आधार पर की- विद्युत क्षेत्र ताप-प्रवणता के तुल्य है और विद्युत धारा ऊष्मा-प्रवाह के।
लंबाई $l$ तथा अनुप्रस्थ काट क्षेत्रफल $A$ की किसी आयताकार सिल्ली पर विचार कीजिए जो समीकरण (3.3) को संतुष्ट करता है [चित्र 3.2 ]। कल्पना कीजिए ऐसी दो सर्वसम सिल्लियाँ सिरे से सिरे को मिलाते हुए इस प्रकार रखी हुई हैं कि संयोजन की लंबाई $2 l$ है। इस संयोजन से उतनी ही धारा प्रवाहित होगी जितनी कि दोनों में से किसी एक सिल्ली से होगी। यदि पहली सिल्ली के $R=\rho l / A$ का निदर्श चित्र। समीकरण (3.3) को संतुष्ट करता है [चित्र 3.2 ]। कल्पना कीजिए ऐसी दो सर्वसम सिल्लियाँ सिरे से सिरे को मिलाते हुए इस प्रकार रखी हुई हैं कि संयोजन की लंबाई $2 l$ है। इस संयोजन से उतनी ही धारा प्रवाहित होगी जितनी कि दोनों में से किसी एक सिल्ली से होगी। यदि पहली सिल्ली के सिरों के मध्य विभवांतर $V$ है, तब दूसरी सिल्ली के सिरों के मध्य भी विभवांतर $V$ होगा, क्योंकि दूसरी सिल्ली पहली के समान है और दोनों से समान धारा प्रवाहित हो रही है। स्पष्टतया संयोजन के सिरों के मध्य विभवांतर, दो पृथक सिल्लियों के मध्य विभवांतरों का योग है, अत: $2 V$ के बराबर है। संयोजन से होकर प्रवाहित धारा $I$ है तब समीकरण (3.3) से संयोजन का प्रतिरोध $R _{\mathrm{C}}$
$$ \begin{equation*} R _{C}=\frac{2 V}{I}=2 R \tag{3.4} \end{equation*} $$
चूँकि $V / I=R$, दोनों में से किसी एक सिल्ली का प्रतिरोध है। इस प्रकार चालक की लंबाई दोगुनी करने पर इसका प्रतिरोध दोगुना हो जाता है। तब व्यापक रूप से प्रतिरोध लंबाई के अनुक्रमानुपाती होता है
$$ \begin{equation*} R \propto l \tag{3.5} \end{equation*} $$
इसके बाद इस सिल्ली को लंबाई में दो समान भागों में विभाजित करने की कल्पना कीजिए जिससे कि सिल्ली को लंबाई $l$ की दो सर्वसम सिल्लियों जिनमें प्रत्येक का अनुप्रस्थ काट क्षेत्रफल $A / 2$ है, के संयोजन जैसा समझा जा सके [चित्र 3.2 (c)]।
सिल्ली के सिरों के मध्य दिए गए विभवांतर $V$ के लिए यदि पूरी सिल्ली से प्रवाहित होने वाली धारा $I$ है तो स्पष्टता प्रत्येक आधी सिल्ली से प्रवाहित होने वाली धारा $I / 2$ होगी। चूँकि आधी सिल्ली के सिरों के मध्य विभवांतर $V$ है, अर्थात उतना ही है जितना कि पूरी सिल्ली के सिरों के मध्य विभवांतर है, इसलिए प्रत्येक आधी सिल्ली का प्रतिरोध $R _{1}$ इस प्रकार व्यक्त किया जा सकता है
$$ \begin{equation*} R _{1}=\frac{V}{(I / 2)}=2 \frac{V}{I}=2 R \tag{3.6} \end{equation*} $$
इस प्रकार चालक की अनुप्रस्थ काट के क्षेत्रफल को आधा करने पर प्रतिरोध दोगुना हो जाता है। व्यापक रूप से तब प्रतिरोध $R$, अनुप्रस्थ काट क्षेत्रफल $(A)$ के व्युत्क्रमानुपाती होता है, अर्थात
$$ \begin{equation*} R \propto \frac{1}{A} \tag{3.7} \end{equation*} $$
समीकरण (3.5) और (3.7) के संयोजन से
$$ \begin{equation*} R \propto \frac{l}{A} \tag{3.8} \end{equation*} $$
अतः, किसी दिए गए चालक के लिए
$$ \begin{equation*} R=\rho \frac{l}{A} \tag{3.9} \end{equation*} $$
यहाँ $\rho$ एक आनुपातिकता स्थिरांक है जो चालक के पदार्थ की प्रकृति पर निर्भर करता है, इसके विस्तार पर नहीं। $\rho$ को प्रतिरोधकता कहते हैं। समीकरण (3.9) का प्रयोग करने पर, ओम के नियम को इस प्रकार व्यक्त कर सकते हैं
$$ \begin{equation*} V=I \times R=\frac{I \rho}{A} \tag{3.10} \end{equation*} $$
$j$ द्वारा निर्दिष्ट किया जाता है। धारा घनत्व का $\mathrm{SI}$ मात्रक $\mathrm{A} / \mathrm{m}^{2}$ है। इसके अतिरिक्त यदि एकसमान विद्युत क्षेत्र $E$ के किसी चालक की लंबाई $l$ है तो इस चालक के सिरों के बीच विभवांतर का परिणाम $E l$ होता है। इसका उपयोग करने पर समीकरण (3.10) को इस प्रकार व्यक्त करते हैं
$$ \begin{align*} & E l=j \rho l \\ \text { or, } & E=j \rho \tag{3.11} \end{align*} $$
$\mathbf{E}$ तथा $\mathbf{j}$ के परिमाण के लिए उपरोक्त समीकरण को अवश्य ही सदिश रूप में व्यक्त किया जा सकता है। धारा घनत्व (जिसे हमने धारा के अभिलंबवत प्रति एकांक क्षेत्रफल के रूप में परिभाषित किया है) भी $\mathbf{E}$ की ओर निर्दिष्ट है और $j(\equiv j \mathbf{E} / E)$ एक सदिश भी है। इस प्रकार समीकरण (3.11) को इस प्रकार से व्यक्त करते हैं
$$ \begin{equation*} \mathbf{E}=\mathbf{j} \rho \tag{3.12} \end{equation*} $$ $$ \begin{equation*} \text { अथवा, } \mathbf{j}=\sigma \mathbf{E} \tag{3.13} \end{equation*} $$
जहाँ $\sigma=1 / \rho$ को चालकता कहते हैं। ओम के नियम को प्राय: समीकरण (3.3) के अलावा समीकरण (3.13) द्वारा भी समतुल्य रूप में व्यक्त किया जाता है। अगले अनुच्छेद में हम ओम के नियम के उद्गम को इस रूप में समझने का प्रयास करेंगे जैसे कि यह इलेक्ट्रॉनों के अपवाह के अभिलक्षणों से उत्पन्न हुआ है।
3.5 इलेक्ट्रॉन का अपवाह एवं प्रतिरोधकता का उद्गम
हमने पहले देखा है कि जब कोई इलेक्ट्रॉन किसी भारी आयन से संघट्ट करता है तो संघट्ट के बाद उसी चाल से चलता है लेकिन इसकी दिशा यादृच्छिक हो जाती है। यदि हम सभी इलेक्ट्रॉनों पर विचार करें तो उनका औसत वेग शून्य होगा, क्योंकि उनकी दिशाएँ यादृच्छिक हैं। इस प्रकार यदि $i^{\text {th }}$ इलेक्टॉन $(i=1,2,3, \ldots \mathrm{N})$ का वेग किसी दिए समय में $\mathbf{v} _{i}$ हो तो
$$ \begin{equation*} \frac{1}{N} \sum _{i=1}^{N} \mathbf{v} _{i}=0 \tag{3.14} \end{equation*} $$
अब ऐसी स्थिति पर विचार करें जब यह चालक किसी विद्युत क्षेत्र में उपस्थित है। इस क्षेत्र के कारण इलेक्ट्रॉन में त्वरण उत्पन्न होगा
$$ \begin{equation*} \mathbf{a}=\frac{-e \mathbf{E}}{m} \tag{3.15} \end{equation*} $$
जहाँ $-e$ इलेक्ट्रॉन का आवेश तथा $m$ इसका द्रव्यमान है। दिए गए समय $t$ में $i^{\text {th }}$ इलेक्ट्रॉन पर पुनः विचार करें। यह इलेक्ट्रॉन $t$ के कुछ समय पहले अंतिम बार संघट्ट करेगा और मान लीजिए, $t _{i}$ इसके अंतिम संघट्ट के बाद व्यतीत समय है। यदि $v _{i}$ अंतिम संघट्ट के तुरंत पश्चात का वेग था तब समय $t$ पर इसका वेग
$$ \begin{equation*} \mathbf{v} _{i}=\mathbf{v} _{i}+\left(-\frac{e \mathbf{E}}{m}\right) t _{i} \tag{3.16} \end{equation*} $$
चूँकि अपने अंतिम संघट्ट से आरंभ करने के पश्चात यह इलेक्ट्रॉन किसी समय अंतराल $t _{i}$ के लिए समीकरण (3.15) द्वारा दिए गए त्वरण के साथ त्वरित हुआ था। सभी इलेक्ट्रॉनों का समय $t$ पर औसत वेग सभी $\mathbf{V} _{i}$ का औसत है। $\mathbf{v} _{i}$ का औसत शून्य है [समीकरण (3.14)] क्योंकि संघट्ट के तुरंत बाद एक इलेक्ट्रॉन के वेग की दिशा पूर्णतया यादृच्छिक होती है। इलेक्ट्रॉनों के संघट्ट नियमित काल-अंतरालों पर न होकर यादृच्छिक समय में होते हैं। यदि लगातार (क्रमिक) संघट्टों के बीच औसत समय को हम लोग $\tau$ से निर्दिष्ट करें तो किसी दिए गए समय में कुछ इलेक्ट्रॉन $\tau$ से ज्यादा और कुछ $\tau$ से कम समय व्यतीत किए होंगे। दूसरे शब्दों में, जैसे-जैसे हम $i=1,2 \ldots . . N$ विभिन्न मान देते हैं तो हमें समीकरण (3.16) के अनुसार समय $t _{i}$ के मान कुछ के लिए $\tau$ से ज्यादा होंगे तथा कुछ के लिए $\tau$ से कम होंगे। तब $t _{i}$ का औसत मान $\tau$ होगा (जिसे विश्रांति काल कहते हैं)। इस प्रकार किसी दिए समय $t$ पर $N$ इलेक्ट्रॉनों के लिए समीकरण (3.16) का औसत लेने पर हमें औसत वेग $\mathbf{v} _{d}$ प्राप्त होता है
चित्र 3.3 किसी बिंदु $\mathrm{A}$ से दूसरे बिंदु $\mathrm{B}$ तक बारम्बार संघट्टों के द्वारा इलेक्ट्रॉन की गति तथा संघट्टों के बीच रैखिक गति का आरेखीय चित्रण (सतत रेखाएँ)। यदि दर्शाए अनुसार कोई विद्युत क्षेत्र लगाया जाता है तो इलेक्ट्रॉन $\mathrm{B}^{\prime}$ पर रुक जाता है (बिंदुकृत रेखाएँ)। विद्युत क्षेत्र के विपरीत दिशा में मामूली अपवाह दिखलाई दे रहा है।
$$ \begin{align*} & \mathbf{v} _{d} \equiv\left(\mathbf{v} _{i}\right) _{\text {औसत }}=\left(\mathbf{v} _{i}\right) _{\text {औसत }}-\frac{e \mathbf{E}}{m}\left(t _{i}\right) _{\text {औसत }} \\ & =0-\frac{e \mathbf{E}}{m} \tau=-\frac{e \mathbf{E}}{m} \tau \tag{3.17} \end{align*} $$
चित्र 3.4 धात्विक चालक में विद्युत धारा। धातु में धारा घनत्व का परिमाण एकांक क्षेत्रफल तथा $\mathbf{v} _{d}$ ऊँचाई के बेलन में अंतर्विष्ट आवेश के परिमाण के बराबर है।
यह अंतिम परिणाम आश्चर्यजनक है। यह हमें बताता है कि इलेक्ट्रॉन, यद्यपि त्वरित है, एक औसत वेग से गतिमान है जो समय पर निर्भर नहीं करता है। यह परिघटना अपवाह की है और समीकरण (3.17) का वेग $\mathbf{v} _{d}$ अपवाह वेग कहलाता है।
अपवाह के कारण, विद्युत क्षेत्र $\mathbf{E}$ के लंबवत किसी क्षेत्र से होकर आवेशों का नेट परिवहन होगा। चालक के अंदर एक समतलीय क्षेत्र पर विचार करें जो कि $\mathbf{E}$ के समांतर क्षेत्र पर अभिलंब है (चित्र 3.4)। तब अपवाह के कारण, अत्यणु समय $\Delta t$ में, क्षेत्र की बायीं ओर के सभी इलेक्ट्रॉन $\left|\mathbf{v} _{d}\right| \Delta t$ दूरी पार कर लिए होंगे। यदि चालक में प्रति एकांक आयतन मुक्त इलेक्ट्रॉनों की संख्या $n$ है तो $n \Delta t\left|\mathbf{v} _{d}\right| A$ ऐसे इलेक्ट्रॉन होंगे। चूँकि प्रत्येक इलेक्ट्रॉन आवेश $-e$ वहन करता है, $\Delta t$ समय में क्षेत्र $A$ की दायीं ओर परिवहित कुल आवेश $-n e A\left|\mathbf{v} _{d}\right| \Delta t$ है। $\mathbf{E}$ बायीं ओर निर्दिष्ट है, अतः इस क्षेत्र से होकर $\mathbf{E}$ के अनुदिश परिवहित कुल आवेश इसके ऋणात्मक होगा। परिभाषानुसार [समीकरण (3.2)] क्षेत्र $A$ को समय $\Delta t$ में पार करने वाले आवेश $I \Delta t$ होंगे, यहाँ $I$ धारा का परिमाण है। अतः
$$ \begin{equation*} I \Delta t=+n e A\left|\mathbf{v} _{d}\right| \Delta t \tag{3.18} \end{equation*} $$
$\left|\mathbf{v} _{d}\right|$ के मान को समीकरण (3.17) से प्रतिस्थापित करने पर
$$ \begin{equation*} I \Delta t=\frac{e^{2} A}{m} \tau n \Delta t|\mathbf{E}| \tag{3.19} \end{equation*} $$
परिभाषानुसार, धारा घनत्व के परिमाण $|\mathbf{j}|$ से $I$ संबंधित है
$$ \begin{equation*} I=|\mathbf{j}| A \tag{3.20} \end{equation*} $$
अतः समीकरण (3.19) तथा (3.20) से,
$$ \begin{equation*} |\mathrm{j}|=\frac{n e^{2}}{m} \tau|\mathrm{E}| \tag{3.21} \end{equation*} $$
सदिश $\mathbf{j}, \mathbf{E}$ के समांतर है, इसलिए हम समीकरण (3.21) को सदिश रूप में लिख सकते हैं
$$ \begin{equation*} \mathbf{j}=\frac{n e^{2}}{m} \tau \mathbf{E} \tag{3.22} \end{equation*} $$
अगर हम चालकता $\sigma$ का तादात्म्य स्थापित करें तो समीकरण (3.13) से तुलना करने पर यह व्यक्त होता है कि समीकरण (3.22) तथ्यतः ओम का नियम है। यदि हम चालकता को $\sigma$ द्वारा निर्दिष्ट करें तो
$$ \begin{equation*} \sigma=\frac{n e^{2}}{m} \tau \tag{3.23} \end{equation*} $$
इस प्रकार हम देखते हैं कि विद्युत चालकता का एक बहुत सरल चित्रण ओम के नियम की प्रतिकृति तैयार करता है। अवश्य ही हमने यह पूर्वधारणा बनाई है कि $\tau$ और $n, E$ से स्वतंत्र स्थिरांक हैं। अगले अनुच्छेद में हम ओम के नियम की सीमाओं का विवेचन करेंगे।
उदाहरण 3.1 (a) $1.0 \times 10^{-7} \mathrm{~m}^{2}$ अनुप्रस्थ काट क्षेत्रफल वाले ताँबे के तार में $1.5 \mathrm{~A}$ धारा प्रवाहित हो रही है। इसमें चालक इलेक्ट्रॉनों की औसत अपवाह चाल का आकलन कीजिए। मान लीजिए कि ताँबे का प्रत्येक परमाणु धारा के प्रवाह में एक चालक इलेक्ट्रॉन का योगदान करता है। ताँबे का घनत्व $9.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ तथा इसका परमाणु द्रव्यमान $63.5 \mathrm{u}$ है। (b) ऊपर निकाली गई अपवाह चाल की निम्नलिखित उदाहरणों से तुलना कीजिए। (i) सामान्य तापों पर ताँबे के परमाणुओं की तापीय चाल (ii) चालक के अनुदिश विद्युत क्षेत्र की संचरण चाल जो अपवाह गति उत्पन्न करती है।
हल (a) चालक इलेक्ट्रॉन के अपवाह वेग की दिशा विद्युत क्षेत्र की दिशा के विपरीत है अर्थात इलेक्ट्रॉन बढ़ते हुए विभव की दिशा में अपवाह करते हैं। अपवाह चाल $v _{d}$ समीकरण (3.18) से व्यक्त होगी, $v _{d}=(I /$ neA $)$
अब $e=1.6 \times 10^{-19} \mathrm{C}, A=1.0 \times 10^{-7} \mathrm{~m}^{2}, I=1.5 \mathrm{~A}$ है। चालक इलेक्ट्रॉनों का घनत्व, $n$ प्रति घन मीटर में परमाणुओं की संख्या के बराबर है (मान लीजिए कि प्रति ताँबे के परमाणु में एक चालक इलेक्ट्रॉन है जो संयोजकता इलेक्ट्रॉन की संख्या 1 के अनुसार यथोचित है)। एक घन मीटर ताँबे का द्रव्यमान $9.0 \times 10^{3} \mathrm{~kg}$ है। चूँकि $6.0 \times 10^{23}$ ताँबे के परमाणुओं का द्रव्यमान $63.5 \mathrm{~g}$ है, अत:
$$ \begin{aligned} n & =\frac{6.0 \times 10^{23}}{63.5} \times 9.0 \times 10^{6} \\ & =8.5 \times 10^{28} \mathrm{~m}^{-3} \end{aligned} $$
जिससे हमें अपवाह चाल का निम्न मान प्राप्त होता है:
$$ \begin{aligned} v _{d} & =\frac{1.5}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \\ & =1.1 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \\ & =1.1 \mathrm{~mm} \mathrm{~s}^{-1} \end{aligned} $$
(b) (i) ताप $T$ पर $M$ द्रव्यमान के ताँबे के एक परमाणु की तापीय चाल* विशिष्ट रूप से $\sqrt{k _{B} T / M}$ की कोटि की है। जिसे $\left[<(1 / 2) M v^{2}>=(3 / 2) k _{\mathrm{B}} T\right]$ से प्राप्त किया गया है। यहाँ $k _{B}$ बोल्ट्ज़मैन नियतांक है। $300 \mathrm{~K}$ पर ताँबे के लिए यह लगभग $2 \times 10^{2} \mathrm{~m} / \mathrm{s}$ है। यह किसी चालक में ताँबे के परमाणुओं की यादृच्छिक कंपन चालों को इंगित करता है। ध्यान दीजिए कि इलेक्ट्रॉनों की अपवाह चाल बहुत कम है। साधारण ताप पर यह इलेक्ट्रॉनों की प्रतिरूपी तापीय चाल की लगभग $10^{-5}$ गुनी होती है।
(ii) चालक के अनुदिश गतिशील विद्युत क्षेत्र की चाल किसी विद्युत चुंबकीय तरंग की चाल अर्थात $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ के बराबर है। (इसके नियम में आप अध्याय 8 में पढ़ेंगे)। इसकी तुलना में अपवाह चाल बहुत ही कम है, $10^{-11}$ गुणक द्वारा कम।
उदाहरण 3.2 (a) उदाहरण 3.1 में कुछ ऐम्पियर धारा के परिसर में किसी इलेक्ट्रॉन की अपवाह गति केवल कुछ $\mathrm{mm} \mathrm{s}^{-1}$ ही आकलित की गई है। तब परिपथ बंद करते ही लगभग उसी क्षण धारा कैसे स्थापित हो जाती है?
(b) किसी चालक के अंदर इलेक्ट्रॉन अपवाह विद्युत क्षेत्र में इलेक्ट्रॉनों द्वारा अनुभव किए गए बल के कारण उत्पन्न होता है। लेकिन बल द्वारा त्वरण उत्पन्न होना चाहिए। तब इलेक्ट्रॉन अपरिवर्ती औसत अपवाह वेग क्यों प्राप्त कर लेते हैं?
(c) यदि इलेक्ट्रॉन का अपवाह वेग इतना कम है और इलेक्ट्रॉन का आवेश भी कम है तो फिर किसी चालक में हम अधिक मात्रा में धारा कैसे प्राप्त कर सकते हैं?
(d) जब किसी धातु में इलेक्ट्रॉन कम विभव से अधिक विभव की ओर अपवाह करते हैं तो क्या इसका तात्पर्य यह है कि धातु में सभी मुक्त इलेक्ट्रॉन एक ही दिशा में गतिमान हैं?
(e) क्या उत्तरोत्तर संघट्टों (धातु के धनायनों के साथ) के बीच इलेक्ट्रॉनों के पथ (i) विद्युत क्षेत्र की अनुपस्थिति में, (ii) विद्युत क्षेत्र की उपस्थिति में, सरल रेखीय हैं?
हल (a) पूर्ण परिपथ में विद्युत क्षेत्र लगभग तत्काल स्थापित हो जाता है (प्रकाश के वेग से) जो प्रत्येक बिंदु पर स्थानीय इलेक्ट्रॉन अपवाह उत्पन्न करता है। परिपथ में विद्युत धारा स्थापित होने के लिए यह प्रतीक्षा नहीं करनी पड़ती कि इलेक्ट्रॉन चालक में एक सिरे से दूसरे सिरे तक जाएंगे। फिर भी, धारा स्थायी मान प्राप्त करने में अल्प समय अवश्य लेती है।
(b) प्रत्येक मुक्त इलेक्ट्रॉन त्वरित होता है जिससे उसकी अपवाह चाल तब तक बढ़ती है जब तक वह धातु के धनायनों से संघट्ट नहीं करता। संघट्ट के पश्चात यह अपनी अपवाह चाल खो देता है। पर यह पुनः त्वरित होता है तथा पुनः इसके अपवाह वेग में तब तक वृद्धि होती है जब यह पुन: संघट्ट नहीं करता और यह क्रम चलता रहता है। अतः औसतन इलेक्ट्रॉन केवल अपवाह चाल प्राप्त कर पाता है।
(c) सरल है, क्योंकि चालक में इलेक्ट्रॉन संख्या घनत्व अत्यधिक $\left(\sim 10^{29} \mathrm{~m}^{-3}\right)$ है।
(d) किसी प्रकार नहीं। इलेक्ट्रॉनों की अपवाह चाल उनके अत्यधिक यादृच्छिक वेग पर अध्यारोपित होती है।
(e) विद्युत क्षेत्र की अनुपस्थिति में पथ ऋजु-रेखीय हैं जबकि विद्युत क्षेत्र की उपस्थिति में पथ व्यापक रूप से वक्रित होते हैं।
3.5.1 गतिशीलता
जैसा कि हम देख चुके हैं, चालकता गतिमान आवेश वाहकों से उत्पन्न होती है। धातुओं में यह गतिमान आवेश वाहक इलेक्ट्रॉन हैं, आयनित गैस में ये इलेक्ट्रॉन तथा धन आवेशित आयन हैं, विद्युत अपघट्य में ये धनायन तथा ऋणायन दोनों हो सकते हैं।
एक महत्वपूर्ण राशि गतिशीलता $\mu$ है जिसे प्रति एकांक विद्युत क्षेत्र के अपवाह वेग के परिमाण के रूप में परिभाषित करते हैं
$$ \begin{equation*} \mu=\frac{\left|\mathbf{v} _{d}\right|}{E} \tag{3.24} \end{equation*} $$
गतिशीलता का SI मात्रक $\mathrm{m}^{2} / \mathrm{Vs}$ है और इसके प्रायोगिक मात्रक $\left(\mathrm{cm}^{2} / \mathrm{Vs}\right)$ का $10^{4}$ गुना है। गतिशीलता धनात्मक होती है। समीकरण (3.17) में,
$$ v _{d}=\frac{e \tau E}{m} $$
अत:
$$ \begin{equation*} \mu=\frac{v _{d}}{E}=\frac{e \tau}{m} \tag{3.25} \end{equation*} $$
जहाँ $\tau$ इलेक्ट्रॉन के लिए संघट्टन का औसत समय है।
3.6 ओम के नियम की सीमाएँ
यद्यपि ओम का नियम पदार्थों के विस्तृत वर्ग के लिए मान्य है, विद्युत परिपथों में उपयोग होने वाले कुछ ऐसे पदार्थ एवं युक्तियाँ विद्यमान हैं जहाँ $V$ तथा $I$ की आनुपातिकता लागू नहीं होती है। मोटे तौर पर, यह विचलन निम्नलिखित एक या अधिक प्रकार का हो सकता है
(a) $V$ की $I$ से आनुपातिकता समाप्त हो जाती है (चित्र 3.5)
(b) $V$ तथा $I$ के मध्य संबंध $V$ के चिह्न पर निर्भर करता है। दूसरे शब्दों में, यदि कुछ $V$ के लिए धारा $I$ है, तो $V$ का परिमाण स्थिर रख कर इसकी दिशा बदलने पर, विपरीत दिशा में $I$ के समान परिमाण की धारा उत्पन्न नहीं होती है (चित्र 3.6)। उदाहरण के लिए, डायोड में ऐसा होता है जिसका अध्ययन हम अध्याय 14 में करेंगे।
चित्र 3.5 बिंदुकित रेखा रैखिक ओम-नियम को निरूपित करती है। सतत रेखा अच्छे चालक के लिए $V$ तथा $I$ के संबंध को दर्शाती है।
चित्र 3.6 डायोड के अभिलाक्षणिक वक्र। वोल्टता तथा धारा के ऋण व धन मानों के लिए विभिन्न पैमानों को नोट कीजिए।
चित्र 3.7 GaAs में वोल्टता के सापेक्ष धारा में परिवर्तन।
(c) $V$ तथा $I$ के मध्य संबंध एकमात्र संबंध नहीं है अर्थात उसी धारा $I$ के लिए $V$ के एक से अधिक मान हो सकते हैं (चित्र 3.7)।
पदार्थ तथा युक्तियाँ जो समीकरण (3.3) के रूप में ओम के नियम का पालन नहीं करती हैं, यथार्थ में, इलेक्ट्रॉनिक परिपथ में व्यापक रूप से उपयोग की जाती हैं। तथापि इस अध्याय तथा परवर्ती अध्याय में, हम उस पदार्थ में विद्युत धारा का अध्ययन करेंगे जो ओम के नियम का पालन करते हैं।
3.7 विभिन्न पदार्थों की प्रतिरोधकता
प्रतिरोधकता पर निर्भरता तथा उनके बढ़ते हुए मान के अनुसार पदार्थों का वर्गीकरण चालक, अधचालक तथा विद्युतरोधी में किया जाता है। धातुओं की प्रतिरोधकता $10^{-8} \Omega \mathrm{m}$ से $10^{-6} \Omega \mathrm{m}$ के परिसर में होती है। इसके विपरीत मृत्तिका (सिरेमिक), रबर तथा प्लास्टिक जैसे विद्युतरोधी पदार्थ भी हैं जिनकी प्रतिरोधकता, धातुओं की तुलना में $10^{18}$ गुनी या अधिक है। इन दोनों के मध्य अर्धचालक हैं। इनकी प्रतिरोधकता, तथापि ताप बढ़ाने पर अभिलाक्षणिक रूप से घटती है। अर्धचालक की प्रतिरोधकता उपयुक्त अशुद्धियों को अल्प मात्रा में मिलाने पर कम की जा सकती है। इस अंतिम विशिष्टता का लाभ, इलेक्ट्रॉनिक युक्तियों में उपयोग होने वाले अर्धचालकों के निर्माण में किया जाता है।
3.8 प्रतिरोधकता की ताप पर निर्भरता
पदार्थ की प्रतिरोधकता ताप पर निर्भर पाई जाती है। विभिन्न पदार्थ एक जैसी निर्भरता प्रदर्शित नहीं करते। एक सीमित ताप परिसर में, जो बहुत अधिक नहीं होता, किसी धात्विक चालक की लगभग प्रतिरोधकता को इस प्रकार व्यक्त करते हैं
$$ \begin{equation*} \rho _{\mathrm{T}}=\rho _{0}\left[1+\alpha\left(T-T _{0}\right)\right] \tag{3.26} \end{equation*} $$
जहाँ $\rho _{\mathrm{T}}$ ताप $T$ पर प्रतिरोधकता है तथा $\rho _{0}$ संदर्भ ताप $T _{0}$ पर इसका माप है। $\alpha$ को प्रतिरोधकता ताप-गुणांक कहते हैं और समीकरण (3.26) से $\alpha$ की विमा (ताप) $)^{-1}$ है। धातुओं के लिए $\alpha$ का मान धनात्मक होता है।
समीकरण (3.26) के संबंध से यह ध्वनित होता है कि $T$ और $\rho _{\mathrm{T}}$ के बीच ग्राफ एक सरल रेखा होती है। तथापि, $0^{\circ} \mathrm{C}$ से बहुत कम तापों पर, ग्राफ एक सरल रेखा से काफी विचलित हो जाता है।
अतः समीकरण (3.26) को किसी संदर्भ ताप $T _{0}$ के लगभग किसी सीमित परिसर में उपयोग कर सकते हैं, जहाँ ग्राफ करीब-करीब एक सरल रेखा होगी।
चित्र 3.8 ताप $\mathrm{T}$ के फलन के रूप में ताँबे की प्रतिरोधकता $\rho_T$ ।
चित्र 3.9 परम ताप $\mathrm{T}$ के फलन के रूप में निक्रोम की प्रतिरोधकता।
चित्र 3.10 विशिष्ट अर्द्धचालक के लिए प्रतिरोधकता की ताप-निर्भरता।
कुछ पदार्थ जैसे कि निक्रोम (जो कि निकैल, लोहा तथा क्रोमियम की मिश्रातु है) बहुत दुर्बल ताप-निर्भरता प्रदर्शित करता है (चित्र 3.9)। मैंगनीन तथा कांसटेंटन में भी इसी प्रकार के गुण हैं। चूँकि इनके प्रतिरोध की ताप-निर्भरता बहुत कम है, इसलिए ये पदार्थ तार आबद्ध मानक प्रतिरोधकों के निर्माण में व्यापक रूप से उपयोग किए जाते हैं।
धातुओं के विपरीत, अर्धचालकों की प्रतिरोधकता ताप में वृद्धि होने पर कम हो जाती है। इस प्रारूपिक निर्भरता को चित्र 3.10 में दर्शाया गया है।
हम समीकरण (3.23) में व्युत्पन्न परिणामों के आधार पर प्रतिरोधकता की ताप-निर्भरता को गुणात्मक रूप में समझ सकते हैं। इस समीकरण से किसी पदार्थ की प्रतिरोधकता व्यक्त की जाती है
$$ \begin{equation*} \rho=\frac{1}{\sigma}=\frac{m}{n e^{2} \tau} \tag{3.27} \end{equation*} $$
किसी पदार्थ की प्रतिरोधकता प्रति एकांक आयतन में इलेक्ट्रॉनों की संख्या तथा उसमें होने वाले संघट्टों पर प्रतिलोमी रूप से निर्भर करती है। जैसे-जैसे हम ताप बढ़ाते हैं, विद्युत धारा वहने करने वाले इलेक्ट्रॉनों की औसत चाल बढ़ती जाती है जिसके परिणामस्वरूप संघट्ट की आवृत्ति भी बढ़ती जाती है। इसलिए संघट्टों का औसत समय $\tau$, ताप के साथ घटता है।
धातुओं में $n$ की ताप निर्भरता उपेक्षणीय है, इसलिए ताप बढ़ने से $\tau$ के मान के घटने के कारण $\rho$ बढ़ता है, जैसा कि हमने प्रेक्षण किया है।
तथापि, विद्युतरोधियों एवं अर्धचालकों में ताप में वृद्धि के साथ $n$ में भी वृद्धि होती है। यह वृद्धि समीकरण (3.23) में $\tau$ में होने वाली किसी भी कमी से भी अधिक की क्षतिपूर्ति करती है जिसके फलस्वरूप ऐसे पदार्थों के लिए प्रतिरोधकता $\rho$ का मान ताप के साथ घट जाता है।
उदाहरण 3.3 किसी विद्युत टोस्टर में निक्रोम के तापन अवयव का उपयोग होता है। जब इससे एक नगण्य लघु विद्युत धारा प्रवाहित होती है तो कक्ष ताप पर $\left(27.0^{\circ} \mathrm{C}\right)$ इसका प्रतिरोध $75.3 \Omega$ पाया जाता है। जब इस टोस्टर को $230 \mathrm{~V}$ आपूर्ति से संयोजित करते हैं तो कुछ सेकंड में परिपथ में $2.68 \mathrm{~A}$ की स्थायी धारा स्थापित हो जाती है। निक्रोम-अवयव का स्थायी ताप क्या है? निक्रोम को सम्मिलित ताप परिसर में प्रतिरोध ताप गुणांक $1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$ है।
हल जब अवयव में धारा बहुत कम है तो तापीय प्रभावों की उपेक्षा की जा सकती है और तब अवयव का ताप $T _{1}$ कमरे के ताप के बराबर हो जाता है। जब टोस्टर को आपूर्ति से संयोजित किया जाएगा, तो प्रारंभिक धारा स्थायी मान $2.68 \mathrm{~A}$ से कुछ अधिक हो जाएगी। परंतु विद्युत धारा के तापीय प्रभाव के कारण ताप बढ़ेगा। यह प्रतिरोध को बढ़ाएगा फलस्वरूप परिपथ की विद्युत धारा में कुछ कमी उत्पन्न होगी। कुछ सेकंड में स्थायी अवस्था प्राप्त हो जाएगी तथा ताप और नहीं बढ़ेगा। अवयव का प्रतिरोध तथा आपूर्ति से ली गई विद्युत धारा दोनों स्थायी मान प्राप्त कर लेंगे। तब स्थायी ताप $T _{2}$ पर प्रतिरोध $R _{2}$ का मान
$$ R _{2}=\frac{230 \mathrm{~V}}{2.68 \mathrm{~A}}=85.8 \Omega $$
संबंध
$$ R_2=R_1\left[1+\alpha\left(T_2-T_1\right)\right] $$
का उपयोग संबंध
$\alpha=1.70 \times 10^{-4} \mathrm{C}^{-1}$ के साथ करने पर हमें प्राप्त होता है
$$ T_2-T_1=\frac{(85.8 ? 75.3)}{(75.3) \times 1.70 \times 10^{74}}=820^{\circ} \mathrm{C} $$
अर्थात, $$ T _{2}=(820+27.0)^{\circ} \mathrm{C}=847^{\circ} \mathrm{C} $$
इस प्रकार, तापन अवयव का ताप (जब धारा के कारण तापीय प्रभाव प्रतिवेश में हुए ऊष्मा क्षय के बराबर है) $847^{\circ} \mathrm{C}$ है।
उदाहरण 3.4 प्लैटिनम प्रतिरोध तापमापी के प्लैटिनम के तार का प्रतिरोध हिमांक पर $5 \Omega$ तथा भाप बिंदु पर $5.23 \Omega$ है। जब तापमापी को किसी तप्त-ऊष्मक में प्रविष्ट कराया जाता है तो प्लैटिनम के तार का प्रतिरोध $5.795 \Omega$ हो जाता है। ऊष्मक का ताप परिकलित कीजिए।
हल
$$ \begin{aligned} & R _{0}=5 \Omega, R _{100}=5.23 \Omega \text { तथा } R _{\mathrm{t}}=5.795 \Omega \\ & \text { अब, } \quad t=\frac{R _{t}-R _{o}}{R _{100}-R _{o}} \times 100, \quad R _{t}=R _{o}(1+\alpha t) \\ & =\frac{5.795-5}{5.23-5} \times 100 \\ & =\frac{0.795}{0.23} \times 100=345.65^{\circ} \mathrm{C} \end{aligned} $$
3.9 विद्युत ऊर्जा, शक्ति
किसी चालक $\mathrm{AB}$ पर विचार कीजिए जिसमें $\mathrm{A}$ से $\mathrm{B}$ की ओर $I$ धारा प्रवाहित हो रही है। $\mathrm{A}$ तथा $\mathrm{B}$ पर विद्युत विभव क्रमशः $V(\mathrm{~A})$ एवं $V(\mathrm{~B})$ से निरूपित किए गए हैं। चूँकि धारा $\mathrm{A}$ से $\mathrm{B}$ की ओर प्रवाहित हो रही है, $V(\mathrm{~A})>V(\mathrm{~B})$ और चालक $\mathrm{AB}$ के सिरों के बीच विभवांतर $V=V(\mathrm{~A})-V(\mathrm{~B})>0$ है।
$\Delta t$ काल अंतराल में, आवेश की एक मात्रा $\Delta Q=I \Delta t \mathrm{~A}$ से $\mathrm{B}$ की ओर चलती है। परिभाषानुसार बिंदु $\mathrm{A}$ पर आवेश की स्थितिज ऊर्जा $\mathrm{Q} V(\mathrm{~A})$ थी तथा इसी प्रकार बिंदु $\mathrm{B}$ पर आवेश की स्थितिज ऊर्जा $\mathrm{Q} V(\mathrm{~B})$ है। इसलिए स्थितिज ऊर्जा में यह परिवर्तन $\Delta U _{p o t}$ है
$$ \begin{align*} \Delta U _{p o t} & =\text { अंतिम स्थितिज ऊर्जा - प्रारंभिक स्थितिज ऊर्जा } \\ & =\Delta \mathrm{Q}[(V(\mathrm{~B})-V(\mathrm{~A})]=-\Delta Q V \\ & =-I V \Delta t<0 \tag{3.28} \end{align*} $$
यदि आवेश चालक के अंदर बिना संघट्ट किए गतिमान हैं तो उनकी गतिज ऊर्जा भी परिवर्तित होती है जिससे कि समस्त ऊर्जा अपरिवर्तित रहे। समस्त ऊर्जा के संरक्षण से यह परिणाम निकलता है कि
$$ \begin{equation*} \Delta K=-\Delta U _{p o t} \tag{3.29} \end{equation*} $$
अथवा
$$ \begin{equation*} \Delta K=I V \Delta t>0 \tag{3.30} \end{equation*} $$
अतः चालक के अंदर विद्युत क्षेत्र के प्रभाव से अगर आवेश मुक्त रूप से गतिमान रहते तो उनकी गतिज ऊर्जा बढ़ जाती। तथापि, हमने पहले समझा है कि सामान्य तौर पर, आवेश त्वरित गति से गमन नहीं करते हैं बल्कि अपरिवर्ती अपवाह वेग से चलते हैं। यह पारगमन की अवधि में आयनों तथा परमाणुओं से संघट्ट के कारण होता है। संघट्टों के समय आवेशों द्वारा प्राप्त की गई ऊर्जा, परमाणुओं के साथ आपस में बाँट ली जाती है। परमाणु ज्यादा प्रबल रूप से कंपन करते हैं अर्थात चालक गर्म हो जाते हैं। इस प्रकार एक वास्तविक चालक में काल अंतराल $\Delta t$ में ऊष्मा के रूप में क्षयित ऊर्जा का परिमाण
$\Delta W=I V \Delta t$
प्रति एकांक समय में क्षय हुई ऊर्जा क्षयित शक्ति के बराबर है $P=\Delta W / \Delta t$ और हम प्राप्त कर सकते हैं
ओम के नियम $V=I R$ का उपयोग करने पर हम पाते हैं
$$ \begin{equation*} P=I^{2} R=V^{2} / R \tag{3.33} \end{equation*} $$
जो कि $R$ प्रतिरोध के चालक जिससे $I$ विद्युत धारा प्रवाहित हो रही है, में होने वाला शक्ति क्षय (ओमी क्षय) है। यह वही शक्ति है जो, उदाहरण के लिए किसी तापदीप्त विद्युत लैंप की कुंडली को प्रदीप्त करती है, जिसके कारण वह ऊष्मा तथा प्रकाश को विकिरण करता है।
यह शक्ति कहाँ से आती है? जैसा कि हम पहले स्पष्ट कर चुके हैं कि किसी चालक में स्थायी धारा का प्रवाह बनाए रखने के लिए हमें एक बाह्य स्रोत की आवश्यकता होती है। स्पष्टतया यही स्रोत है जिसे इस शक्ति की आपूर्ति करनी चाहिए। चित्र (3.11) में विद्युत सेल के साथ दर्शाए गए एक सरल परिपथ में यह सेल की ही रासायनिक ऊर्जा है जो इस शक्ति की आपूर्ति जब तक कर सके, करती है।
समीकरणों (3.32) तथा (3.33) में शक्ति के लिए दिए गए व्यंजक से यह स्पष्ट होता है कि किसी प्रतिरोधक $R$ में क्षयित शक्ति उस चालक में प्रवाहित धारा तथा उसके सिरों पर वोल्टता पर किस प्रकार निर्भर करती है।
चित्र 3.11 सेल के टर्मिनलों से संयोजित प्रतिरोधक में $R$ ऊष्मा उत्पन्न होती है। प्रतिरोधक $R$ में क्षयित ऊर्जा विद्युत अपघट्य की रासायनिक ऊर्जा से आती है।
समीकरण (3.33) का विद्युत शक्ति संचरण में महत्वपूर्ण अनुप्रयोग है। विद्युत शक्ति का संचरण पावर स्टेशन से घरों तथा कारखानों में संचरण केबल द्वारा किया जाता है जो कि सैकड़ों मील दूर हो सकते हैं। स्पष्ट है कि हम पावर स्टेशनों से घरों तथा कारखानों से जोड़ने वाले संचरण केबिल में होने वाले शक्ति क्षय को न्यूनतम करना चाहेंगे। अब समझेंगे कि इसमें हम कैसे सफल हो सकते हैं। एक युक्ति $R$ पर विचार करें जिसमें $R _{c}$ प्रतिरोध वाले संचरण केबिल से होकर शक्ति $\mathrm{P}$ को पहुँचाना है, जिसे अंतिमतः क्षयित होना है यदि $R$ के सिरों के बीच वोल्टता $V$ है और उससे $I$ विद्युत धारा प्रवाहित हो रही है तो
$$ \begin{align*} P=V I \quad {(3.34)} \end{align*} $$
पावर स्टेशन से युक्ति को संयोजित करने वाले संयोजी तारों का प्रतिरोध परिमित है और यह $R _{c}$ है। संयोजक तारों में ऊर्जा क्षय $P _{c}$ जो कि व्यर्थ व्यय होता है
$$ \begin{align*} & P _{\mathrm{c}}=I^{2} R _{c} \\ & =\frac{P^{2} R _{c}}{V^{2}} \tag{3.35} \end{align*} $$
समीकरण (3.32) से। अतः शक्ति $P$ की किसी युक्ति को संचालित करने के लिए, संयोजक तार में शक्ति अपव्यय $V^{2}$ के व्युत्क्रमानुपाती है। पावर स्टेशन से आने वाले संचरण केबल सैकड़ों मील लंबे होते हैं तथा उनका प्रतिरोध $R _{c}$ काफी अधिक होता है। संचरण में होने वाले शक्ति-क्षय $P _{\mathrm{c}}$ को कम करने के लिए इन विद्युतवाही तारों में बृहत वोल्टता $V$ पर विद्युत धारा प्रवाहित की जाती है। यही कारण है कि इन शक्ति संचरण लाइनों पर उच्च वोल्टता के खतरे का चिह्न बना होता है, जो कि आबादी वाले क्षेत्र से दूर जाने पर एक सामान्य दृश्य होता है। इतनी उच्च वोल्टता पर विद्युत का प्रयोग सुरक्षित नहीं है। अतः इस धारा की वोल्टता को उपयोग के लिए उपयुक्त मान तक एक युक्ति द्वारा जिसे ट्रांसफार्मर कहते हैं, कम किया जाता है।
3.10 सेल, विद्युत वाहक बल (emf), आंतरिक प्रतिरोध
हमने पहले ही उल्लेख किया है कि विद्युत अपघटनी सेल विद्युत परिपथ में स्थायी धारा को बनाए रखने के लिए एक सरल युक्ति है। जैसा कि चित्र 3.12 में दिखाया गया है, मूल रूप से एक सेल के दो इलैक्ट्रोड होते हैं, जो कि धनात्मक $(\mathrm{P})$ तथा ऋणात्मक $(\mathrm{N})$ कहलाते हैं। ये एक विद्युत
चित्र 3.12 (a) धनात्मक टर्मिनल $\mathrm{P}$ तथा ॠणात्मक टर्मिनल $\mathrm{N}$ के साथ एक विद्युत अपघटनीय सेल का रेखा चित्र। स्पष्टता के लिए इलैक्ट्रोडों के मध्य अंतराल बढ़ाए गए हैं। विद्युत अपघट्य में $A$ तथा $B$ बिंदु प्रारूपिक तौर पर $\mathrm{P}$ एवं $\mathrm{N}$ के निकट हैं। (b) एक सेल का संकेत। + चिह्न $\mathrm{P}$ को तथा - का चिह्न $N$ इलैक्ट्रोड को इंगित करता है। सेल के साथ विद्युतीय संयोजन $\mathrm{P}$ तथा $\mathrm{N}$ पर बनाए जाते हैं।
अपघटनी विलयन में डूबे रहते हैं। विलयन में डूबे इलैक्ट्रोड विद्युत अपघट्य के साथ आवेशों का आदान-प्रदान करते हैं। इसके फलस्वरूप धनात्मक इलैक्ट्रोड के ठीक पास विद्युत अपघटनी विलयन के किसी बिंदु A पर [चित्र (3.12(a))] तथा स्वयं इस इलैक्ट्रोड के बीच एक विभवांतर $V _{+}\left(V _{+}>0\right)$ होता है। इसी प्रकार ऋणात्मक इलैक्ट्रोड अपने ठीक पास के विद्युत अपघटनी विलयन के किसी बिंदु $\mathrm{B}$ के सापेक्ष एक ॠणात्मक विभव $\left(V _{-}\right)\left(V _{-} \geq 0\right)$ पर हो जाता है। जब कोई विद्युत धारा नहीं प्रवाहित होती है तो समस्त विद्युत अपघटनी विलयन का समान विभव होता है, जिससे कि $\mathrm{P}$ तथा $\mathrm{N}$ के मध्य विभवांतर $V _{+}-\left(-V _{-}\right)=V _{+}+V _{-}$रहता है। इस अंतर को सेल का विद्युत वाहक बल (emf) कहते हैं और इसे $\varepsilon$ से निर्दिष्ट करते हैं। इस प्रकार
$$ \begin{equation*} \varepsilon=V _{+}+V _{-}>0 \tag{3.36} \end{equation*} $$
ध्यान दीजिए कि $\varepsilon$ वास्तव में एक विभवांतर है, बल नहीं। तथापि, इसके नाम के लिए विद्युत वाहक बल का उपयोग ऐतिहासिक कारणों से करते हैं और यह नाम उस समय दिया गया था जब यह परिघटना उचित रूप से समझी नहीं गई थी।
$\varepsilon$ का महत्त्व समझने के लिए, सेल से संयोजित एक प्रतिरोधक $R$ पर विचार कीजिए (चित्र 3.12)। $R$ से होकर एक विद्युत धारा $\mathrm{C}$ से $\mathrm{D}$ की ओर प्रवाहित होती है। जैसी कि पहले व्याख्या की जा चुकी है, एक स्थायी धारा बनाए रखी जाती है, क्योंकि विद्युत धारा, विद्युत अपघट्य से होकर $\mathrm{N}$ से $\mathrm{P}$ की ओर प्रवाहित होती है। स्पष्टतः विद्युत अपघट्य से होकर यही धारा $\mathrm{N}$ से $\mathrm{P}$ की ओर प्रवाहित होती है जबकि $R$ से होकर यही धारा $\mathrm{P}$ से $\mathrm{N}$ की ओर प्रवाहित होती है।
जिस विद्युत अपघट्य से होकर यह धारा प्रवाहित होती है उसका एक परिमित प्रतिरोध $r$ होता है, जिसे सेल का आंतरिक प्रतिरोध कहते हैं। पहले हम ऐसी स्थिति पर विचार करें जब $R$ अनंत है जिससे कि $I=V / R=0$, जहाँ $V, \mathrm{P}$ तथा $\mathrm{N}$ के मध्य विभवांतर है।अब,
$$ \begin{align*} V= & \mathrm{P} \text { तथा } \mathrm{A} \text { के मध्य विभवांतर } \\ & +\mathrm{A} \text { तथा } \mathrm{B} \text { के मध्य विभवांतर } \\ & +\mathrm{B} \text { तथा } \mathrm{N} \text { के मध्य विभवांतर } \\ = & \varepsilon \tag{3.37} \end{align*} $$
अतः विद्युत वाहक बल $\varepsilon$ एक खुले परिपथ में (अर्थात जब सेल से होकर कोई धारा नहीं प्रवाहित हो रही है) धनात्मक तथा ॠणात्मक इलैक्ट्रोड के मध्य विभवांतर है।
तथापि, यदि $R$ परिमित है तो $I$ शून्य नहीं होगा। उस स्थिति में $\mathrm{P}$ तथा $\mathrm{N}$ के मध्य विभवांतर
$$ \begin{align*} V & =V _{+}+V _{-}-I r \\ & =\varepsilon-I r \tag{3.38} \end{align*} $$
$\mathrm{A}$ तथा $\mathrm{B}$ के मध्य विभवांतर के लिए व्यजंक ( $I r$ ) में ऋणात्मक चिह्न पर ध्यान दीजिए। यह इसलिए है कि विद्युत अपघट्य में धारा $I, \mathrm{~B}$ से $\mathrm{A}$ की ओर प्रवाहित होती है।
प्रायोगिक परिकलनों में, जब धारा $I$ ऐसी है कि $\varepsilon»I$, तब परिपथ में सेल के आंतरिक प्रतिरोध को नगण्य माना जा सकता है। सेल के आंतरिक प्रतिरोध के वास्तविक मान, विभिन्न सेलों के लिए भिन्न-भिन्न होते हैं। तथापि, शुष्क सेल के लिए आंतरिक प्रतिरोध, सामान्य विद्युत अपघटनी सेल से बहुत अधिक होता है।
हमने यह भी अवलोकन किया है कि जब $R$ से होकर विभवांतर $V$ है तो ओम के नियम से
$V=I R$ (3.39)
समीकरण (3.38) तथा (3.39) को संयोजित करने पर,
$I R=\varepsilon-I r$
अथवा, $I=\frac{\varepsilon}{R+r}$ (3.40)
$R=0$ के लिए सेल से अधिकतम धारा प्राप्त की जा सकती है $I _{\text {अधिकतम }}=\varepsilon / r$ तथापि अधिकांश सेलों में अधिकतम अनुमत धारा इससे बहुत कम होती है जिससे सेल को स्थायी क्षति से बचाया जा सके।
3.11 श्रेणी तथा पार्श्वक्रम में सेल
प्रतिरोधकों की भाँति, विद्युत परिपथ में सेलों को भी संयोजित किया जा सकता है। प्रतिरोधकों की ही भाँति परिपथ में धारा तथा विभवांतर के परिकलन के लिए सेलों के संयोजन को एक तुल्य सेल से प्रतिस्थापित किया जा सकता है।
चित्र 3.13 विद्युत वाहक बल $\varepsilon _{1}$ तथा $\varepsilon _{2}$ के दो सेल श्रेणीक्रम में संयोजित हैं। $r _{1}$ तथा $r _{2}$ उनके आंतरिक प्रतिरोध हैं। $\mathrm{A}$ तथा $\mathrm{C}$ के मध्य संबंधन के लिए संयोजन को विद्युत वाहक बल $\varepsilon _{\mathrm{eq}}$ तथा आंतरिक प्रतिरोध $r _{\mathrm{eq}}$ के एक सेल के जैसा समझा जा सकता है।
पहले, श्रेणीक्रम में दो सेलों पर विचार करें (चित्र 3.13), जहाँ प्रत्येक के एक टर्मिनल को मुक्त छोड़कर, दोनों सेलों के एक टर्मिनल एक दूसरे से संयोजित हैं। $\varepsilon _{1}, \varepsilon _{2}$ दोनों सेलों के विद्युत वाहक बल हैं, तथा $r _{1}, r _{2}$ क्रमशः उनके आंतरिक प्रतिरोध हैं।
चित्र 3.13 में दर्शाए अनुसार मानिए बिंदु $\mathrm{A}, \mathrm{B}$ तथा $\mathrm{C}$ पर, विभव क्रमशः $V(\mathrm{~A}), V(\mathrm{~B})$ तथा $V(\mathrm{C})$ हैं। तब $V(\mathrm{~A})-V(\mathrm{~B})$ पहले सेल के धनात्मक तथा ऋणात्मक टर्मिनल के मध्य विभवांतर है। समीकरण (3.38) में इसे हमने पहले ही परिकलित किया है, अतः
$$ \begin{equation*} V _{A B} \equiv V(\mathrm{~A})-V(\mathrm{~B})=\varepsilon _{1}-I r _{1} \tag{3.41} \end{equation*} $$
इसी प्रकार
$$ \begin{equation*} V _{B C} \equiv V(\mathrm{~B})-V(\mathrm{C})=\varepsilon _{2}-I r _{2} \tag{3.42} \end{equation*} $$
अतः संयोजन के टर्मिनल $\mathrm{A}$ तथा $\mathrm{C}$ के मध्य विभवांतर
$$ \begin{align*} V _{A C} & \equiv V(\mathrm{~A})-V(\mathrm{C})=[V(\mathrm{~A})-V(\mathrm{~B})]+[V(\mathrm{~B})-V(\mathrm{C})] \\ & =\left(\varepsilon _{1}+\varepsilon _{2}\right)-I\left(r _{1}+r _{2}\right) \tag{3.43} \end{align*} $$
यदि हम संयोजन को $\mathrm{A}$ तथा $\mathrm{C}$ के मध्य किसी एकल सेल से प्रतिस्थापित करना चाहें जिसका विद्युत वाहक बल $\varepsilon _{e q}$ तथा आंतरिक प्रतिरोध $r _{e q}$ हो, तब हमें प्राप्त होता है
$$ \begin{equation*} V _{A C}=\varepsilon _{e q}-I r _{e q} \tag{3.44} \end{equation*} $$
समीकरणों (3.43) तथा (3.44) को संयोजित करने पर
$$ \begin{equation*} \varepsilon _{e q}=\varepsilon _{1}+\varepsilon _{2} \tag{3.45} \end{equation*} $$ तथा $$ \begin{equation*} r _{e q}=r _{1}+r _{2} \tag{3.46} \end{equation*} $$
चित्र 3.13 में हमने पहले सेल के ऋणात्मक इलैक्ट्रोड को दूसरे सेल के धनात्मक इलैक्ट्रोड से संबद्ध किया है। इसके स्थान पर यदि हम दोनों सेलों के ॠणात्मक टर्मिनलों को संबद्ध करें, तो समीकरण (3.42) से $V _{B C}=-\varepsilon _{2}-I r _{2}$ और हमें प्राप्त होता है:
$$ \begin{equation*} \varepsilon_{\text {eq }}=\varepsilon_{1}-\varepsilon_{2} \quad\left(\varepsilon_{1}>\varepsilon_{2}\right) \tag{3.47} \end{equation*} $$
स्पष्टतः श्रेणी संयोजन के नियम को सेलों की किसी भी संख्या के लिए विस्तारित किया जा सकता है:
(i) $n$ सेलों के श्रेणी संयोजन का तुल्य विद्युत वाहक बल उनके व्यष्टिगत विद्युत वाहक बलों का योग मात्र है, तथा
(ii) $n$ सेल के श्रेणी संयोजन का तुल्य आंतरिक प्रतिरोध उनके आंतरिक प्रतिरोधों का योग मात्र है।
चित्र 3.14 दो सेलों का पार्श्व संयोजन $\mathrm{A}$ तथा $\mathrm{C}$ के बीच इस संयोजन को आंतरिक प्रतिरोध $r _{e q}$ तथा विद्युत वाहक बल $\varepsilon _{\text {eq }}$ (जिनके मान समीकरण (3.54 तथा (3.55) में दिए गए हैं) के किसी एकल सेल से प्रतिस्थापित कर सकते हैं।
ऐसा तब है, जब धारा प्रत्येक सेल के धनात्मक इलैक्ट्रोड से निकलती है। यदि इस संयोजन में धारा किसी सेल के ॠणात्मक इलैक्ट्रोड से निकले तो $\varepsilon _{e q}$ के व्यंजक में, सेल का विद्युत वाहक बल ॠणात्मक चिह्न के साथ सम्मिलित होता है, जैसा कि समीकरण (3.47) में हुआ है।
अब हम सेलों के पार्श्व संयोजन पर विचार करते हैं। $I _{1}$ तथा $I _{2}$ सेल के धनात्मक इलैक्ट्रोड से निकलने वाली धाराएँ हैं। दो विद्युत धाराएँ $I _{1}$ तथा $I _{2}$ बिंदु $B _{1}$ पर प्रवेश करती हैं जबकि इस बिंदु से $I$ धारा बाहर निकलती है। चूँकि उतने ही आवेश अन्दर प्रवाहित होते हैं जितने कि बाहर, हमें प्राप्त होता है
$$ \begin{equation*} I=I_{1}+I_{2} \tag{3.48} \end{equation*} $$
मान लीजिए बिंदुओं $\mathrm{B} _{1}$ तथा $\mathrm{B} _{2}$ पर विभव क्रमशः $V\left(\mathrm{~B} _{1}\right)$ तथा $V\left(\mathrm{~B} _{2}\right)$ हैं। तब पहले सेल पर विचार करने पर इसके टर्मिनलों के मध्य विभवांतर $V\left(\mathrm{~B} _{1}\right)-V\left(\mathrm{~B} _{2}\right)$ होगा। अतः समीकरण (3.38) से
$$ \begin{equation*} V \equiv V\left(\mathrm{~B} _{1}\right)-V\left(\mathrm{~B} _{2}\right)=\varepsilon _{1}-I _{1} r _{1} \tag{3.49} \end{equation*} $$
बिंदु $\mathrm{B} _{1}$ तथा $\mathrm{B} _{2}$ इसी प्रकार ठीक-ठीक दूसरे सेल से भी संबद्ध हैं। अतः यहाँ दूसरे सेल पर विचार करने से हमें प्राप्त होता है
$$ \begin{equation*} V \equiv V\left(\mathrm{~B} _{1}\right)-V\left(\mathrm{~B} _{2}\right)=\varepsilon _{2}-I _{2} r _{2} \tag{3.50} \end{equation*} $$
पिछले तीनों समीकरणों को संयोजित करने पर
$$ \begin{align*} I & =I _{1}+I _{2} \\ & =\frac{\varepsilon _{1}-V}{r _{1}}+\frac{\varepsilon _{2}-V}{r _{2}} \end{align*} $$
$$ \begin{align*} =\left(\frac{\varepsilon _{1}}{r _{1}}+\frac{\varepsilon _{2}}{r _{2}}\right)-V\left(\frac{1}{r _{1}}+\frac{1}{r _{2}}\right) \tag{3.51} \end{align*} $$
इस प्रकार $V$ का मान है $$ \begin{equation*} V=\frac{\varepsilon _{1} r _{2}+\varepsilon _{2} r _{1}}{r _{1}+r _{2}}-I \frac{r _{1} r _{2}}{r _{1}+r _{2}} \tag{3.52} \end{equation*} $$
यदि सेलों के इस संयोजन को हम बिंदु $\mathrm{B} _{1}$ और $\mathrm{B} _{2}$ के बीच किसी ऐसे एकल सेल से प्रतिस्थापित करें जिसका विद्युत वाहक बल $\varepsilon _{e q}$ तथा आंतरिक प्रतिरोध $r _{e q}$ हो तो हमें प्राप्त होता है
$$V=\varepsilon_{e q}-I r_{e q} \tag{3.53}$$
समीकरण (3.52) तथा (3.53) समान होने चाहिए, अतः
$$ \begin{align*} & \varepsilon_{e q}=\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}} \tag{3.54}\\ & r_{e q}=\frac{r_{1} r_{2}}{r_{1}+r_{2}} \tag{3.55} \end{align*} $$
इन समीकरणों को हम और सरल रूप में तरीके से प्रस्तुत कर सकते हैं
$$ \begin{align*} & \frac{1}{r_{e q}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \tag{3.56}\\ & \frac{\varepsilon_{e q}}{r_{e q}}=\frac{\varepsilon_{1}}{r_{1}}+\frac{\varepsilon_{2}}{r_{2}} \tag{3.57} \end{align*} $$
चित्र (3.14) में हमने दोनों टर्मिनलों को एक साथ तथा इसी प्रकार दोनों ॠण टर्मिनलों को भी एक साथ संबद्ध किया है जिससे विद्युत धाराएँ $I _{1}$ तथा $I _{2}$ धन टर्मिनलों से बाहर निकलती हैं। यदि दूसरे का ऋणात्मक टर्मिनल पहले के धनात्मक टर्मिनल से संबद्ध कर दिया जाए, तब भी समीकरण (3.56) तथा (3.57) $\varepsilon _{2} \rightarrow-\varepsilon _{2}$ के साथ मान्य होंगे।
समीकरण (3.56) तथा (3.57) को आसानी से विस्तारित किया जा सकता है। यदि हमारे पास $n$ सेल हैं जिनके विद्युत वाहक बल $\varepsilon _{1}, \ldots \varepsilon _{n}$ तथा आंतरिक प्रतिरोध $r _{1}, \ldots r _{n}$ हैं और वे पार्श्व संबंधन में हैं तो यह संयोजन उस एकल सेल के तुल्य होगा जिसका विद्युत वाहक बल $\varepsilon _{e q}$ तथा आंतरिक प्रतिरोध $r _{e q}$ है जिससे कि
$$ \begin{align*} & \frac{1}{r _{e q}}=\frac{1}{r _{1}}+\quad+\frac{1}{r _{n}} \tag{3.58} \\ & \frac{\varepsilon _{e q}}{r _{e q}}=\frac{\varepsilon _{1}}{r _{1}}++\frac{\varepsilon _{n}}{r _{n}} \tag{3.59} \end{align*} $$
3.12 किरोफ के नियम
गुस्ताव रॉबर्ट किरखोफ (1824 - 1887) जर्मनी के भौतिकविज्ञानी हीडलबर्ग एवं बर्लिन में प्रोफ़ेसर रहे। मुख्यतः स्पेक्ट्रमिकी के विकास के लिए जाने जाते हैं। उन्होंने गणितीय भौतिकी में भी काफी महत्वपूर्ण योगदान किया जिसमें परिपथों के लिए प्रथम एवं द्वितीय नियम शामिल हैं।
विद्युत परिपथों में कभी-कभी कई प्रतिरोधक एवं सेल जटिल ढंग से संबद्ध होते हैं। श्रेणी एवं पार्श्व संयोजन के लिए जो सूत्र हमने पहले व्युत्पन्न किए हैं, वे परिपथ के सभी विद्युत धाराओं तथा विभवांतरों के लिए हमेशा पर्याप्त नहीं होते। दो नियम, जिन्हें किरखोफ के नियम कहते हैं, विद्युत परिपथों के विश्लेषण में बहुत उपयोगी होते हैं।
दिए गए परिपथ में हम प्रत्येक प्रतिरोधक में प्रवाहित धारा को किसी प्रतीक जैसे $I$ से नामांकित करते हुए और तीर के चिह्न द्वारा प्रतिरोध के अनुदिश धारा के प्रवाह को निर्दिष्ट करते हुए आगे बढ़ते हैं। यदि अंततः $I$ धनात्मक निर्धारित होता है तो प्रतिरोधक में विद्युत धारा की वास्तविक दिशा, तीर की दिशा में है। यदि यह ऋणात्मक निकलता है, तो वास्तव में विद्युत धारा तीर की दिशा के विपरीत प्रवाहित हो रही है। इसी प्रकार, प्रत्येक स्रोत (अर्थात सेल या विद्युत शक्ति का कोई दूसरा स्रोत) के लिए धनात्मक तथा ऋणात्मक इलैक्ट्रोड को, सेल में प्रवाह हो रही धारा के संकेत के अलावा एक निर्देशित तीर से चिह्नित करते हैं। यह हमें धनात्मक टर्मिनल P तथा ऋणात्मक टर्मिनल $\mathrm{N}$ के बीच विभवांतर बताएगा, $V=V(\mathrm{P})-V(\mathrm{~N})=\varepsilon-I r$ [समीकरण (3.38), $I$ यहाँ सेल के अंदर $\mathrm{N}$ से होकर $\mathrm{P}$ की ओर प्रवाहित होने वाली विद्युत धारा है]। यदि सेल से होकर बहने वाली धारा को चिह्नित करते हुए हम $\mathrm{P}$ से $\mathrm{N}$ की ओर बढ़ते हैं तो स्पष्टतः
$$ \begin{equation*} V=\varepsilon+I r \tag{3.60} \end{equation*} $$
चिह्नों को बनाने कि प्रक्रिया को स्पष्ट करने के बाद अब हम नियमों तथा उपपत्तियों को अभिव्यक्त करेंगे :
(a) संधि नियम-किसी संधि पर संधि से प्रवेश करने वाली विद्युत धाराओं का योग इस संधि से निकलने वाली विद्युत धाराओं के योग के बराबर होता है (चित्र 3.15)।
चित्र 3.15 संधि $a$ पर निकलने वाली विद्युत धारा $I _{1}+I _{2}$ तथा प्रवेश करने वाली विद्युत धारा $I _{3}$ है। संधि के नियमानुसार $I _{3}=I _{1}+I _{2}$. बिंदु $h$ पर प्रवेश करने वाली धारा $I _{1}$ है। $h$ से निकलने वाली भी एक ही धारा है और संधि नियम से, ये भी $I _{1}$ होगा। दो पाशों ‘ahdcba’ तथा ‘ahdefga’ के लिए पाश नियम प्रदत्त करते हैं - $30 I _{1}$ $-41 I _{3}+45=0$ तथा $-30 I _{1}+21 I _{2}-80=0$
इस नियम का प्रमाण इस तथ्य से समझते हैं कि जब विद्युत धारा स्थायी होती है, किसी संधि या चालक के किसी बिंदु पर आवेश संचित नहीं होता है। अतः प्रवेश करने वाली कुल विद्युत धाराएँ (जो कि संधि में आवेश के प्रवाह की दर है) बाहर निकलने वाली कुल विद्युत धाराओं के बराबर होती हैं।
(b) पाश (लूप) नियम-प्रतिरोधकों तथा सेलों से सम्मिलित किसी बंद पाश के चारों ओर विभव में परिवर्तनों का बीजगणितीय योग शून्य होता है (चित्र 3.15)।
यह नियम भी सुस्पष्ट है, क्योंकि विद्युत विभव बिंदु की अवस्थिति पर निर्भर करता है। अतः किसी बिंदु से प्रस्थान कर यदि हम वापस उसी बिंदु पर आते हैं, तो कुल परिवर्तन शून्य होने चाहिए। एक बंद पाश में हम प्रस्थान बिंदु पर वापस आ जाते हैं, यह नियम इसीलिए है।
उदाहरण 3.5 $10 \mathrm{~V}$ तथा नगण्य आंतरिक प्रतिरोध की बैटरी एक घनीय परिपथ जाल (नेटवर्क) के विकर्णतः सम्मुख कोनों से जुड़ी है। परिपथ जाल में $1 \Omega$ प्रतिरोध के 12 प्रतिरोधक हैं (चित्र 3.16)। परिपथ जाल का समतुल्य प्रतिरोध तथा घन के प्रत्येक किनारे के अनुदिश विद्युत धारा ज्ञात कीजिए।
चित्र 3.16
हल परिपथ जाल को प्रतिरोधकों के सरल श्रेणी एवं पाशर्श संयोजन में परिवर्त्य नहीं किया जा सकता तथापि प्रश्न में स्पष्ट सममिति है जिसके उपयोग द्वारा परिपथ जाल के समतुल्य प्रतिरोध को ज्ञात किया जा सकता है।
$\mathrm{AA}^{\prime}, \mathrm{AD}$ तथा $\mathrm{AB}$ पथों को परिपथ जाल में सममितीय विधि से रखा गया है। इसलिए प्रत्येक में समान विद्युत धारा, मान लीजिए $I$ प्रवाहित होनी चाहिए। इसके अतिरिक्त $\mathrm{A}^{\prime}, \mathrm{B}$ व $\mathrm{D}$ सिरों पर आगत धारा $I$ को दो समान निर्गत शाखाओं में टूटना चाहिए। इस प्रकार, घन के सभी 12 किनारों में धारा को सरलतापूर्वक $I$ के पद में लिख सकते हैं। इसमें किरखोफ के प्रथम नियम तथा प्रश्न की सममिति का उपयोग करते हैं।
आगे एक बंद पाश जैसे $\mathrm{ABCC}^{\prime} \mathrm{EA}$ लीजिए और उस पर किरखोफ का द्वितीय नियम लागू कीजिए :
$$ -I R-(1 / 2) I R-I R+\varepsilon=0 $$
यहाँ प्रत्येक किनारे का प्रतिरोध $R$ है तथा बैटरी का विद्युत वाहक बल $\varepsilon$ है।
इस प्रकार, $$ \varepsilon=\frac{5}{2} I R $$
परिपथ जाल (नेटवर्क) का समतुल्य प्रतिरोध $R _{\mathrm{eq}}$ निम्नवत् है:
$$R _{\mathrm{eq}}=\frac{\varepsilon}{3 I}=\frac{5}{6} R$$
$R=1 \Omega$ के लिए $R _{\mathrm{eq}}=(5 / 6) \Omega$ तथा $\varepsilon=10 \mathrm{~V}$ के लिए, परिपथ जाल (नेटवर्क) में कुल धारा है
$3 I=10 \mathrm{~V} /(5 / 6) \Omega=12 \mathrm{~A}$ अर्थात $I=4 \mathrm{~A}$
प्रत्येक किनारे में प्रवाहित होने वाली धारा को अब चित्र 3.16 से जाना जा सकता है।
इस बात पर ध्यान दिया जाना चाहिए कि परिपथ नेटवर्क की सममिति के कारण उदाहरण 3.5 में किरखोफ के नियमों की विशाल शक्ति का उपयोग नहीं किया गया है। एक सामान्य परिपथ नेटवर्क में सममिति के कारण इस प्रकार का सरलीकरण नहीं होता। इसलिए संधियों एवं बंद पाशों में (इनकी संख्या उतनी होनी चाहिए जितनी कि नेटवर्क में अज्ञात राशियाँ हैं) किरखोफ के नियमों के उपयोग द्वारा समस्या को हल कर सकते हैं। यह उदाहरण 3.6 में स्पष्ट किया गया है।
उदाहरण 3.6 चित्र 3.17 में दिखलाए गए नेटवर्क की प्रत्येक शाखा में धारा ज्ञात कीजिए।
चित्र 3.17
हल नेटवर्क की प्रत्येक शाखा के लिए एक अज्ञात धारा निर्धारित की गयी है जिसे किरखोफ के नियम को लागू कर ज्ञात करना है। प्रारंभ में ही अज्ञातों की संख्या कम करने के लिए प्रत्येक शाखा में अज्ञात विद्युत धारा को निर्दिष्ट करने हेतु किरखोफ के प्रथम नियम का उपयोग करते हैं। इस प्रकार, हमारे पास तीन अज्ञात धाराएँ $I _{1}, I _{2}$ तथा $I _{3}$ हैं जिन्हें तीन विभिन्न बंद पाशों में किरखोफ के द्वितीय नियम के उपयोग से ज्ञात कर सकते हैं। बंद पाश ADCA में किरखोफ के द्वितीय नियम के उपयोग से हमें निम्नलिखित व्यंजक प्राप्त होता है-
$$ \begin{equation*} 10-4\left(I _{1}-I _{2}\right)+2\left(I _{2}+I _{3}-I _{1}\right)-I _{1}=0 \tag{3.61 a} \end{equation*} $$
अर्थात $7 I _{1}-6 I _{2}-2 I _{3}=10$
बंद पाश $\mathrm{ABCA}$ के लिए हमें प्राप्त होता है
$$ \begin{equation*} 10-4 I _{2}-2\left(I _{2}+I _{3}\right)-I _{1}=0 \tag{3.62 b} \end{equation*} $$
अर्थात $I _{1}+6 I _{2}+2 I _{3}=10$
बंद पाश $\mathrm{BCDEB}$ के लिए हमें प्राप्त है
$$ \begin{equation*} 5-2\left(I_{2}+I_{3}\right)-2\left(I_{2}+I_{3}-I_{1}\right)=0 \tag{3.63 c} \end{equation*} $$
अर्थात $2 I _{1}-4 I _{2}-4 I _{3}=-5$
समीकरण (a), (b) व (c) तीन युगपत समीकरण हैं जिनमें तीन राशियाँ अज्ञात हैं, इन्हें सामान्य विधि से हल किया जा सकता है। इस प्रकार,
$$ I _{1}=2.5 \mathrm{~A}, \quad I _{2}=\frac{5}{8} \mathrm{~A}, \quad I _{3}=1 \frac{7}{8} \mathrm{~A} $$
परिपथ जाल की विभिन्न शाखाओं में धाराएँ इस प्रकार हैं:
$$\mathrm{AB}: \frac{5}{8} \mathrm{~A}, \quad \mathrm{CA}: 2 \frac{1}{2} \mathrm{~A}, \mathrm{DEB}: 1 \frac{7}{8} \mathrm{~A}$$ $$\mathrm{AD}: 1 \frac{7}{8} \mathrm{~A}, \quad \mathrm{CD}: 0 \mathrm{~A}, \quad \mathrm{BC}: 2 \frac{1}{2} \mathrm{~A}$$
यह आसानी से सत्यापित किया जा सकता है कि यदि किरखोफ के नियम को शेष बंद पाशों में उपयोग किया जाए तो हमें कोई अन्य स्वतंत्र समीकरण नहीं प्राप्त होगा अर्थात धाराओं के उपरोक्त मान नेटवर्क के हर बंद पाश के लिए द्वितीय नियम को संतुष्ट करेंगे। उदाहरण के तौर पर बंद परिपथ BADEB के लिए कुल वोल्टता पात
$$ 5 \mathrm{~V}+\left(\frac{5}{8} \times 4\right) \mathrm{V}-\left(\frac{15}{8} \times 4\right) \mathrm{V} $$
शून्य होगा, जैसा कि किरखोफ के द्वितीय नियम द्वारा अपेक्षित है।
3.13 न्हीटस्टोन सेतु
चित्र 3.18 व्हीटस्टोन सेतु
किरोफ के एक अनुप्रयोग के रूप में चित्र 3.18 में दिखाए परिपथ पर विचार कीजिए, जो कि व्हीटस्टोन सेतु कहलाता है। सेतु में चार प्रतिरोधक $R _{1}, R _{2}, R _{3}$ तथा $R _{4}$ होते हैं। विकर्णतः विपरीत बिंदुओं (चित्र में $\mathrm{A}$ तथा $\mathrm{C}$ ) के एक युग्म से कोई विद्युत स्रोत संबद्ध है। यह (अर्थात $A C$ ) बैटरी भुजा कहलाती है। दूसरे दो शीर्ष बिंदुओं, $B$ तथा $D$ के मध्य एक गैल्वेनोमीटर (जो विद्युत धारा के संसूचन की एक युक्ति है) संबद्ध है। यह लाइन, जिसे चित्र में $\mathrm{BD}$ से दिखाया गया है, गैल्वेनोमीटर भुजा कहलाती है।
सरलता के लिए हम कल्पना करते हैं कि सेल में कोई आंतरिक प्रतिरोध नहीं है। सामान्यतः $G$ से होकर विद्युत धारा $I _{g}$ तथा सभी प्रतिरोधकों से होकर भी धारा प्रवाहित होगी। उस संतुलित सेतु का उदाहरण एक विशेष महत्व रखता है जिसमें प्रतिरोधक ऐसे हों कि $I _{\mathrm{g}}=0$ । हम आसानी से ऐसी संतुलन अवस्था प्राप्त कर सकते हैं जिससे $\mathrm{G}$ से होकर कोई धारा प्रवाहित नहीं होती। ऐसे प्रकरण में, संधि $\mathrm{D}$ तथा $\mathrm{B}$ के लिए (चित्र देखिए) किरोफ के संधि नियम को अनुप्रयुक्त करने पर हमें संबंध $I _{1}=I _{3}$ तथा $I _{2}=I _{4}$ तुरंत प्राप्त हो जाते हैं। उसके बाद, हम बंद पाशों $\mathrm{ADBA}$ तथा $\mathrm{CBDC}$ पर किरोफ के पाश नियम को अनुप्रयुक्त करते हैं। पहले पाश से प्राप्त होता है
$$ \begin{equation*} -I _{1} R _{1}+0+I _{2} R _{2}=0 \quad\left(I _{g}=0\right) \tag{3.62} \end{equation*} $$
तथा $I _{3}=I _{1}, I _{4}=I _{2}$ को उपयोग करने पर द्वितीय पाश से प्राप्त होता है
$$ \begin{equation*} I _{2} R _{4}+0-I _{1} R _{3}=0 \tag{3.63} \end{equation*} $$
समीकरण (3.62) से हम प्राप्त करते हैं
$$ \frac{I _{1}}{I _{2}}=\frac{R _{2}}{R _{1}} $$
जबकि समीकरण (3.63) से हम प्राप्त करते हैं
$$ \frac{I _{1}}{I _{2}}=\frac{R _{4}}{R _{3}} $$
अतः हम प्रतिबंध प्राप्त करते हैं।
$$ \begin{equation*} \frac{\mathrm{R} _{2}}{\mathrm{R} _{1}}=\frac{\mathrm{R} _{4}}{\mathrm{R} _{3}} \tag{64a} \end{equation*} $$
चित्र 3.18 व्हीटस्टोन सेतु
चार प्रतिरोधकों में संबंध दिखलाने वाले समीकरण [3.64(a)] को गैल्वेनोमीटर में शून्य अथवा नगण्य विक्षेप के लिए संतुलन प्रतिबंध कहते हैं।
व्हीटस्टोन सेतु तथा इसका संतुलन प्रतिबंध अज्ञात प्रतिरोध के निर्धरण के लिए एक प्रायोगिक विधि देता है। कल्पना कीजिए कि हमारे पास कोई अज्ञात प्रतिरोध है जिसे हम चौथी भुजा में लगाते हैं; इस प्रकार $R _{4}$ ज्ञात नहीं है। ज्ञात प्रतिरोधकों $R _{1}$ तथा $R _{2}$ को सेतु की पहली तथा दूसरी भुजा में रखते हुए, हम $R _{3}$ को तब तक परिवर्तित करते जाते हैं जब तक गैल्वेनोमीटर नगण्य विक्षेप नहीं दिखलाता है। सेतु तब संतुलित है तथा संतुलन प्रतिबंध से अज्ञात प्रतिरोध $R _{4}$ का मान प्राप्त होता है,
$$ \begin{equation*} R _{4}=R _{3} \cdot \frac{R _{2}}{R _{1}} \tag{64b} \end{equation*} $$
इस सिद्धांत को उपयोग करने वाली प्रायोगिक युक्ति मीटर सेतु कहलाती है।
उदाहरण 3.7 व्हीटस्टोन सेतु की चार भुजाओं (चित्र 3.19) के प्रतिरोध निम्नवत हैं:
$\mathrm{AB}=100 \Omega, \mathrm{BC}=10 \Omega, \mathrm{CD}=5 \Omega$ तथा $\mathrm{DA}=60 \Omega$ ।
चित्र 3.19
$15 \Omega$ प्रतिरोध के एक गैल्वेनोमीटर को $\mathrm{BD}$ के बीच जोड़ा गया है। गैल्वेनोमीटर से प्रवाहित होने वाली धारा को परिकलित कीजिए। $\mathrm{AC}$ के मध्य $10 \mathrm{~V}$ विभवांतर है।
हल पाश BADB पर विचार करने पर
$$ \begin{array}{ll} & 100 I_{1}+15 I_{g}-60 I_{2}=0 \end{array} $$
अथवा $$ \begin{array}{ll} & 20 I_{1}+3 I_{g}-12 I_{2}=0 \tag{3.65a} \end{array} $$
पाश BCDB पर विचार करने पर
$$ \begin{align*} & 10\left(I_{1}-I_{g}\right)-15 I_{g}-5\left(I_{2}+I_{g}\right)=0 \\ & 10 I_{1}-30 I_{g}-5 I_{2}=0 \\ & 2 I_{1}-6 I_{g}-I_{2}=0 \tag{3.65(b)} \end{align*} $$
पाश ADCEA पर विचार करने पर
$$ \begin{align*} & 60 I_{2}+5\left(I_{2}+I_{g}\right)=10 \\ & 65 I_{2}+5 I_{g}=10 \\ & 13 I_{2}+I_{g}=2 \tag{3.65(c)} \end{align*} $$
समीकरण (3.65(b)) को 10 से गुणा करने पर
$$ \begin{equation*} 20 I_{1}-60 I_{g}-10 I_{2}=0 \tag{3.65(d)} \end{equation*} $$
समीकरणों [3.65 (d)] व [3.65 (a)] से हमें निम्नलिखित व्यंजक प्राप्त होता है
$$ \begin{align*} & 63 I_{g}-2 I_{2}=0 \\ & I_{2}=31.5 I_{g} \tag{3.65(e)} \end{align*} $$
$I_2$ के मान को समीकरण [3.65 (c)] में स्थानापन्न करने पर
$$ \begin{aligned} & 13\left(31.5 I_{g}\right)+I_{g}=2 \\ & 410.5 I_{g}=2 \\ & I_{g}=4.87 \mathrm{~mA} . \end{aligned} $$
सारांश
1. किसी चालक के दिए गए क्षेत्रफल से प्रवाहित धारा उस क्षेत्रफल से प्रति एकांक समय में गुज़रने वाला नेट आवेश होता है।
2. एक स्थायी धारा बनाए रखने के लिए हमें एक बंद परिपथ चाहिए जिसमें एक बाह्य स्रोत विद्युत आवेश को निम्न से उच्च स्थितिज ऊर्जा की ओर प्रवाहित कराता है। आवेश को निम्न से उच्च स्थितिज ऊर्जा (अर्थात स्रोत के एक टर्मिनल से दूसरे तक) की ओर ले जाने में स्रोत द्वारा प्रति एकांक आवेश पर किया गया कार्य स्रोत का विद्युत वाहक बल (electromotive force) या emf कहलाता है। ध्यान दीजिए कि emf एक बल नहीं है, बल्कि यह खुले परिपथ में स्रोत के दोनों टर्मिनलों के बीच वोल्टता का अंतर है।
3. ओम का नियम- किसी चालक में प्रवाहित धारा $I$ उसके सिरों के बीच विभवांतर $V$ के अनुक्रमानुपातिक है अर्थात $V \propto I$ अथवा $V=R I$, जहाँ $R$ को चालक का प्रतिरोध कहते हैं। प्रतिरोध का मात्रक ओम है- $1 \Omega=1 \mathrm{~V} \mathrm{~A}^{-1}$
4. चालक के प्रतिरोध $R$, संबंध
$$ R=\frac{\rho l}{A} $$
के द्वारा चालक की लंबाई और अनुप्रस्थ काट पर निर्भर है, जहाँ $\rho$, जिसे प्रतिरोधकता कहते हैं, पदार्थ का गुण है जो ताप और दाब पर निर्भर करता है।
5. पदार्थों की विद्युत प्रतिरोधकता विस्तृत परिसर में परिवर्तित होती है। धातुओं की प्रतिरोधकता कम ( $10^{-8} \Omega \mathrm{m}$ से $10^{-6} \Omega \mathrm{m}$ परिसर में) होती है। विद्युतरोधी जैसे काँच या रबर की प्रतिरोधकता $10^{22}$ से $10^{24}$ गुना होती है, लघुगणकीय पैमाने पर, अर्द्धचालकों जैसे $\mathrm{Si}$ और $\mathrm{Ge}$ की प्रतिरोधकता उसके मध्य परिसर में होती है।
6. अधिकतर पदार्थों में धारा के वाहक इलेक्ट्रॉन होते हैं, कुछ स्थितियों उदाहरणार्थ, आयनी क्रिस्टलों और विद्युत अपघट्य, में धारा वहन धनायनों तथा ऋणायनों द्वारा होता है।
7. धारा घनत्व $\mathbf{j}$ प्रति सेकंड प्रति एकांक प्रवाह के अभिलंब, क्षेत्रफल से प्रवाहित आवेश की मात्रा देता है
$$ \mathbf{j}=n q \mathbf{v} _{d} $$
जहाँ $n$ आवेश वाहकों, जिनमें प्रत्येक का आवेश $q$ है, की संख्या घनत्व (प्रति एकांक आयतन में संख्या) तथा आवेश वाहकों का अपवाह वेग $\mathbf{v} _{d}$ है। इलेक्ट्रॉन के लिए $q=-e$ है। यदि $\mathbf{j}$ एक अनुप्रस्थ काट $\mathbf{A}$ के अभिलंब है और क्षेत्रफल पर एकसमान है तो क्षेत्रफल में धारा का परिमाण $I\left(=n e v _{d} A\right)$ है।
8. $E=V / l, I=n e v _{d} A$ और ओम के नियम का उपयोग करते हुए निम्न व्यंजक प्राप्त होता है
$$ \frac{e E}{m}=\rho \frac{n e^{2}}{m} v _{d} $$
यदि हम मान लें कि इलेक्ट्रॉन धातु के आयनों से संघट्ट करते (टकराते) हैं जो उन्हें यादृच्छिकतः विक्षेपित कर देते हैं तो बाह्य बल $E$ के कारण धातु में इलेक्ट्रॉनों पर लगने वाले बल $e E$ और अपवाह वेग $v _{d}$ (त्वरण नहीं) में आनुपातिकता को समझा जा सकता है। यदि ऐसे संघट्ट औसत काल अंतराल $\tau$ में होते हैं तो
$$ v _{d}=a \tau=e E \tau / m $$
जहाँ $a$ इलेक्ट्रॉन का त्वरण है। अत:
$$ \rho=\frac{m}{n e^{2} \tau} $$
9. उस ताप परिसर में जिसमें प्रतिरोधकता ताप के साथ रैखिक रूप से बढ़ती है, प्रतिरोधकता के ताप गुणांक $\alpha$ को प्रति एकांक ताप वृद्धि से प्रतिरोधकता में भिन्नात्मक वृद्धि के रूप में परिभाषित किया जाता है।
10. ओम के नियम का पालन बहुत से पदार्थ करते हैं परंतु यह प्रकृति का मूलभूत नियम नहीं है। यह असफल है यदि
(a) $V$ अरैखिक रूप से $I$ पर निर्भर है।
(b) $V$ के उसी परम मान के लिए $V$ और $I$ में संबंध $V$ के चिह्न पर निर्भर है।
(c) $V$ और $I$ में संबंध अद्वितीय नहीं है।
(a) का एक उदाहरण यह है कि जब $\rho, I$ के साथ बढ़ता है (यद्यपि ताप को स्थिर रखते हैं)। एक दिष्टकारी (rectifier) (a) तथा (b) लक्षणों को संयोजित करता है। $\mathrm{Ga} \mathrm{As}$ (c) लक्षण को दर्शाता है।
11. जब $\varepsilon$ विद्युत वाहक बल के एक स्रोत को बाह्य प्रतिरोध $R$ से संयोजित किया जाता है तो $R$ पर वोल्टता $V _{\text {बाह्य }}$ निम्न द्वारा दी जाती है
$$ V _{\text {बाह्य }}=I R=\frac{\varepsilon}{R+r} R $$
12. किरखोफ के नियम-
(a) प्रथम नियम (संधि नियम) - परिपथ के अवयवों की किसी संधि पर आगत धाराओं का योग निर्गत धाराओं के योग के तुल्य होना चाहिए।
(b) द्वितीय नियम [पाश नियम]- किसी बंद पाश (लूप) के चारों ओर विभव में परिवर्तन का बीजगणितीय योग शून्य होना चाहिए।
13. व्हीटस्टोन सेतु जैसा कि पाठ्यपुस्तक में दिखाया गया है, चार प्रतिरोधों $-R _{1}, R _{2}, R _{3}$, $R _{4}$ का विन्यास है तथा शून्य विक्षेप अवस्था में
$$ \frac{R _{1}}{R _{2}}=\frac{R _{3}}{R _{4}} $$
द्वारा यदि तीन प्रतिरोध ज्ञात हों तो चौथे प्रतिरोध के अज्ञात मान को निर्धारित किया जा सकता है।
भौतिक राशि | प्रतीक | विमा | मात्रक | टिप्पणी |
---|---|---|---|---|
विद्युत धारा | $I$ | $[\mathrm{~A}]$ | A | SI आधारी मात्रक |
आवेश | $Q, q$ | $[\mathrm{TA}$ A] | $\mathrm{C}$ | |
वोल्टता, विद्युत विभवांतर |
V | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | V | |
विद्युत वाहक बल | $\varepsilon$ | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-}\right.$ | V | कार्य/आवेश |
प्रतिरोध | $R$ | $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3} \mathrm{~A}\right.$ | $\Omega$ | $R=V / I$ |
प्रतिरोधकता | $\rho$ | $\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ | $\Omega \mathrm{m}$ | $R=\rho l / A$ |
वैद्युत चालकता | $\sigma$ | $\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3}\right.$ | $\mathrm{C}$ | $\sigma=1 / \rho$ |
विद्युत क्षेत्र | $\mathbf{E}$ | $\mathrm{V} \mathrm{m}^{-1}$ | विद्युत बल | |
अपवाह चाल | $\left[\mathrm{L} \mathrm{T}^{-1}\right]$ | $\mathrm{m} \mathrm{s}^{-1}$ | $v _{d}=\frac{e E \tau}{m}$ | |
विश्रांति काल | $\tau$ | $[\mathrm{T}]$ | $\mathrm{s}$ | |
धारा घनत्व | $\mathbf{j}$ | $\left[L^{-2} \mathrm{~A}\right]$ | $\mathrm{A} \mathrm{m}^{-2}$ | धारा/क्षेत्रफल |
गतिशीलता | $\mu$ | $\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-4} \mathrm{~A}^{-1}\right]$ | $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ | $v _{d} / E$ |
विचारणीय विषय
1. यद्यपि हम धारा की दिशा को परिपथ में एक तीर से दर्शाते हैं परंतु यह एक अदिश राशि है। धाराएँ सदिश योग के नियम का पालन नहीं करतीं। धारा एक अदिश है, इसे इसकी परिभाषा से भी समझ सकते हैं : किसी अनुप्रस्थ काट से प्रवाहित विद्युत धारा $I$ दो सदिशों के अदिश गुणनफल द्वारा व्यक्त की जाती है
$I=\mathbf{j} \cdot \Delta \mathbf{S}$
जहाँ $\mathbf{j}$ तथा $\Delta \mathbf{S}$ सदिश हैं।
2. पाठ्य में प्रदर्शित किसी प्रतिरोधक और किसी डायोड के $V-I$ वक्र पर ध्यान दीजिए। प्रतिरोधक ओम के नियम का पालन करता है जबकि डायोड नहीं करता है। यह दृढ़कथन कि $V=I R$ ओम के नियम का प्रकथन है, सत्य नहीं है। यह समीकरण प्रतिरोध को परिभाषित करता है और इसे सभी चालक युक्तियों में प्रयुक्त कर सकते हैं चाहे वह ओम
के नियम का पालन करती हैं या नहीं। ओम का नियम दावा करता है कि $V$ तथा $I$ के बीच ग्राफ रैखिक है अर्थात $R, V$ पर निर्भर नहीं करता है। ओम के नियम का समीकरण $\mathbf{E}=\rho \mathbf{j}$ ओम के नियम के दूसरे प्रकथन की ओर ले जाता है, अर्थात कोई चालक पदार्थ तभी ओम के नियम का पालन करता है जब उस पदार्थ की प्रतिरोधकता लगाए गए विद्युत क्षेत्र के परिमाण और दिशा पर निर्भर नहीं करती।
3. समांगी चालक जैसे सिल्वर या अर्द्धचालक जैसे शुद्ध जर्मेनियम या अशुद्धियुक्त जर्मेनियम विद्युत क्षेत्र के मान के कुछ परिसर में ओम के नियम का पालन करते हैं। यदि क्षेत्र अति प्रबल है तो इन सभी उदाहरणों में ओम के नियम का पालन नहीं होगा।
4. विद्युत क्षेत्र $\mathbf{E}$ में इलेक्ट्रॉन की गति (i) यादृच्छिक संघट्टों के कारण (ii) $\mathbf{E}$ के कारण उत्पन्न गतियों के योग के बराबर है। यादृच्छिक संघट्टों के कारण गति का औसत शून्य हो जाता है और $v _{d}$ (अपवाह चाल) में योगदान नहीं करता (देखिए अध्याय 10 , कक्षा XI की पाठ्यपुस्तक)। इस प्रकार इलेक्ट्रॉन की अपवाह चाल $v _{d}$ केवल इलेक्ट्रॉन पर लगाए गए विद्युत क्षेत्र के कारण ही है।
5. संबंध $\mathbf{j}=\rho \mathbf{v}$ प्रत्येक प्रकार के आवेश वाहक पर अलग-अलग प्रयुक्त होना चाहिए। किसी चालक तार में कुल धारा तथा धारा घनत्व धन और ऋण दोनों प्रकार के आवेशों से उत्पन्न होती है।
$$ \begin{aligned} & \mathbf{j}=\rho _{+} \mathbf{v} _{+}+\rho _{-} \mathbf{v} _{-} \\ & \rho=\rho _{+}+\rho _{-} \end{aligned} $$
एक उदासीन तार जिसमें धारा प्रवाहित हो रही है, में
$$ \rho _{+}=-\rho _{-} $$
इसके अतिरिक्त, $\mathbf{v} _{+} \sim 0$ है जिसके कारण हमें प्राप्त होता है
$$ \begin{aligned} & \rho=0 \\ & \mathbf{j}=\rho _{-} \mathbf{v} \end{aligned} $$
इस प्रकार संबंध $\mathbf{j}=\rho \mathbf{v}$ कुल धारा आवेश घनत्व पर लागू नहीं होता।
6. किरखोफ का संधि नियम आवेश संरक्षण नियम पर आधारित है : किसी संधि पर निर्गत धाराओं का योग संधि पर आगत धाराओं के योग के तुल्य होता है। तारों को मोड़ने या पुन: अभिविन्यसित करने के कारण किरखोफ के संधि नियम की वैधता नहीं बदलती।
अभ्यास
3.1 किसी कार की संचायक बैटरी का विद्युत वाहक बल $12 \mathrm{~V}$ है। यदि बैटरी का आंतरिक प्रतिरोध $0.4 \Omega$ हो, तो बैटरी से ली जाने वाली अधिकतम धारा का मान क्या है?
Show Answer
# Content Missing3.2 $10 \mathrm{~V}$ विद्युत वाहक बल वाली बैटरी जिसका आंतरिक प्रतिरोध $3 \Omega$ है, किसी प्रतिरोधक से संयोजित है। यदि परिपथ में धारा का मान $0.5 \mathrm{~A}$ हो, तो प्रतिरोधक का प्रतिरोध क्या है? जब परिपथ बंद है तो सेल की टर्मिनल वोल्टता क्या होगी?
Show Answer
# Content Missing3.3 कमरे के ताप $\left(27.0^{\circ} \mathrm{C}\right)$ पर किसी तापन-अवयव का प्रतिरोध $100 \Omega$ है। यदि तापन-अवयव का प्रतिरोध $117 \Omega$ हो तो अवयव का ताप क्या होगा? प्रतिरोधक के पदार्थ का ताप-गुणांक $1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$ है।
Show Answer
# Content Missing3.4 15 मीटर लंबे एवं $6.0 \times 10^{-7} \mathrm{~m}^{2}$ अनुप्रस्थ काट वाले तार से उपेक्षणीय धारा प्रवाहित की गई और इसका प्रतिरोध $5.0 \Omega$ मापा गया। प्रायोगिक ताप पर तार के पदार्थ की प्रतिरोधकता क्या होगी?
Show Answer
# Content Missing3.5 सिल्वर के किसी तार का $27.5^{\circ} \mathrm{C}$ पर प्रतिरोध $2.1 \Omega$ और $100^{\circ} \mathrm{C}$ पर प्रतिरोध $2.7 \Omega$ है। सिल्वर की प्रतिरोधकता ताप-गुणांक ज्ञात कीजिए।
Show Answer
# Content Missing3.6 निक्रोम का एक तापन-अवयव $230 \mathrm{~V}$ की सप्लाई से संयोजित है और $3.2 \mathrm{~A}$ की प्रारंभिक धारा लेता है जो कुछ सेकंड में $2.8 \mathrm{~A}$ पर स्थायी हो जाती है। यदि कमरे का ताप $27.0^{\circ} \mathrm{C}$ है तो तापन-अवयव का स्थायी ताप क्या होगा? दिए गए ताप-परिसर में निक्रोम का औसत प्रतिरोध का ताप-गुणांक $1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$ है।
Show Answer
# Content Missing3.7 चित्र 3.20 में दर्शाए नेटवर्क की प्रत्येक शाखा में प्रवाहित धारा ज्ञात कीजिए।
चित्र 3.20
Show Answer
# Content Missing3.8 $8 \mathrm{~V}$ विद्युत वाहक बल की एक संचायक बैटरी जिसका आंतरिक प्रतिरोध $0.5 \Omega$ है, को श्रेणीक्रम में $15.5 \Omega$ के प्रतिरोधक का उपयोग करके $120 \mathrm{~V}$ के $\mathrm{dc}$ स्रोत द्वारा चार्ज किया जाता है। चार्ज होते समय बैटरी की टर्मिनल वोल्टता क्या है? चार्जकारी परिपथ में प्रतिरोधक को श्रेणीक्रम में संबद्ध करने का क्या उद्देश्य है?
Show Answer
# Content Missing3.9 किसी ताँबे के चालक में मुक्त इलेक्ट्रॉनों का संख्या घनत्व उदाहरण 3.1 में $8.5 \times 10^{28} \mathrm{~m}^{3}$ आकलित किया गया है। $3 \mathrm{~m}$ लंबे तार के एक सिरे से दूसरे सिरे तक अपवाह करने में इलेक्ट्रॉन कितना समय लेता है? तार की अनुप्रस्थ-काट $2.0 \times 10^{-6} \mathrm{~m}^{2}$ है और इसमें $3.0 \mathrm{~A}$ धारा प्रवाहित हो रही है।