Chapter-02 Electrostatic Potential and Capacitance
2.1 INTRODUCTION
In Chapters 6 and 8 (Class XI), the notion of potential energy was introduced. When an external force does work in taking a body from a point to another against a force like spring force or gravitational force, that work gets stored as potential energy of the body. When the external force is removed, the body moves, gaining kinetic energy and losing an equal amount of potential energy. The sum of kinetic and potential energies is thus conserved. Forces of this kind are called conservative forces. Spring force and gravitational force are examples of conservative forces.
Coulomb force between two (stationary) charges is also a conservative force. This is not surprising, since both have inverse-square dependence on distance and differ mainly in the proportionality constants - the masses in the gravitational law are replaced by charges in Coulomb’s law. Thus, like the potential energy of a mass in a gravitational field, we can define electrostatic potential energy of a charge in an electrostatic field.
Consider an electrostatic field $\mathbf{E}$ due to some charge configuration. First, for simplicity, consider the field $\mathbf{E}$ due to a charge $Q$ placed at the origin. Now, imagine that we bring a test charge $q$ from a point $\mathrm{R}$ to a point $\mathrm{P}$ against the repulsive force on it due to the charge $Q$. With reference to Fig. 2.1, this will happen if $Q$ and $q$ are both positive or both negative. For definiteness, let us take $Q, q>0$.
FIGURE 2.1 A test charge $q(>0)$ is moved from the point $\mathrm{R}$ to the point $\mathrm{P}$ against the repulsive force on it by the charge $Q(>0)$ placed at the origin.
Two remarks may be made here. First, we assume that the test charge $q$ is so small that it does not disturb the original configuration, namely the charge $Q$ at the origin (or else, we keep $Q$ fixed at the origin by some unspecified force). Second, in bringing the charge $q$ from $\mathrm{R}$ to $\mathrm{P}$, we apply an external force $\mathbf{F_\text {ext }}$ just enough to counter the repulsive electric force $\mathbf{F_\mathrm{E}}$ (i.e, $\mathbf{F_\mathrm{ext}}=-\mathbf{F_\mathrm{E}}$ ). This means there is no net force on or acceleration of the charge $q$ when it is brought from $\mathrm{R}$ to $\mathrm{P}$, i.e., it is brought with infinitesimally slow constant speed. In this situation, work done by the external force is the negative of the work done by the electric force, and gets fully stored in the form of potential energy of the charge $q$. If the external force is removed on reaching $P$, the electric force will take the charge away from $Q$ - the stored energy (potential energy) at $\mathrm{P}$ is used to provide kinetic energy to the charge $q$ in such a way that the sum of the kinetic and potential energies is conserved.
Thus, work done by external forces in moving a charge $q$ from $\mathrm{R}$ to $\mathrm{P}$ is
$$ \begin{align*} \mathrm{W_\mathrm{RP}} & =\int_{\mathrm{R^{\mathrm{P}}}} \mathbf{F_\text {ext }} \cdot \mathrm{d} \mathbf{r} \\ & =-\int_{\mathrm{R}}^{\mathrm{P}} \mathbf{F\text {ext }} \cdot \mathrm{d} \mathbf{r} \tag{2.1} \end{align*} $$
This work done is against electrostatic repulsive force and gets stored as potential energy.
At every point in electric field, a particle with charge $q$ possesses a certain electrostatic potential energy, this work done increases its potential energy by an amount equal to potential energy difference between points $\mathrm{R}$ and $\mathrm{P}$.
Thus, potential energy difference
$$ \begin{equation*} \Delta U=U_{P}-U_{R}=W_{R P} \tag{2.2} \end{equation*} $$
(Note here that this displacement is in an opposite sense to the electric force and hence work done by electric field is negative, i.e., $-W_{R P}$.)
Therefore, we can define electric potential energy difference between two points as the work required to be done by an external force in moving (without accelerating) charge $q$ from one point to another for electric field of any arbitrary charge configuration.
Two important comments may be made at this stage:
(i) The right side of Eq. (2.2) depends only on the initial and final positions of the charge. It means that the work done by an electrostatic field in moving a charge from one point to another depends only on the initial and the final points and is independent of the path taken to go from one point to the other. This is the fundamental characteristic of a conservative force. The concept of the potential energy would not be meaningful if the work depended on the path. The path-independence of work done by an electrostatic field can be proved using the Coulomb’s law. We omit this proof here.
Count Alessandro Volta
(1745 – 1827) Italianphysicist, professor atPavia. Volta establishedthat the animal electri-city observed by LuigiGalvani, 1737–1798, inexperiments with frogmuscle tissue placed incontact with dissimilarmetals, was not due toany exceptional propertyof animal tissues butwas also generatedwhenever any wet bodywas sandwiched betweendissimilar metals. Thisled him to develop thefirst voltaic pile, orbattery, consisting of alarge stack of moist disksof cardboard (electro-lyte) sandwichedbetween disks of metal(electrodes).
(ii) Equation (2.2) defines potential energy difference in terms of the physically meaningful quantity work. Clearly, potential energy so defined is undetermined to within an additive constant. What this means is that the actual value of potential energy is not physically significant; it is only the difference of potential energy that is significant. We can always add an arbitrary constant $\alpha$ to potential energy at every point, since this will not change the potential energy difference:
$$ \left(U_{P}+\alpha\right)-\left(U_{R}+\alpha\right)=U_{P}-U_{R} $$
Put it differently, there is a freedom in choosing the point where potential energy is zero. A convenient choice is to have electrostatic potential energy zero at infinity. With this choice, if we take the point $\mathrm{R}$ at infinity, we get from Eq. (2.2)
$$ \begin{equation*} W_{\infty P}=U_{P}-U_{\infty}=U_{P} \tag{2.3} \end{equation*} $$
Since the point $\mathrm{P}$ is arbitrary, Eq. (2.3) provides us with a definition of potential energy of a charge $q$ at any point. Potential energy of charge $q$ at a point (in the presence of field due to any charge configuration) is the work done by the external force (equal and opposite to the electric force) in bringing the charge $q$ from infinity to that point.
2.2 Electrostatic Potential
Consider any general static charge configuration. We define potential energy of a test charge $q$ in terms of the work done on the charge $q$. This work is obviously proportional to $q$, since the force at any point is $q \mathbf{E}$, where $\mathbf{E}$ is the electric field at that point due to the given charge configuration. It is, therefore, convenient to divide the work by the amount of charge $q$, so that the resulting quantity is independent of $q$. In other words, work done per unit test charge is characteristic of the electric field associated with the charge configuration. This leads to the idea of electrostatic potential $V$ due to a given charge configuration. From Eq. (2.1), we get:
Work done by external force in bringing a unit positive charge from point $\mathrm{R}$ to $\mathrm{P}$
$$ \begin{equation*} =V_{P}-V_{R} \quad=\frac{U_{P}-U_{R}}{q} \tag{2.4} \end{equation*} $$
where $V_{P}$ and $V_{R}$ are the electrostatic potentials at $\mathrm{P}$ and $\mathrm{R}$, respectively. Note, as before, that it is not the actual value of potential but the potential difference that is physically significant. If, as before, we choose the potential to be zero at infinity, Eq. (2.4) implies:
Work done by an external force in bringing a unit positive charge from infinity to a point $=$ electrostatic potential $(V)$ at that point.
FIGURE 2.2 Work done on a test charge $q$ by the electrostatic field due to any given charge configuration is independent of the path, and depends only on its initial and final positions.
In other words, the electrostatic potential $(V)$ at any point in a region with electrostatic field is the work done in bringing a unit positive charge (without acceleration) from infinity to that point.
The qualifying remarks made earlier regarding potential energy also apply to the definition of potential. To obtain the work done per unit test charge, we should take an infinitesimal test charge $\delta q$, obtain the work done $\delta W$ in bringing it from infinity to the point and determine the ratio $\delta W / \delta q$. Also, the external force at every point of the path is to be equal and opposite to the electrostatic force on the test charge at that point.
2.3 Potential due to a Point Charge
Consider a point charge $Q$ at the origin (Fig. 2.3). For definiteness, take $Q$ to be positive. We wish to determine the potential at any point $\mathrm{P}$ with position vector $\mathbf{r}$ from the origin. For that we must calculate the work done in bringing a unit positive test charge from infinity to the point P. For $Q>0$, the work done against the repulsive force on the test charge is positive. Since work done is independent of the path, we choose a convenient path - along the radial direction from infinity to the point $P$.
FIGURE 2.3 Work done in bringing a unit positive test charge from infinity to the point $\mathrm{P}$, against the repulsive force of charge $Q(Q>0)$, is the potential at $\mathrm{P}$ due to the charge $Q$.
At some intermediate point $\mathrm{P}^{\prime}$ on the path, the electrostatic force on a unit positive charge is $$ \begin{equation*} \frac{Q \times 1}{4 \pi \varepsilon _{o} r^{\prime 2}} \hat{\mathbf{r}}^{\prime} \tag{2.5} \end{equation*} $$
where $\hat{\mathbf{r^\prime}}$ is the unit vector along $\mathrm{OP^\prime}$. Work done against this force from $\mathbf{r^\prime}$ to $\mathbf{r^\prime}+\Delta \mathbf{r^\prime}$ is
$$ \begin{equation*} \Delta W=-\frac{Q}{4 \pi \varepsilon_{0} r^{\prime 2}} \Delta r^{\prime} \tag{2.6} \end{equation*} $$
The negative sign appears because for $\Delta r^{\prime}<0, \Delta W$ is positive. Total work done (W) by the external force is obtained by integrating Eq. (2.6) from $r^{\prime}=\infty$ to $r^{\prime}=r$,
$$ \begin{equation*} W=-\int _{\infty}^{r} \frac{Q}{4 \pi \varepsilon _{o} r^{\prime 2}} d r^{\prime}=\left.\frac{Q}{4 \pi \varepsilon _{o} r^{\prime}}\right| _{\infty} ^{r}=\frac{Q}{4 \pi \varepsilon _{o} r} \tag{2.7} \end{equation*} $$
This, by definition is the potential at $\mathrm{P}$ due to the charge $Q$
$$ \begin{equation*} V(r)=\frac{Q}{4 \pi \varepsilon _{0} r} \tag{2.8} \end{equation*} $$
Equation (2.8) is true for any sign of the charge $Q$, though we considered $Q>0$ in its derivation. For $Q<0, V<0$, i.e., work done (by the external force) per unit positive test charge in bringing it from infinity to the point is negative. This is equivalent to saying that work done by the electrostatic force in bringing the unit positive charge form infinity to the point $\mathrm{P}$ is positive. [This is as it should be, since for $Q<0$, the force on a unit positive test charge is attractive, so that the electrostatic force and the displacement (from infinity to P) are in the same direction.] Finally, we note that Eq. (2.8) is consistent with the choice that potential at infinity be zero.
FIGURE 2.4 Variation of potential $V$ with $r$ [in units of $\left(Q / 4 \pi \varepsilon_{0}\right) \mathrm{m}^{-1}$ ] (blue curve) and field with $r$ [in units of $\left(Q / 4 \pi \varepsilon_{0}\right) \mathrm{m}^{-2}$ ] (black curve) for a point charge $Q$.
Figure (2.4) shows how the electrostatic potential $(\propto 1 / r)$ and the electrostatic field $\left(\propto 1 / r^{2}\right).$ varies with $r$.
Example 2.1
(a) Calculate the potential at a point $\mathrm{P}$ due to a charge of $4 \times 10^{-7} \mathrm{C}$ located $9 \mathrm{~cm}$ away.
(b) Hence obtain the work done in bringing a charge of $2 \times 10^{-9} \mathrm{C}$ from infinity to the point P. Does the answer depend on the path along which the charge is brought?
Solution
(a) $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \times \frac{4 \times 10^{-7} \mathrm{C}}{0.09 \mathrm{~m}}$
$$ =4 \times 10^{4} \mathrm{~V} $$
(b) $W=q V=2 \times 10^{-9} \mathrm{C} \times 4 \times 10^{4} \mathrm{~V}$
$$ =8 \times 10^{-5} \mathrm{~J} $$
No, work done will be path independent. Any arbitrary infinitesimal path can be resolved into two perpendicular displacements: One along $\mathbf{r}$ and another perpendicular to $\mathbf{r}$. The work done corresponding to the later will be zero.
2.4 Potential due to an Electric Dipole
As we learnt in the last chapter, an electric dipole consists of two charges $q$ and $-q$ separated by a (small) distance $2 a$. Its total charge is zero. It is characterised by a dipole moment vector $\mathbf{p}$ whose magnitude is $q \times 2 a$ and which points in the direction from $-q$ to $q$ (Fig. 2.5). We also saw that the electric field of a dipole at a point with position vector $\mathbf{r}$ depends not just on the magnitude $r$, but also on the angle between $\mathbf{r}$ and $\mathbf{p}$. Further, the field falls off, at large distance, not as $1 / r^2$ (typical of field due to a single charge) but as $1 / r^3$. We, now, determine the electric potential due to a dipole and contrast it with the potential due to a single charge.
As before, we take the origin at the centre of the dipole. Now we know that the electric field obeys the superposition principle. Since potential is related to the work done by the field, electrostatic potential also follows the superposition principle. Thus, the potential due to the dipole is the sum of potentials due to the charges $q$ and $-q$
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q}{r _{1}}-\frac{q}{r _{2}}\right) \tag{2.9} \end{equation*} $$
FIGURE 2.5 Quantities involved in the calculation of potential due to a dipole.
where $r_1$ and $r_2$ are the distances of the point $\mathrm{P}$ from $q$ and $-q$, respectively.Now, by geometry,
$$ \begin{align*} & r_{1}^{2}=r^{2}+a^{2}-2 a r \cos \theta \\ & r_{2}^{2}=r^{2}+a^{2}+2 a r \cos \theta \tag{2.10} \end{align*} $$
We take $r$ much greater than $a(r»a)$ and retain terms only upto the first order in $a / r$
$$ \begin{align*} & r_{1}^{2}=r^{2} \quad 1-\frac{2 a \cos \theta}{r}+\frac{a^{2}}{r^{2}} \\ & \cong r^{2} \quad 1-\frac{2 a \cos \theta}{r} \tag{2.11} \end{align*} $$
Similarly,
$$ \begin{equation*} r_{2}^{2} \cong r^{2} \quad 1+\frac{2 a \cos \theta}{r} \tag{2.12} \end{equation*} $$
Using the Binomial theorem and retaining terms upto the first order in $a / r$; we obtain,
$\frac{1}{r_{1}} \cong \frac{1}{r}^{r} 1-\frac{2 a \cos \theta}{-1 / 2}^{\frac{1}{r}} 1+\frac{a}{r} \cos \theta$
$\frac{1}{r_{2}} \cong \frac{1}{r} 1+\frac{2 a \cos \theta}{r}^{-1 / 2} \cong \frac{1}{r} 1-\frac{a}{r} \cos \theta$
Using Eqs. (2.9) and (2.13) and $p=2 q a$, we get
$V=\frac{q}{4 \pi \varepsilon_{0}} \frac{2 a \cos \theta}{r^{2}}=\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}$
Now, $p \cos \theta=\mathbf{p} . \hat{\mathbf{r}}$ where $\hat{\mathbf{r}}$ is the unit vector along the position vector $\mathbf{O P}$.
The electric potential of a dipole is then given by
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} ; \quad(r»a) \tag{2.15} \end{equation*} $$
Equation (2.15) is, as indicated, approximately true only for distances large compared to the size of the dipole, so that higher order terms in $a / r$ are negligible. For a point dipole $\mathbf{p}$ at the origin, Eq. (2.15) is, however, exact.
From Eq. (2.15), potential on the dipole axis $(\theta=0, \pi)$ is given by
$$ \begin{equation*} V= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{2}} \tag{2.16} \end{equation*} $$
(Positive sign for $\theta=0$, negative sign for $\theta=\pi$.) The potential in the equatorial plane $(\theta=\pi / 2)$ is zero.
The important contrasting features of electric potential of a dipole from that due to a single charge are clear from Eqs. (2.8) and (2.15):
(i) The potential due to a dipole depends not just on $r$ but also on the angle between the position vector $\mathbf{r}$ and the dipole moment vector $\mathbf{p}$. (It is, however, axially symmetric about $\mathbf{p}$. That is, if you rotate the position vector $\mathbf{r}$ about $\mathbf{p}$, keeping $\theta$ fixed, the points corresponding to $\mathrm{P}$ on the cone so generated will have the same potential as at P.)
(ii) The electric dipole potential falls off, at large distance, as $1 / r^{2}$, not as $1 / r$, characteristic of the potential due to a single charge. (You can refer to the Fig. 2.5 for graphs of $1 / r^{2}$ versus $\mathrm{r}$ and $1 / r$ versus $r$, drawn there in another context.)
2.5 Potential due to a System of Charges
Consider a system of charges $q_1, q_2, \ldots, q_{\mathrm{n}}$ with position vectors $\mathbf{r_1}, \mathbf{r_2}, \ldots$, $\mathbf{r_\mathrm{n}}$ relative to some origin (Fig. 2.6). The potential $V_1$ at $\mathrm{P}$ due to the charge $q_1$ is
$$ V_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r_{1 \mathrm{P}}} $$
where $r_{1 \mathrm{P}}$ is the distance between $q_{1}$ and $\mathrm{P}$. Similarly, the potential $V_{2}$ at $\mathrm{P}$ due to $q_{2}$ and $V_{3}$ due to $q_{3}$ are given by
$$ V_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{r_{2 \mathrm{P}}}, V_{3}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{3}}{r_{3 \mathrm{P}}} $$
where $r_{2 \mathrm{P}}$ and $r_{3 \mathrm{P}}$ are the distances of $\mathrm{P}$ from charges $q_{2}$ and $q_{3}$, respectively; and so on for the potential due to other charges. By the superposition principle, the potential $V$ at $\mathrm{P}$ due to the total charge configuration is the algebraic sum of the potentials due to the individual charges
$$ \begin{equation*} \stackrel{V}{V}=V_{1}+V_{2}+\ldots+V_{\mathrm{n}} \tag{2.17} \end{equation*} $$
FIGURE 2.6 Potential at a point due to a system of charges is the sum of potentials due to individual charges.
$$ =\frac{1}{4 \pi \varepsilon_0}\left(\frac{q_1}{r_{1 \mathrm{P}}}+\frac{q_2}{r_{2 \mathrm{P}}}+\ldots \ldots+\frac{q_n}{r_{n \mathrm{P}}}\right)\tag{18} $$
If we have a continuous charge distribution characterised by a charge density $\rho(\mathbf{r})$, we divide it, as before, into small volume elements each of size $\Delta v$ and carrying a charge $\rho \Delta v$. We then determine the potential due to each volume element and sum (strictly speaking, integrate) over all such contributions, and thus determine the potential due to the entire distribution.
We have seen in Chapter 1 that for a uniformly charged spherical shell, the electric field outside the shell is as if the entire charge is concentrated at the centre. Thus, the potential outside the shell is given by
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r} \quad(r \geq R) \tag{19a} \end{equation*} $$
where $q$ is the total charge on the shell and $R$ its radius. The electric field inside the shell is zero. This implies (Section 2.6) that potential is constant inside the shell (as no work is done in moving a charge inside the shell), and, therefore, equals its value at the surface, which is
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R} \tag{19b} \end{equation*} $$
Example 2.2 Two charges $3 \times 10^{-8} \mathrm{C}$ and $-2 \times 10^{-8} \mathrm{C}$ are located $15 \mathrm{~cm}$ apart. At what point on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
Solution Let us take the origin $\mathrm{O}$ at the location of the positive charge. The line joining the two charges is taken to be the $x$-axis; the negative charge is taken to be on the right side of the origin (Fig. 2.7).
FIGURE 2.7
Let $\mathrm{P}$ be the required point on the $x$-axis where the potential is zero. If $x$ is the $x$-coordinate of $\mathrm{P}$, obviously $x$ must be positive. (There is no possibility of potentials due to the two charges adding up to zero for $x<0$.) If $x$ lies between $\mathrm{O}$ and $\mathrm{A}$, we have
$$\frac{1}{4 \pi \varepsilon_{0}} \quad \frac{3 \times 10^{-8}}{x \times 10^{-2}}-\frac{2 \times 10^{-8}}{(15-x) \times 10^{-2}}=0$$
where $x$ is in $\mathrm{cm}$. That is,
$$ \frac{3}{x}-\frac{2}{15-x}=0 $$
which gives $x=9 \mathrm{~cm}$.
If $x$ lies on the extended line OA, the required condition is
$\frac{3}{x}-\frac{2}{x-15}=0$ which gives
$x=45 \mathrm{~cm}$
Thus, electric potential is zero at $9 \mathrm{~cm}$ and $45 \mathrm{~cm}$ away from the positive charge on the side of the negative charge. Note that the formula for potential used in the calculation required choosing potential to be zero at infinity.
Example 2.3 Figures 2.8 (a) and (b) show the field lines of a positive and negative point charge respectively.
FIGURE 2.8
(a) Give the signs of the potential difference $V_{\mathrm{P}}-V_{\mathrm{Q}} ; V_{\mathrm{B}}-V_{\mathrm{A}}$.
(b) Give the sign of the potential energy difference of a small negative charge between the points $\mathrm{Q}$ and $\mathrm{P} ; \mathrm{A}$ and $\mathrm{B}$.
(c) Give the sign of the work done by the field in moving a small positive charge from $Q$ to $P$.
(d) Give the sign of the work done by the external agency in moving a small negative charge from $B$ to $A$.
(e) Does the kinetic energy of a small negative charge increase or decrease in going from $B$ to $A$ ?
Solution (a) As $V \propto \frac{1}{r}, V_p>V_Q$. Thus, $\left(V_p-V_g\right)$ is positive. Also $V_B$ is less negative than $V_A$. Thus, $V_B>V_{\Lambda}$ or $\left(V_B-V_{\Lambda}\right)$ is positive.
(b) A small negative charge will be attracted towards positive charge. The negative charge moves from higher potential energy to lower potential energy. Therefore the sign of potential energy difference of a small negative charge between $\mathrm{O}$ and $\mathrm{P}$ is positive. Similarly, (P.E.) ${ }_A>$ (P.E.) $_B$ and hence sign of potential energy differences is positive.
(c) In moving a small positive charge from $\mathrm{O}$ to $\mathrm{P}$, work has to be done by an external agency against the electric field. Therefore, work done by the field is negative.
(d) In moving a small negative charge from $\mathrm{B}$ to $\mathrm{A}$ work has to be done by the external agency. It is positive.
(e) Due to force of repulsion on the negative charge, velocity decreases and hence the kinetic energy decreases in going from $\mathrm{B}$ to $\mathrm{A}$.
2.6 Equipotential Surfaces
An equipotential surface is a surface with a constant value of potential at all points on the surface. For a single charge $q$, the potential is given by Eq. (2.8):
$$ V=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r} $$
This shows that $V$ is a constant if $r$ is constant. Thus, equipotential surfaces of a single point charge are concentric spherical surfaces centred at the charge.
Now the electric field lines for a single charge $q$ are radial lines starting from or ending at the charge, depending on whether $q$ is positive or negative. Clearly, the electric field at every point is normal to the equipotential surface passing through that point. This is true in general: for any charge configuration, equipotential surface through a point is normal to the electric field at that point. The proof of this statement is simple.
If the field were not normal to the equipotential surface, it would have non-zero component along the surface. To move a unit test charge against the direction of the component of the field, work would have to be done. But this is in contradiction to the definition of an equipotential surface: there is no potential difference between any two points on the surface and no work is required to move a test charge on the surface. The electric field must, therefore, be normal to the equipotential surface at every point. Equipotential surfaces offer an alternative visual picture in addition to the picture of electric field lines around a charge configuration.
FIGURE 2.9 For a single charge q (a) equipotential surfaces are spherical surfaces centred at the charge, and (b) electric field lines are radial, starting from the charge if q > 0
FIGURE 2.10 Equipotential surfaces for a uniform electric field.
For a uniform electric field $\mathbf{E}$, say, along the $x$-axis, the equipotential surfaces are planes normal to the $x$-axis, i.e., planes parallel to the $y-z$ plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two identical positive charges are shown in Fig. 2.11.
FIGURE 2.11 Some equipotential surfaces for (a) a dipole, (b) two identical positive charges.
2.6.1 Relation between field and potential
Consider two closely spaced equipotential surfaces A and B (Fig. 2.12) with potential values $V$ and $V+\delta V$, where $\delta V$ is the change in $V$ in the direction of the electric field $\mathbf{E}$. Let $\mathrm{P}$ be a point on the surface B. $\delta l$ is the perpendicular distance of the surface A from $P$. Imagine that a unit positive charge is moved along this perpendicular from the surface $B$ to surface A against the electric field. The work done in this process is $|\mathbf{E}| \delta l$.
FIGURE 2.12 From the potential to the field.
This work equals the potential difference $V_{A}-V_{B}$.
Thus, $$ \begin{align*} & |\mathbf{E}| \delta l=V-(V+\delta V)=-\delta V \\ & \text { i.e., }|\mathbf{E}|=-\frac{\delta V}{\delta l} \tag{2.20} \end{align*} $$
Since $\delta V$ is negative, $\delta V=-|\delta V|$. we can rewrite Eq (2.20) as
$$ \begin{equation*} |\mathbf{E}|=-\frac{\delta V}{\delta l}=+\frac{|\delta V|}{\delta l} \tag{2.21} \end{equation*} $$
We thus arrive at two important conclusions concerning the relation between electric field and potential:
(i) Electric field is in the direction in which the potential decreases steepest.
(ii) Its magnitude is given by the change in the magnitude of potential per unit displacement normal to the equipotential surface at the point.
2.7 Potential Energy of a System of Charges
Consider first the simple case of two charges $q_1$ and $q_2$ with position vector $\mathbf{r_1}$ and $\mathbf{r_2}$ relative to some origin. Let us calculate the work done (externally) in building up this configuration. This means that we consider the charges $q_1$ and $q_2$ initially at infinity and determine the work done by an external agency to bring the charges to the given locations. Suppose, first the charge $q_1$ is brought from infinity to the point $\mathbf{r_1}$. There is no external field against which work needs to be done, so work done in bringing $q_1$ from infinity to $\mathbf{r_1}$ is zero. This charge produces a potential in space given by
$$ V_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_1}{r_1 \mathrm{P}} $$
where $r_{1 \mathrm{P}}$ is the distance of a point $\mathrm{P}$ in space from the location of $q_{1}$. From the definition of potential, work done in bringing charge $q_2$ from infinity to the point $\mathbf{r_2}$ is $q_2$ times the potential at $\mathbf{r_2}$ due to $q_1$ :
$$ q _{2} \text { work done on }=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r _{12}} $$
where $r_{12}$ is the distance between points 1 and 2 .
FIGURE 2.13 Potential energy of a system of charges $q_{1}$ and $q_{2}$ is directly proportional to the product of charges and inversely to the distance between them. where $r_{12}$ is the distance between points 1 and 2 .
Since electrostatic force is conservative, this work gets stored in the form of potential energy of the system. Thus, the potential energy of a system of two charges $q_{1}$ and $q_{2}$ is
$$ \begin{equation*} U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}} \tag{2.22} \end{equation*} $$
Obviously, if $q_{2}$ was brought first to its present location and $q_{1}$ brought later, the potential energy $U$ would be the same. More generally, the potential energy expression, Eq. (2.22), is unaltered whatever way the charges are brought to the specified locations, because of path-independence of work for electrostatic force.
Equation (2.22) is true for any sign of $q_{1}$ and $q_{2}$. If $q_{1} q_{2}>0$, potential energy is positive. This is as expected, since for like charges $\left(q_1 q_2>0\right)$, electrostatic force is repulsive and a positive amount of work is needed to be done against this force to bring the charges from infinity to a finite distance apart. For unlike charges $\left(q_1 q_2<0\right)$, the electrostatic force is attractive. In that case, a positive amount of work is needed against this force to take the charges from the given location to infinity. In other words, a negative amount of work is needed for the reverse path (from infinity to the present locations), so the potential energy is negative.
Equation (2.22) is easily generalised for a system of any number of point charges. Let us calculate the potential energy of a system of three charges $q_1, q_2$ and $q_3$ located at $\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}$, respectively. To bring $q_{1}$ first from infinity to $\mathbf{r_1}$, no work is required. Next we bring $q_{2}$ from infinity to $\mathbf{r_2}$. As before, work done in this step is
$$ \begin{equation*} q_{2} V_{1}\left(\mathbf{r_2}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}} \tag{2.23} \end{equation*} $$
The charges $q_{1}$ and $q_{2}$ produce a potential, which at any point $P$ is given by
$$ \begin{equation*} V _{1,2}=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1}}{r _{1 \mathrm{P}}}+\frac{q _{2}}{r _{2 \mathrm{P}}}\right) \tag{2.24} \end{equation*} $$
Work done next in bringing $q_{3}$ from infinity to the point $\mathbf{r_3}$ is $q_{3}$ times $V_{1,2}$ at $\mathbf{r_3}$
FIGURE 2.14 Potential energy of a system of three charges is given by Eq. (2.26), with the notation given in the figure.
$$ q _{3} V _{1,2}\left(\mathbf{r} _{3}\right)=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1} q _{3}}{r _{13}}+\frac{q _{2} q _{3}}{r _{23}}\right)\tag{2.25} $$
The total work done in assembling the charges at the given locations is obtained by adding the work done in different steps [Eq. (2.23) and Eq. (2.25)],
$$ \begin{equation*} U=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1} q _{2}}{r _{12}}+\frac{q _{1} q _{3}}{r _{13}}+\frac{q _{2} q _{3}}{r _{23}}\right) \tag{2.26} \end{equation*} $$
Again, because of the conservative nature of the electrostatic force (or equivalently, the path independence of work done), the final expression for $U$, Eq. (2.26), is independent of the manner in which the configuration is assembled. The potential energy is characteristic of the present state of configuration, and not the way the state is achieved.
Example 2.4 Four charges are arranged at the corners of a square $\mathrm{ABCD}$ of side $d$, as shown in Fig. 2.15.(a) Find the work required to put together this arrangement. (b) A charge $q_0$ is brought to the centre $\mathrm{E}$ of the square, the four charges being held fixed at its corners. How much extra work is needed to do this?
Solution (a) Since the work done depends on the final arrangement of the charges, and not on how they are put together, we calculate work needed for one way of putting the charges at A, B, C and D. Suppose, first the charge $+q$ is brought to $\mathrm{A}$, and then the charges $-q,+q$, and $-q$ are brought to $\mathrm{B}, \mathrm{C}$ and $\mathrm{D}$, respectively. The total work needed can be calculated in steps:
(i) Work needed to bring charge $+q$ to A when no charge is present elsewhere: this is zero.
(ii) Work needed to bring $-q$ to $\mathrm{B}$ when $+q$ is at $\mathrm{A}$. This is given by (charge at $\mathrm{B}) \times($ electrostatic potential at $\mathrm{B}$ due to charge $+q$ at $\mathrm{A}$ )
$$ =-q \times\left(\frac{q}{4 \pi \varepsilon_0 d}\right)=-\frac{q^2}{4 \pi \varepsilon_0 d} $$
(iii) Work needed to bring charge $+q$ to $\mathrm{C}$ when $+q$ is at $\mathrm{A}$ and $-q$ is at B. This is given by (charge at C) $\times$ (potential at $C$ due to charges at $\mathrm{A}$ and $\mathrm{B}$ )
$$ \begin{aligned} & =+q\left(\frac{+q}{4 \pi \varepsilon_0 d \sqrt{2}}+\frac{-q}{4 \pi \varepsilon_0 d}\right) \ & =\frac{-q^2}{4 \pi \varepsilon_0 d}\left(1-\frac{1}{\sqrt{2}}\right) \end{aligned} $$
(iv) Work needed to bring $-q$ to $\mathrm{D}$ when $+q$ at $\mathrm{A},-q$ at $\mathrm{B}$, and $+q$ at $\mathrm{C}$. This is given by (charge at $\mathrm{D}) \times($ potential at $\mathrm{D}$ due to charges at $\mathrm{A}$, B and C)
$$=-q\left(\frac{+q}{4 \pi \varepsilon _{o} d}+\frac{-q}{4 \pi \varepsilon _{o} d \sqrt{2}}+\frac{q}{4 \pi \varepsilon _{o} d}\right)$$
$$=\frac{-q^{2}}{4 \pi \varepsilon _{o} d}\left(2-\frac{1}{\sqrt{2}}\right)$$
Add the work done in steps (i), (ii), (iii) and (iv). The total work required is
$$ \begin{aligned} & =\frac{-q^{2}}{4 \pi \varepsilon _{o} d}\left\{(0)+(1)+\left(1-\frac{1}{\sqrt{2}}\right)+\left(2-\frac{1}{\sqrt{2}}\right)\right\} \\ & =\frac{-q^{2}}{4 \pi \varepsilon _{o} d}(4-\sqrt{2}) \end{aligned} $$
The work done depends only on the arrangement of the charges, and not how they are assembled. By definition, this is the total electrostatic energy of the charges. (Students may try calculating same work/energy by taking charges in any other order they desire and convince themselves that the energy will remain the same.) (b) The extra work necessary to bring a charge $q_0$ to the point $\mathrm{E}$ when the four charges are at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ is $q_0 \times$ (electrostatic potential at $E$ due to the charges at $A, B, C$ and $D$ ). The electrostatic potential at $\mathrm{E}$ is clearly zero since potential due to $\mathrm{A}$ and $\mathrm{C}$ is cancelled by that due to $B$ and $D$. Hence, no work is required to bring any charge to point E.
2.8 Potential Energy in an External Field
2.8.1 Potential energy of a single charge
In Section 2.7, the source of the electric field was specified - the charges and their locations - and the potential energy of the system of those charges was determined. In this section, we ask a related but a distinct question. What is the potential energy of a charge $q$ in a given field? This question was, in fact, the starting point that led us to the notion of the electrostatic potential (Sections 2.1 and 2.2). But here we address this question again to clarify in what way it is different from the discussion in Section 2.7.
The main difference is that we are now concerned with the potential energy of a charge (or charges) in an external field. The external field $\mathbf{E}$ is not produced by the given charge(s) whose potential energy we wish to calculate. $\mathbf{E}$ is produced by sources external to the given charge(s). The external sources may be known, but often they are unknown or unspecified; what is specified is the electric field $\mathbf{E}$ or the electrostatic potential $V$ due to the external sources. We assume that the charge $q$ does not significantly affect the sources producing the external field. This is true if $q$ is very small, or the external sources are held fixed by other unspecified forces. Even if $q$ is finite, its influence on the external sources may still be ignored in the situation when very strong sources far away at infinity produce a finite field $\mathbf{E}$ in the region of interest. Note again that we are interested in determining the potential energy of a given charge $q$ (and later, a system of charges) in the external field; we are not interested in the potential energy of the sources producing the external electric field.
The external electric field $\mathbf{E}$ and the corresponding external potential $V$ may vary from point to point. By definition, $V$ at a point $\mathrm{P}$ is the work done in bringing a unit positive charge from infinity to the point $P$.
(We continue to take potential at infinity to be zero.) Thus, work done in bringing a charge $q$ from infinity to the point $\mathrm{P}$ in the external field is $\mathrm{q} V$. This work is stored in the form of potential energy of $q$. If the point $\mathrm{P}$ has position vector $\mathbf{r}$ relative to some origin, we can write:
Potential energy of $q$ at $\mathbf{r}$ in an external field
$=q V(\mathbf{r}) \tag{2.27}$
where $V(\mathbf{r})$ is the external potential at the point $\mathbf{r}$.
Thus, if an electron with charge $q=e=1.6 \times 10^{-19} \mathrm{C}$ is accelerated by a potential difference of $\Delta V=1$ volt, it would gain energy of $q \Delta V=1.6 \times$ $10^{-19} \mathrm{~J}$. This unit of energy is defined as 1 electron volt or $1 \mathrm{eV}$, i.e., $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$. The units based on $\mathrm{eV}$ are most commonly used in atomic, nuclear and particle physics, $\left(1 \mathrm{keV}=10^{3} \mathrm{eV}=1.6 \times 10^{-16} \mathrm{~J}, 1 \mathrm{MeV}\right.$ $=10^{6} \mathrm{eV}=1.6 \times 10^{-13} \mathrm{~J}, 1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.6 \times 10^{-10} \mathrm{~J}$ and $1 \mathrm{TeV}=10^{12} \mathrm{eV}$ $=1.6 \times 10^{-7} \mathrm{~J}$. [This has already been defined on Page 117, XI Physics Part I, Table 6.1.]
2.8.2 Potential energy of a system of two charges in an external field
Next, we ask: what is the potential energy of a system of two charges $q_{1}$ and $q_{2}$ located at $\mathbf{r_1}$ and $\mathbf{r_2}$, respectively, in an external field? First, we calculate the work done in bringing the charge $q_{1}$ from infinity to $\mathbf{r_1}$. Work done in this step is $q_{1} V\left(\mathbf{r_1}\right)$, using Eq. (2.27). Next, we consider the work done in bringing $q_{2}$ to $\mathbf{r_2}$. In this step, work is done not only against the external field $\mathbf{E}$ but also against the field due to $q_{1}$. Work done on $q_{2}$ against the external field
$$=q_{2} V\left(\mathbf{r_2}\right)$$
Work done on $q_{2}$ against the field due to $q_{1}$
$$ =\frac{q_{1} q_{2}}{4 \pi \varepsilon_{o} r_{12}} $$
where $r_{12}$ is the distance between $q_{1}$ and $q_{2}$. We have made use of Eqs. (2.27) and (2.22). By the superposition principle for fields, we add up the work done on $q_{2}$ against the two fields ( $\mathbf{E}$ and that due to $q_{1}$ ):
Work done in bringing $q_{2}$ to $\mathbf{r_2}$
$$ \begin{equation*} =q_{2} V\left(\mathbf{r_2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}} \tag{2.28} \end{equation*} $$
Thus, Potential energy of the system $=$ the total work done in assembling the configuration
$$ \begin{equation*} =q_{1} V\left(\mathbf{r_1}\right)+q_{2} V\left(\mathbf{r2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}} \tag{2.29} \end{equation*} $$
Example 2.5
(a) Determine the electrostatic potential energy of a system consisting of two charges $7 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ (and with no external field) placed at $(-9 \mathrm{~cm}, 0,0)$ and $(9 \mathrm{~cm}, 0,0)$ respectively.
(b) How much work is required to separate the two charges infinitely away from each other?
(c) Suppose that the same system of charges is now placed in an external electric field $E=A\left(1 / r^{2}\right) ; A=9 \times 10^{5} \mathrm{NC}^{-1} \mathrm{~m}^{2}$. What would the electrostatic energy of the configuration be?
Solution
(a) $U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}=9 \times 10^{9} \times \frac{7 \times(-2) \times 10^{-12}}{0.18}=-0.7 \mathrm{~J}$.
(b) $W=U_{2}-U_{1}=0-U=0-(-0.7)=0.7 \mathrm{~J}$.
(c) The mutual interaction energy of the two charges remains unchanged. In addition, there is the energy of interaction of the two charges with the external electric field. We find,
$$q_{1} V\left(\mathbf{r1}\right)+q_{2} V\left(\mathbf{r2}\right)=A \frac{7 \mu \mathrm{C}}{0.09 \mathrm{~m}}+A \frac{-2 \mu \mathrm{C}}{0.09 \mathrm{~m}}$$
and the net electrostatic energy is
$$ \begin{array}{r} q_{1} V\left(\mathbf{r1}\right)+q_{2} V\left(\mathbf{r2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}}=A \frac{7 \mu \mathrm{C}}{0.09 \mathrm{~m}}+A \frac{-2 \mu \mathrm{C}}{0.09 \mathrm{~m}}-0.7 \mathrm{~J} \\ =70-20-0.7=49.3 \mathrm{~J} \end{array} $$
2.8.3 Potential energy of a dipole in an external field
Consider a dipole with charges $q_{1}=+q$ and $q_{2}=-q$ placed in a uniform electric field $\mathbf{E}$, as shown in Fig. 2.16.
FIGURE 2.16 Potential energy of a dipole in a uniform external field. torque $\tau$ given by
As seen in the last chapter, in a uniform electric field, the dipole experiences no net force; but experiences a
$$ \begin{equation*} \tau=\mathbf{p} \times \mathbf{E} \tag{2.30} \end{equation*} $$
which will tend to rotate it (unless $\mathbf{p}$ is parallel or antiparallel to E). Suppose an external torque $\tau_{\text {ext }}$ is applied in such a manner that it just neutralises this torque and rotates it in the plane of paper from angle $\theta_{0}$ to angle $\theta_{1}$ at an infinitesimal angular speed and without angular acceleration. The amount of work done by the external torque will be given by
$$ \begin{align*} & W=\int_{\theta_{0}}^{\theta_{1}} t_{\mathrm{ext}}(\theta) d \theta=\int_{\theta_{0}}^{\theta_{1}} p E \sin \theta d \theta \\ & =p E\left(\cos \theta_{0}-\cos \theta_{1}\right) \tag{2.31} \end{align*} $$
This work is stored as the potential energy of the system. We can then associate potential energy $U(\theta)$ with an inclination $\theta$ of the dipole. Similar to other potential energies, there is a freedom in choosing the angle where the potential energy $U$ is taken to be zero. A natural choice is to take $\theta_{0}=\pi / 2$. (An explanation for it is provided towards the end of discussion.) We can then write,
$$ \begin{equation*} U(\theta)=p E\left(\cos \frac{\pi}{2}-\cos \theta\right)=p E \cos \theta=-\mathbf{p} \cdot \mathbf{E} \tag{2.32} \end{equation*} $$
This expression can alternately be understood also from Eq. (2.29). We apply Eq. (2.29) to the present system of two charges $+q$ and $-q$. The potential energy expression then reads
$$ \begin{equation*} U^{\prime}(\theta)=q\left[V\left(\mathbf{r1}\right)-V\left(\mathbf{r2}\right)\right]-\frac{q^{2}}{4 \pi \varepsilon_{0} \times 2 a} \tag{2.33} \end{equation*} $$
Here, $\mathbf{r1}$ and $\mathbf{r2}$ denote the position vectors of $+q$ and $-q$. Now, the potential difference between positions $\mathbf{r1}$ and $\mathbf{r2}$ equals the work done in bringing a unit positive charge against field from $\mathbf{r2}$ to $\mathbf{r1}$. The displacement parallel to the force is $2 a \cos \theta$. Thus, $\left[V\left(\mathbf{r1}\right)-V\left(\mathbf{r2}\right)\right]=$ $-E \times 2 a \cos \theta$. We thus obtain,
$$ \begin{equation*} U^{\prime}(\theta)=-p E \cos \theta-\frac{q^{2}}{4 \pi \varepsilon_{0} \times 2 a}=-\mathbf{p} \cdot \mathbf{E}-\frac{q^{2}}{4 \pi \varepsilon_{0} \times 2 a} \tag{2.34} \end{equation*} $$
We note that $U^{\prime}(\theta)$ differs from $U(\theta)$ by a quantity which is just a constant for a given dipole. Since a constant is insignificant for potential energy, we can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).
We can now understand why we took $\theta_{0}=\pi / 2$. In this case, the work done against the external field $\mathbf{E}$ in bringing $+q$ and $-q$ are equal and opposite and cancel out, i.e., $q\left[V\left(\mathbf{r1}\right)-V\left(\mathbf{r2}\right)\right]=0$.
Example 2.6 A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C} \mathrm{m}$. A mole of this substance is polarised (at low temperature) by applying a strong electrostatic field of magnitude $10^{6} \mathrm{~V} \mathrm{~m}^{-1}$. The direction of the field is suddenly changed by an angle of $60^{\circ}$. Estimate the heat released by the substance in aligning its dipoles along the new direction of the field. For simplicity, assume $100 %$ polarisation of the sample.
Solution Here, dipole moment of each molecules $=10^{-29} \mathrm{C} \mathrm{m}$
As 1 mole of the substance contains $6 \times 10^{23}$ molecules, total dipole moment of all the molecules, $p=6 \times 10^{23} \times 10^{-29} \mathrm{C} \mathrm{m}$ $=6 \times 10^{-6} \mathrm{C} \mathrm{m}$ Initial potential energy, $U_{i}=-p E \cos \theta=-6 \times 10^{-6} \times 10^{6} \cos 0^{\circ}=-6 \mathrm{~J}$ Final potential energy (when $\theta=60^{\circ}$ ), $U_{f}=-6 \times 10^{-6} \times 10^{6} \cos 60^{\circ}=-3 \mathrm{~J}$ Change in potential energy $=-3 \mathrm{~J}-(-6 \mathrm{~J})=3 \mathrm{~J}$
So, there is loss in potential energy. This must be the energy released by the substance in the form of heat in aligning its dipoles.
2.9 Electrostatics of Conductors
Conductors and insulators were described briefly in Chapter 1. Conductors contain mobile charge carriers. In metallic conductors, these charge carriers are electrons. In a metal, the outer (valence) electrons part away from their atoms and are free to move. These electrons are free within the metal but not free to leave the metal. The free electrons form a kind of ‘gas’; they collide with each other and with the ions, and move randomly in different directions. In an external electric field, they drift against the direction of the field. The positive ions made up of the nuclei and the bound electrons remain held in their fixed positions. In electrolytic conductors, the charge carriers are both positive and negative ions; but the situation in this case is more involved - the movement of the charge carriers is affected both by the external electric field as also by the so-called chemical forces (see Chapter 3). We shall restrict our discussion to metallic solid conductors. Let us note important results regarding electrostatics of conductors.
1. Inside a conductor, electrostatic field is zero
Consider a conductor, neutral or charged. There may also be an external electrostatic field. In the static situation, when there is no current inside or on the surface of the conductor, the electric field is zero everywhere inside the conductor. This fact can be taken as the defining property of a conductor. A conductor has free electrons. As long as electric field is not zero, the free charge carriers would experience force and drift. In the static situation, the free charges have so distributed themselves that the electric field is zero everywhere inside. Electrostatic field is zero inside a conductor.
2. At the surface of a charged conductor, electrostatic field must be normal to the surface at every point
If $\mathbf{E}$ were not normal to the surface, it would have some non-zero component along the surface. Free charges on the surface of the conductor would then experience force and move. In the static situation, therefore, E should have no tangential component. Thus electrostatic field at the surface of a charged conductor must be normal to the surface at every point. (For a conductor without any surface charge density, field is zero even at the surface.) See result 5.
3. The interior of a conductor can have no excess charge in the static situation
A neutral conductor has equal amounts of positive and negative charges in every small volume or surface element. When the conductor is charged, the excess charge can reside only on the surface in the static situation. This follows from the Gauss’s law. Consider any arbitrary volume element $v$ inside a conductor. On the closed surface $S$ bounding the volume element $v$, electrostatic field is zero. Thus the total electric flux through $S$ is zero. Hence, by Gauss’s law, there is no net charge enclosed by S. But the surface $S$ can be made as small as you like, i.e., the volume $v$ can be made vanishingly small. This means there is no net charge at any point inside the conductor, and any excess charge must reside at the surface.
4. Electrostatic potential is constant throughout the volume of the conductor and has the same value (as inside) on its surface
This follows from results 1 and 2 above. Since $\mathbf{E}=0$ inside the conductor and has no tangential component on the surface, no work is done in moving a small test charge within the conductor and on its surface. That is, there is no potential difference between any two points inside or on the surface of the conductor. Hence, the result. If the conductor is charged, electric field normal to the surface exists; this means potential will be different for the surface and a point just outside the surface.
In a system of conductors of arbitrary size, shape and charge configuration, each conductor is characterised by a constant value of potential, but this constant may differ from one conductor to the other.
5. Electric field at the surface of a charged conductor
$$ \begin{equation*} \mathbf{E}=\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{n}} \tag{2.35} \end{equation*} $$
where $\sigma$ is the surface charge density and $\hat{\mathbf{n}}$ is a unit vector normal to the surface in the outward direction.
To derive the result, choose a pill box (a short cylinder) as the Gaussian surface about any point $P$ on the surface, as shown in Fig. 2.17. The pill box is partly inside and partly outside the surface of the conductor. It has a small area of cross section $\delta \mathrm{S}$ and negligible height.
Just inside the surface, the electrostatic field is zero; just outside, the field is normal to the surface with magnitude $E$. Thus, the contribution to the total flux through the pill box comes only from the outside (circular) cross-section of the pill box. This equals $\pm E \delta S$ (positive for $\sigma>0$, negative for $\sigma<0$ ), since over the small area $\delta$ S, $\mathbf{E}$ may be considered constant and $\mathbf{E}$ and $\delta$ S are parallel or antiparallel. The charge enclosed by the pill box is $\sigma \delta \mathrm{S}$.
By Gauss’s law $$ \begin{align*} & E \delta S=\frac{|\sigma| \delta S}{\varepsilon_{0}} \end{align*} $$
$$ \begin{align*} & E=\frac{|\sigma|}{\varepsilon_{0}} \tag{2.36} \end{align*} $$
Including the fact that electric field is normal to the surface, we get the vector relation, Eq. (2.35), which is true for both signs of $\sigma$. For $\sigma>0$, electric field is normal to the surface outward; for $\sigma<0$, electric field
FIGURE 2.17 The Gaussian surface (a pill box) chosen to derive Eq. (2.35) for electric field at the surface of a charged conductor. is normal to the surface inward.
6. Electrostatic shielding
Consider a conductor with a cavity, with no charges inside the cavity. A remarkable result is that the electric field inside the cavity is zero, whatever be the size and shape of the cavity and whatever be the charge on the conductor and the external fields in which it might be placed. We have proved a simple case of this result already: the electric field inside a charged spherical shell is zero. The proof of the result for the shell makes use of the spherical symmetry of the shell (see Chapter 1). But the vanishing of electric field in the (charge-free) cavity of a conductor is, as mentioned above, a very general result. A related result is that even if the conductor
FIGURE 2.18 The electric field inside a cavity of any conductor is zero. All charges reside only on the outer surface of a conductor with cavity. (There are no charges placed in the cavity.) is charged or charges are induced on a neutral conductor by an external field, all charges reside only on the outer surface of a conductor with cavity.
The proofs of the results noted in Fig. 2.18 are omitted here, but we note their important implication. Whatever be the charge and field configuration outside, any cavity in a conductor remains shielded from outside electric influence: the field inside the cavity is always zero. This is known as electrostatic shielding. The effect can be made use of in protecting sensitive instruments from outside electrical influence. Figure 2.19 gives a summary of the important electrostatic properties of a conductor.
FIGURE 2.19 Some important electrostatic properties of a conductor
Example 2.7
(a) A comb run through one’s dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day? (Remember, a paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line, and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?
Solution
(a) This is because the comb gets charged by friction. The molecules in the paper gets polarised by the charged comb, resulting in a net force of attraction. If the hair is wet, or if it is rainy day, friction between hair and the comb reduces. The comb does not get charged and thus it will not attract small bits of paper.
(b) To enable them to conduct charge (produced by friction) to the ground; as too much of static electricity accumulated may result in spark and result in fire.
(c) Reason similar to (b).
(d) Current passes only when there is difference in potential.
2.10 Dielectrics and Polarisation
Dielectrics are non-conducting substances. In contrast to conductors, they have no (or negligible number of ) charge carriers. Recall from Section 2.9 what happens when a conductor is placed in an external electric field. The free charge carriers move and charge distribution in the conductor adjusts itself in such a way that the electric field due to induced charges opposes the external field within the conductor. This happens until, in the static situation, the two fields cancel each other and the net electrostatic field in the conductor is zero. In a dielectric, this free movement of charges is not possible. It turns out that the external field induces dipole moment by stretching or re-orienting molecules of the dielectric. The collective effect of all the molecular dipole moments is net charges on the surface of the dielectric which produce a field that opposes the external field. Unlike in a conductor, however, the opposing field so induced does not exactly cancel the external field. It only reduces it. The extent of the effect depends on the nature of the dielectric. To understand the effect, we need to look at the charge distribution of a dielectric at the molecular level.
FIGURE 2.20 Difference in behaviour of a conductor and a dielectric in an external electric field.
FIGURE 2.21 Some examples of polar and non-polar molecules.
The molecules of a substance may be polar or non-polar. In a non-polar molecule, the centres of positive and negative charges coincide. The molecule then has no permanent (or intrinsic) dipole moment. Examples of non-polar molecules are oxygen $\left(\mathrm{O}_2\right)$ and hydrogen $\left(\mathrm{H}_2\right)$ molecules which, because of their symmetry, have no dipole moment. On the other hand, a polar molecule is one in which the centres of positive and negative charges are separated (even when there is no external fleld). Such molecules have a permanent dipole moment. An tonic molecule such as $\mathrm{HCl}$ or a molecule of water $\left(\mathrm{H}_2 \mathrm{O}\right)$ are examples of polar molecules.
FIGURE 2.22 A dielectric develops a net dipole moment in an external electric field. (a) Non-polar molecules, (b) Polar molecules.
In an external electric field, the positive and negative charges of a nonpolar molecule are displaced in opposite directions. The displacement stops when the external force on the constituent charges of the molecule is balanced by the restoring force (due to internal fields in the molecule). The non-polar molecule thus develops an induced dipole moment. The dielectric is said to be polarised by the external field. We consider only the simple situation when the induced dipole moment is in the direction of the field and is proportional to the field strength. (Substances for which this assumption is true are called linear isotropic dielectrics.) The induced dipole moments of different molecules add up giving a net dipole moment of the dielectric in the presence of the external field.
A dielectric with polar molecules also develops a net dipole moment in an external field, but for a different reason. In the absence of any external field, the different permanent dipoles are oriented randomly due to thermal agitation; so the total dipole moment is zero. When an external field is applied, the individual dipole moments tend to align with the field. When summed overall the molecules, there is then a net dipole moment in the direction of the external field, i.e., the dielectric is polarised. The extent of polarisation depends on the relative strength of two mutually opposite factors: the dipole potential energy in the external field tending to align the dipoles with the field and thermal energy tending to disrupt the alignment. There may be, in addition, the ‘induced dipole moment’ effect as for non-polar molecules, but generally the alignment effect is more important for polar molecules.
Thus in either case, whether polar or non-polar, a dielectric develops a net dipole moment in the presence of an external field. The dipole moment per unit volume is called polarisation and is denoted by $\mathbf{P}$. For linear isotropic dielectrics,
$$ \begin{equation*} \mathbf{P}=\varepsilon_{0} \chi_{e} \mathbf{E} \tag{2.37} \end{equation*} $$
where $\chi_{e}$ is a constant characteristic of the dielectric and is known as the electric susceptibility of the dielectric medium.
It is possible to relate $\chi_{e}$ to the molecular properties of the substance, but we shall not pursue that here.
The question is: how does the polarised dielectric modify the original external field inside it? Let us consider, for simplicity, a rectangular dielectric slab placed in a uniform external field $\mathbf{E0}$ parallel to two of its faces. The field causes a uniform polarisation $\mathbf{P}$ of the dielectric. Thus every volume element $\Delta v$ of the slab has a dipole moment $\mathbf{P} \Delta v$ in the direction of the field. The volume element $\Delta v$ is macroscopically small but contains a very large number of molecular dipoles. Anywhere inside the dielectric, the volume element $\Delta v$ has no net charge (though it has net dipole moment). This is, because, the positive charge of one dipole sits close to the negative charge of the adjacent dipole. However, at the surfaces of the dielectric normal to the electric field, there is evidently a net charge density. As seen in Fig 2.23, the positive ends of the dipoles remain unneutralised at the right surface and the negative ends at the left surface. The unbalanced charges are the induced charges due to the external field.
FIGURE 2.23 A uniformly polarised dielectric amounts to induced surface charge density, but no volume charge density.
Thus, the polarised dielectric is equivalent to two charged surfaces with induced surface charge densities, say $\sigma_{p}$ and $-\sigma_{p}$. Clearly, the field produced by these surface charges opposes the external field. The total field in the dielectric is, thereby, reduced from the case when no dielectric is present. We should note that the surface charge density $\pm \sigma_{p}$ arises from bound (not free charges) in the dielectric.
2.11 Capacitors and Capacitance
A capacitor is a system of two conductors separated by an insulator (Fig. 2.24). The conductors have charges, say $Q_{1}$ and $Q_{2}$, and potentials $V_{1}$ and $V_{2}$. Usually, in practice, the two conductors have charges $Q$ and $-Q$, with potential difference $V=V_{1}-V_{2}$ between them. We shall consider only this kind of charge configuration of the capacitor. (Even a single conductor can be used as a capacitor by assuming the other at infinity.) The conductors may be so charged by connecting them to the two terminals of a battery. $Q$ is called the charge of the capacitor, though this, in fact, is the charge on one of the conductors - the total charge of the capacitor is zero.
The electric field in the region between the conductors is proportional to the charge $Q$. That is, if the charge on the capacitor is, say doubled, the electric field will also be doubled at every point. (This follows from the direct proportionality between field and charge implied by Coulomb’s law and the superposition principle.) Now, potential difference $V$ is the work done per unit positive charge in taking a small test charge from the conductor 2 to 1 against the field. Consequently, $V$ is also proportional to $Q$, and the ratio $Q / V$ is a constant:
FIGURE 2.24 A system of two conductors separated by an insulator forms a capacitor.
$$ \begin{equation*} C=\frac{Q}{V} \tag{2.38} \end{equation*} $$
The constant $\mathrm{C}$ is called the capacitance of the capacitor. $\mathrm{C}$ is independent of $Q$ or $V$, as stated above. The capacitance $C$ depends only on the geometrical configuration (shape, size, separation) of the system of two conductors. [As we shall see later, it also depends on the nature of the insulator (dielectric) separating the two conductors.] The SI unit of capacitance is 1 farad $\left(=1\right.$ coulomb volt ${ }^{-1})$ or $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}$. A capacitor with fixed capacitance is symbolically shown as $\dashv \vdash$, while the one with variable capacitance is shown as $⿰ \nVdash ⿱$.
Equation (2.38) shows that for large $C, V$ is small for a given $Q$. This means a capacitor with large capacitance can hold large amount of charge $Q$ at a relatively small $V$. This is of practical importance. High potential difference implies strong electric field around the conductors. A strong electric field can ionise the surrounding air and accelerate the charges so produced to the oppositely charged plates, thereby neutralising the charge on the capacitor plates, at least partly. In other words, the charge of the capacitor leaks away due to the reduction in insulating power of the intervening medium.
The maximum electric field that a dielectric medium can withstand without break-down (of its insulating property) is called its dielectric strength; for air it is about $3 \times 10^{6} \mathrm{Vm}^{-1}$. For a separation between conductors of the order of $1 \mathrm{~cm}$ or so, this field corresponds to a potential difference of $3 \times 10^{4} \mathrm{~V}$ between the conductors. Thus, for a capacitor to store a large amount of charge without leaking, its capacitance should be high enough so that the potential difference and hence the electric field do not exceed the break-down limits. Put differently, there is a limit to the amount of charge that can be stored on a given capacitor without significant leaking. In practice, a farad is a very big unit; the most common units are its sub-multiples $1 \mu \mathrm{F}=10^{-6} \mathrm{~F}, 1 \mathrm{nF}=10^{-9} \mathrm{~F}, 1 \mathrm{pF}=10^{-12} \mathrm{~F}$, etc. Besides its use in storing charge, a capacitor is a key element of most ac circuits with important functions, as described in Chapter 7.
2.12 The Parallel Plate Capacitor
A parallel plate capacitor consists of two large plane parallel conducting plates separated by a small distance (Fig. 2.25). We first take the intervening medium between the plates to be vacuum. The effect of a dielectric medium between the plates is discussed in the next section. Let $A$ be the area of each plate and $d$ the separation between them. The two plates have charges $Q$ and $-Q$. Since $d$ is much smaller than the linear dimension of the plates $\left(d^{2}«A\right)$, we can use the result on electric field by an infinite plane sheet of uniform surface charge density (Section 1.15). Plate 1 has surface charge density $\sigma=Q / A$ and plate 2 has a surface charge density $-\sigma$. Using Eq. (1.33), the electric field in different regions is:
FIGURE 2.25 The parallel plate capacitor.
Outer region I (region above the plate 1),
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}}=0 \tag{2.39} \end{equation*} $$
Outer region II (region below the plate 2),
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}}=0 \tag{2.40} \end{equation*} $$
In the inner region between the plates 1 and 2 , the electric fields due to the two charged plates add up, giving
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A} \tag{2.41} \end{equation*} $$
The direction of electric field is from the positive to the negative plate.
Thus, the electric field is localised between the two plates and is uniform throughout. For plates with finite area, this will not be true near the outer boundaries of the plates. The field lines bend outward at the edges - an effect called ‘fringing of the field’. By the same token, $\sigma$ will not be strictly uniform on the entire plate. $[E$ and $\sigma$ are related by Eq. (2.35). However, for $d^{2}«A$, these effects can be ignored in the regions sufficiently far from the edges, and the field there is given by Eq. (2.41). Now for uniform electric field, potential difference is simply the electric field times the distance between the plates, that is,
$$ \begin{equation*} V=E d=\frac{1}{\varepsilon_{0}} \frac{Q d}{A} \tag{2.42} \end{equation*} $$
The capacitance $C$ of the parallel plate capacitor is then
$$ \begin{equation*} C=\frac{Q}{V}==\frac{\varepsilon_{0} A}{d} \tag{2.43} \end{equation*} $$
which, as expected, depends only on the geometry of the system. For typical values like $A=1 \mathrm{~m}^{2}, d=1 \mathrm{~mm}$, we get
$$ \begin{equation*} C=\frac{8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \times 1 \mathrm{~m}^{2}}{10^{-3} \mathrm{~m}}=8.85 \times 10^{-9} \mathrm{~F} \tag{2.44} \end{equation*} $$
(You can check that if $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}=1 \mathrm{C}\left(\mathrm{NC}^{-1} \mathrm{~m}\right)^{-1}=1 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-1}$.) This shows that $1 \mathrm{~F}$ is too big a unit in practice, as remarked earlier. Another way of seeing the ‘bigness’ of $1 \mathrm{~F}$ is to calculate the area of the plates needed to have $C=1 \mathrm{~F}$ for a separation of, say $1 \mathrm{~cm}$ :
$$ \begin{equation*} A=\frac{C d}{\varepsilon_{0}}=\frac{1 \mathrm{~F} \times 10^{-2} \mathrm{~m}}{8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}}=10^{9} \mathrm{~m}^{2} \tag{2.45} \end{equation*} $$
which is a plate about $30 \mathrm{~km}$ in length and breadth!
2.13 Effect of Dielectric on Capacitance
With the understanding of the behaviour of dielectrics in an external field developed in Section 2.10, let us see how the capacitance of a parallel plate capacitor is modified when a dielectric is present. As before, we have two large plates, each of area $A$, separated by a distance $d$. The charge on the plates is $\pm Q$, corresponding to the charge density $\pm \sigma$ (with $\sigma=Q / A)$. When there is vacuum between the plates,
$$ E_{0}=\frac{\sigma}{\varepsilon_{0}} $$
and the potential difference $V_{0}$ is
$$ V_{0}=E_{0} d $$
The capacitance $C_{0}$ in this case is
$$ \begin{equation*} C_{0}=\frac{Q}{V_{0}}=\varepsilon_{0} \frac{A}{d} \tag{2.46} \end{equation*} $$
Consider next a dielectric inserted between the plates fully occupying the intervening region. The dielectric is polarised by the field and, as explained in Section 2.10, the effect is equivalent to two charged sheets (at the surfaces of the dielectric normal to the field) with surface charge densities $\sigma_{p}$ and $-\sigma_{p}$. The electric field in the dielectric then corresponds to the case when the net surface charge density on the plates is $\pm\left(\sigma-\sigma_{p}\right)$. That is,
$$ \begin{equation*} E=\frac{\sigma-\sigma_{P}}{\varepsilon_{0}} \tag{2.47} \end{equation*} $$
so that the potential difference across the plates is
$$ \begin{equation*} V=E d=\frac{\sigma-\sigma_{P}}{\varepsilon_{0}} d \tag{2.48} \end{equation*} $$
For linear dielectrics, we expect $\sigma_{p}$ to be proportional to $E_{0}$, i.e., to $\sigma$. Thus, $\left(\sigma-\sigma_{p}\right)$ is proportional to $\sigma$ and we can write
$$ \begin{equation*} \sigma-\sigma_{P}=\frac{\sigma}{K} \tag{2.49} \end{equation*} $$
where $K$ is a constant characteristic of the dielectric. Clearly, $K>1$. We then have
$$ \begin{equation*} V=\frac{\sigma d}{\varepsilon_{0} K}=\frac{Q d}{A \varepsilon_{0} K} \tag{2.50} \end{equation*} $$
The capacitance $\mathrm{C}$, with dielectric between the plates, is then
$$ \begin{equation*} C=\frac{Q}{V}=\frac{\varepsilon_{0} K A}{d} \tag{2.51} \end{equation*} $$
The product $\varepsilon_{0} K$ is called the permittivity of the medium and is denoted by $\varepsilon$
$$ \varepsilon=\varepsilon_{0} K \tag{2.52} $$
For vacuum $K=1$ and $\varepsilon=\varepsilon_{0} ; \varepsilon_{0}$ is called the permittivity of the vacuum. The dimensionless ratio
$$ \begin{equation*} K=\frac{\varepsilon}{\varepsilon_{0}} \tag{2.53} \end{equation*} $$
is called the dielectric constant of the substance. As remarked before, from Eq. (2.49), it is clear that $K$ is greater than 1. From Eqs. (2.46) and (2.51)
$$ \begin{equation*} K=\frac{C}{C_{0}} \tag{2.54} \end{equation*} $$
Thus, the dielectric constant of a substance is the factor ( $>1$ ) by which the capacitance increases from its vacuum value, when the dielectric is inserted fully between the plates of a capacitor. Though we arrived at Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any type of capacitor and can, in fact, be viewed in general as a definition of the dielectric constant of a substance.
Example 2.8 A slab of material of dielectric constant $K$ has the same area as the plates of a parallel-plate capacitor but has a thickness $(3 / 4) d$, where $d$ is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates?
Solution Let $E_{0}=V_{0} / d$ be the electric field between the plates when there is no dielectric and the potential difference is $V_{0}$. If the dielectric is now inserted, the electric field in the dielectric will be $E=E_{0} / K$. The potential difference will then be
$$V=E_{0}\left(\frac{1}{4} d\right)+\frac{E_{0}}{K}\left(\frac{3}{4} d\right)$$
$$=E_{0} d\left(\frac{1}{4}+\frac{3}{4 K}\right)=V_{0} \frac{K+3}{4 K}$$
The potential difference decreases by the factor $(K+3) / 4 K$ while the free charge $B_{0}$ on the plates remains unchanged. The capacitance thus increases
$$C=\frac{Q_{0}}{V}=\frac{4 K}{K+3} \frac{Q_{0}}{V_{0}}=\frac{4 K}{K+3} C_{0}$$
2.14 Combination of Capacitors
We can combine several capacitors of capacitance $C_{1}, C_{2}, \ldots, C_{\mathrm{n}}$ to obtain a system with some effective capacitance $C$. The effective capacitance depends on the way the individual capacitors are combined. Two simple possibilities are discussed below.
2.14.1 Capacitors in series
FIGURE 2.26 Combination of two capacitors in series.
FIGURE 2.27 Combination of $n$ capacitors in series.
Figure 2.26 shows capacitors $C_{1}$ and $C_{2}$ combined in series. The left plate of $C_{1}$ and the right plate of $C_{2}$ are connected to two terminals of a battery and have charges $Q$ and $-Q$, respectively. It then follows that the right plate of $C_{1}$ has charge $-Q$ and the left plate of $C_{2}$ has charge $Q$. If this was not so, the net charge on each capacitor would not be zero. This would result in an electric field in the conductor connecting $C_{1}$ and $C_{2}$. Charge would flow until the net charge on both $C_{1}$ and $C_{2}$ is zero and there is no electric field in the conductor connecting $C_{1}$ and $C_{2}$. Thus, in the series combination, charges on the two plates $( \pm Q)$ are the same on each capacitor. The total potential drop $V$ across the combination is the sum of the potential drops $V_{1}$ and $V_{2}$ across $C_{1}$ and $C_{2}$, respectively.
$$ \begin{align*} & V=V_1+V_2=\frac{Q}{C_1}+\frac{Q}{C_2} \tag{2.55}\\ & \text { i.e.,} \frac{V}{Q}=\frac{1}{C_1}+\frac{1}{C_2} \tag{2.56} \end{align*} $$
Now we can regard the combination as an effective capacitor with charge $Q$ and potential difference $V$. The effective capacitance of the combination is
$$ \begin{equation*} C=\frac{Q}{V} \tag{2.57} \end{equation*} $$
We compare Eq. (2.57) with Eq. (2.56), and obtain
$$ \begin{equation*} \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \tag{2.58} \end{equation*} $$
The proof clearly goes through for any number of capacitors arranged in a similar way. Equation (2.55), for $n$ capacitors arranged in series,
$$ \begin{equation*} V=V _{1}+V _{2}+\ldots+V _{n}=\frac{Q}{C _{1}}+\frac{Q}{C _{2}}+\ldots+\frac{Q}{C _{n}} \tag{2.59} \end{equation*} $$
Following the same steps as for the case of two capacitors, we get the general formula for effective capacitance of a series combination of $n$ capacitors:
$$ \begin{equation*} \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots+\frac{1}{C_{n}} \tag{2.60} \end{equation*} $$
2.14.2 Capacitors in parallel
Figure 2.28 (a) shows two capacitors arranged in parallel. In this case, the same potential difference is applied across both the capacitors. But the plate charges $\left( \pm Q_{1}\right)$ on capacitor 1 and the plate charges $\left( \pm Q_{2}\right)$ on the capacitor 2 are not necessarily the same:
$Q_{1}=C_{1} V, Q_{2}=C_{2} V$
The equivalent capacitor is one with charge
FIGURE 2.28 Parallel combination of (a) two capacitors, (b) n capacitors. $Q=Q_{1}+Q_{2}$
and potential difference $V$. $Q=C V=C_{1} V+C_{2} V$ The effective capacitance $\mathrm{C}$ is, from Eq. (2.63), $\mathrm{C}=\mathrm{C1}+\mathrm{C2}$ The general formula for effective capacitance $C$ for parallel combination of $n$ capacitors [Fig. 2.28 (b)] follows similarly,
$Q=Q_{1}+Q_{2}+\ldots+Q_{n}$ i.e., $C V=C_{1} V+C_{2} V+\ldots C_{n} V(2.66)$ which gives $C=C_{1}+C_{2}+\ldots C_{n}$
Example 2.9 A network of four $10 \mu \mathrm{F}$ capacitors is connected to a $500 \mathrm{~V}$ supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance of the network and (b) the charge on each capacitor. (Note, the charge on a capacitor is the charge on the plate with higher potential, equal and opposite to the charge on the plate with lower potential.)
FIGURE 2.29
Solution
(a) In the given network, $C_{1}, C_{2}$ and $C_{3}$ are connected in series. The effective capacitance $\mathrm{C}^{\prime}$ of these three capacitors is given by
$\frac{1}{C^{\prime}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
For $C_{1}=C_{2}=C_{3}=10 \mu \mathrm{F}, C^{\prime}=(10 / 3) \mu \mathrm{F}$. The network has $C^{\prime}$ and $C_{4}$ connected in parallel. Thus, the equivalent capacitance $C$ of the network is
$C=C^{\prime}+C_{4}=\frac{10}{3}+10 \quad \mu \mathrm{F}=13.3 \mu \mathrm{F}$
(b) Clearly, from the figure, the charge on each of the capacitors, $C_{1}$, $C_{2}$ and $C_{3}$ is the same, say $Q$. Let the charge on $C_{4}$ be $Q^{\prime}$. Now, since the potential difference across $\mathrm{AB}$ is $Q / C_{1}$, across $\mathrm{BC}$ is $Q / C_{2}$, across $\mathrm{CD}$ is $Q / C_{3}$, we have
$\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}=500 \mathrm{~V}$.
Also, $Q^{\prime} / C_{4}=500 \mathrm{~V}$.
This gives for the given value of the capacitances,
$Q=500 \mathrm{~V} \times \frac{10}{3} \mu \mathrm{F}=1.7 \times 10^{-3} \mathrm{C}$ and
$Q^{\prime}=500 \mathrm{~V} \times 10 \mu \mathrm{F}=5.0 \times 10^{-3} \mathrm{C}$
2.15 Energy Stored in a Capacitor
A capacitor, as we have seen above, is a system of two conductors with charge $Q$ and $-Q$. To determine the energy stored in this configuration, consider initially two uncharged conductors 1 and 2 . Imagine next a process of transferring charge from conductor 2 to conductor 1 bit by bit, so that at the end, conductor 1 gets charge $Q$. By charge conservation, conductor 2 has charge $-Q$ at the end (Fig 2.30).
FIGURE 2.30 (a) Work done in a small step of building charge on conductor 1 from $Q^{\prime}$ to $Q^{\prime}+\delta Q^{\prime}$. (b) Total work done in charging the capacitor may be viewed as stored in the energy of electric field between the plates.
In transferring positive charge from conductor 2 to conductor 1 , work will be done externally, since at any stage conductor 1 is at a higher potential than conductor 2. To calculate the total work done, we first calculate the work done in a small step involving transfer of an infinitesimal (i.e., vanishingly small) amount of charge. Consider the intermediate situation when the conductors 1 and 2 have charges $Q^{\prime}$ and $-Q^{\prime}$ respectively. At this stage, the potential difference $V^{\prime}$ between conductors 1 to 2 is $Q^{\prime} / C$, where $C$ is the capacitance of the system. Next imagine that a small charge $\delta Q^{\prime}$ is transferred from conductor 2 to 1 . Work done in this step $(\delta W)$, resulting in charge $Q^{\prime}$ on conductor 1 increasing to $Q^{\prime}+\delta Q^{\prime}$, is given by
$$ \begin{equation*} \delta W=V^{\prime} \delta Q^{\prime}=\frac{Q^{\prime}}{C} \delta Q^{\prime} \tag{2.68} \end{equation*} $$
Integrating eq. (2.68)
$$ W=\int_{0}^{Q} \frac{Q^{\prime}}{C} \delta Q^{\prime}=\left.\frac{1}{C} \frac{Q^{\prime 2}}{2}\right|_{0} ^{B}=\frac{Q^{2}}{2 C} $$
We can write the final result, in different ways
$$ \begin{equation*} W=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V \tag{2.69} \end{equation*} $$
Since electrostatic force is conservative, this work is stored in the form of potential energy of the system. For the same reason, the final result for potential energy [Eq. (2.69)] is independent of the manner in which the charge configuration of the capacitor is built up. When the capacitor discharges, this stored-up energy is released. It is possible to view the potential energy of the capacitor as ‘stored’ in the electric field between the plates. To see this, consider for simplicity, a parallel plate capacitor [of area A (of each plate) and separation $d$ between the plates].
Energy stored in the capacitor $$ \begin{equation*} =\frac{1}{2} \frac{Q^{2}}{C}=\frac{(A \sigma)^{2}}{2} \times \frac{d}{\varepsilon_{0} A} \tag{2.70} \end{equation*} $$
The surface charge density $\sigma$ is related to the electric field $E$ between the plates,
$$ \begin{equation*} E=\frac{\sigma}{\varepsilon_{0}} \tag{2.71} \end{equation*} $$
From Eqs. (2.70) and (2.71), we get Energy stored in the capacitor
$$ \begin{equation*} U=(1 / 2) \varepsilon_{0} E^{2} \times A d \tag{2.72} \end{equation*} $$
Note that $\mathrm{Ad}$ is the volume of the region between the plates (where electric field alone exists). If we define energy density as energy stored per unit volume of space, Eq (2.72) shows that Energy density of electric field, $u=(1 / 2) \varepsilon_{0} E^{2}$
Though we derived Eq. (2.73) for the case of a parallel plate capacitor, the result on energy density of an electric field is, in fact, very general and holds true for electric field due to any configuration of charges.
Example 2.10 (a) A $900 \mathrm{pF}$ capacitor is charged by $100 \mathrm{~V}$ battery [Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor? (b) The capacitor is disconnected from the battery and connected to another $900 \mathrm{pF}$ capacitor [Fig. 2.31(b)]. What is the electrostatic energy stored by the system?
FIGURE 2.31
Solution
(a) The charge on the capacitor is
$$ Q=C V=900 \times 10^{-12} \mathrm{~F} \times 100 \mathrm{~V}=9 \times 10^{-8} \mathrm{C} $$
The energy stored by the capacitor is
$$ \begin{aligned} & =(1 / 2) C V^{2}=(1 / 2) Q V \\ = & (1 / 2) \times 9 \times 10^{-8} \mathrm{C} \times 100 \mathrm{~V}=4.5 \times 10^{-6} \mathrm{~J} \end{aligned} $$
(b) In the steady situation, the two capacitors have their positive plates at the same potential, and their negative plates at the same potential. Let the common potential difference be $V^{\prime}$. The charge on each capacitor is then $Q^{\prime}=C V^{\prime}$. By charge conservation, $Q^{\prime}=Q / 2$. This implies $V^{\prime}=V / 2$. The total energy of the system is
$=2 \times \frac{1}{2} Q^{\prime} V^{\prime}=\frac{1}{4} Q V=2.25 \times 10^{-6} \mathrm{~J}$
Thus in going from (a) to (b), though no charge is lost; the final energy is only half the initial energy. Where has the remaining energy gone?
There is a transient period before the system settles to the situation (b). During this period, a transient current flows from the first capacitor to the second. Energy is lost during this time in the form of heat and electromagnetic radiation.
SUMMARY
1. Electrostatic force is a conservative force. Work done by an external force (equal and opposite to the electrostatic force) in bringing a charge $q$ from a point $\mathrm{R}$ to a point $\mathrm{P}$ is $\mathrm{q}\left(\mathrm{V\mathrm{P}}-\mathrm{V\mathrm{R}}\right)$, which is the difference in potential energy of charge $q$ between the final and initial points.
2. Potential at a point is the work done per unit charge (by an external agency) in bringing a charge from infinity to that point. Potential at a point is arbitrary to within an additive constant, since it is the potential difference between two points which is physically significant. If potential at infinity is chosen to be zero; potential at a point with position vector $\mathbf{r}$ due to a point charge $Q$ placed at the origin is given is given by
$$V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$$
3. The electrostatic potential at a point with position vector $\mathbf{r}$ due to a point dipole of dipole moment $\mathbf{p}$ placed at the origin is
$$V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{o}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}$$
The result is true also for a dipole (with charges $-q$ and $q$ separated by 2a) for $r \gg a$.
4. For a charge configuration $q_{1}, q_{2}, \ldots, q_{n}$ with position vectors $\mathbf{r1}$, $\mathbf{r2}, \ldots \mathbf{r\mathrm{n}}$, the potential at a point $\mathrm{P}$ is given by the superposition principle
$$V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{1 \mathrm{P}}}+\frac{q_{2}}{r_{2 \mathrm{P}}}+\ldots+\frac{q_{n}}{r_{n \mathrm{P}}}\right)$$
where $r_{1 \mathrm{P}}$ is the distance between $q_{1}$ and $\mathrm{P}$, as and so on.
5. An equipotential surface is a surface over which potential has a constant value. For a point charge, concentric spheres centred at a location of the charge are equipotential surfaces. The electric field $\mathbf{E}$ at a point is perpendicular to the equipotential surface through the point. $\mathbf{E}$ is in the direction of the steepest decrease of potential.
6. Potential energy stored in a system of charges is the work done (by an external agency) in assembling the charges at their locations. Potential energy of two charges $q_{1}, q_{2}$ at $\mathbf{r1}, \mathbf{r2}$ is given by
$$U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}$$
where $r_{12}$ is distance between $q_{1}$ and $q_{2}$.
7. The potential energy of a charge $q$ in an external potential $V(\mathbf{r})$ is $q V(\mathbf{r})$. The potential energy of a dipole moment $\mathbf{p}$ in a uniform electric field $\mathbf{E}$ is $-\mathbf{p} . \mathbf{E}$.
8. Electrostatics field $\mathbf{E}$ is zero in the interior of a conductor; just outside the surface of a charged conductor, $\mathbf{E}$ is normal to the surface given by $\mathbf{E}=\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{n}}$ where $\hat{\mathbf{n}}$ is the unit vector along the outward normal to the surface and $\sigma$ is the surface charge density. Charges in a conductor can reside only at its surface. Potential is constant within and on the surface of a conductor. In a cavity within a conductor (with no charges), the electric field is zero.
9. A capacitor is a system of two conductors separated by an insulator. Its capacitance is defined by $C=Q / V$, where $Q$ and $-Q$ are the charges on the two conductors and $V$ is the potential difference between them. C is determined purely geometrically, by the shapes, sizes and relative positions of the two conductors. The unit of capacitance is farad:, $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}$. For a parallel plate capacitor (with vacuum between the plates),
$$\mathrm{C}=\varepsilon_{0} \frac{A}{d}$$
where $A$ is the area of each plate and $d$ the separation between them.
10. If the medium between the plates of a capacitor is filled with an insulating substance (dielectric), the electric field due to the charged plates induces a net dipole moment in the dielectric. This effect, called polarisation, gives rise to a field in the opposite direction. The net electric field inside the dielectric and hence the potential difference between the plates is thus reduced. Consequently, the capacitance $C$ increases from its value $C_{0}$ when there is no medium (vacuum), $C=K C_{0}$
where $K$ is the dielectric constant of the insulating substance.
11. For capacitors in the series combination, the total capacitance $C$ is given by
$$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots$$
In the parallel combination, the total capacitance $C$ is:
$$C=C_{1}+C_{2}+C_{3}+\ldots$$
where $C_{1}, C_{2}, C_{3} \ldots$ are individual capacitances.
12. The energy $U$ stored in a capacitor of capacitance $C$, with charge $Q$ and voltage $V$ is
$$U=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$$
The electric energy density (energy per unit volume) in a region with electric field is $(1 / 2) \varepsilon_{0} \mathrm{E}^{2}$.
Physical quantity | Symbol | Dimensions | Unit | Remark |
---|---|---|---|---|
Potential | $\phi$ or $V$ | $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | V | Potential difference is physically significant |
Capacitance | $C$ | $\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{-4} \mathrm{~A}^{2}\right]$ | F | |
Polarisation | $\mathbf{P}$ | $\left[\mathrm{L}^{-2} \mathrm{AT}\right]$ | $\mathrm{C} \mathrm{m}^{-2}$ | Dipole moment per unit volume |
Dielectric constant | K | [Dimen] |
POINTS TO PONDER
1. Electrostatics deals with forces between charges at rest. But if there is a force on a charge, how can it be at rest? Thus, when we are talking of electrostatic force between charges, it should be understood that each charge is being kept at rest by some unspecified force that opposes the net Coulomb force on the charge.
2. A capacitor is so configured that it confines the electric field lines within a small region of space. Thus, even though field may have considerable strength, the potential difference between the two conductors of a capacitor is small.
3. Electric field is discontinuous across the surface of a spherical charged shell. It is zero inside and $\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{n}}$ outside. Electric potential is, however continuous across the surface, equal to $q / 4 \pi \varepsilon_{0} R$ at the surface.
4. The torque $\mathbf{p} \times \mathbf{E}$ on a dipole causes it to oscillate about $\mathbf{E}$. Only if there is a dissipative mechanism, the oscillations are damped and the dipole eventually aligns with $\mathbf{E}$.
5. Potential due to a charge $q$ at its own location is not defined - it is infinite.
6. In the expression $q V(\mathbf{r})$ for potential energy of a charge $q, V(\mathbf{r})$ is the potential due to external charges and not the potential due to $q$. As seen in point 5 , this expression will be ill-defined if $V(\mathbf{r})$ includes potential due to a charge $q$ itself.
7. A cavity inside a conductor is shielded from outside electrical influences. It is worth noting that electrostatic shielding does not work the other way round; that is, if you put charges inside the cavity, the exterior of the conductor is not shielded from the fields by the inside charges.
Exercises
2.1 Two charges $5 \times 10^{-8} \mathrm{C}$ and $-3 \times 10^{-8} \mathrm{C}$ are located $16 \mathrm{~cm}$ apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
Show Answer
Answer
There are two charges,
$q_{1}=5 \times 10^{-8} \mathrm{C}$
$q_{2}=-3 \times 10^{-8} \mathrm{C}$
Distance between the two charges, $d=16 \mathrm{~cm}=0.16 \mathrm{~m}$
Consider a point $\mathrm{P}$ on the line joining the two charges, as shown in the given figure.
$r=$ Distance of point $\mathrm{P}$ from charge $q_{1}$
Let the electric potential $(V)$ at point $\mathrm{P}$ be zero.
Potential at point $\mathrm{P}$ is the sum of potentials caused by charges $q_{1}$ and $q_{2}$ respectively.
$\therefore V=\frac{q_{1}}{4 \pi \in_{0} r}+\frac{q_{2}}{4 \pi \in_{0}(d-r)}$
Where,
$\in_{0}=$ Permittivity of free space
For $V=0$, equation (i) reduces to
$$ \begin{aligned} & \frac{q_{1}}{4 \pi \in_{0} r}=-\frac{q_{2}}{4 \pi \in_{0}(d-r)} \\ & \frac{q_{1}}{r}=\frac{-q_{2}}{d-r} \\ & \frac{5 \times 10^{-8}}{r}=-\frac{\left(-3 \times 10^{-8}\right)}{(0.16-r)} \\ & \frac{0.16}{r}-1=\frac{3}{5} \\ & \frac{0.16}{r}=\frac{8}{5} \\ & \therefore r=0.1 \mathrm{~m}=10 \mathrm{~cm} \end{aligned} $$
Therefore, the potential is zero at a distance of $10 \mathrm{~cm}$ from the positive charge between the charges.
Suppose point $\mathrm{P}$ is outside the system of two charges at a distance $s$ from the negative charge, where potential is zero, as shown in the following figure.
For this arrangement, potential is given by,
$$ \begin{equation*} V=\frac{q_{1}}{4 \pi \epsilon_{0} s}+\frac{q_{2}}{4 \pi \in_{0}(s-d)} \tag{ii} \end{equation*} $$
For $V=0$, equation (ii) reduces to
$$ \frac{q_{1}}{4 \pi \in_{0} s}=-\frac{q_{2}}{4 \pi \in_{0}(s-d)} $$
$\frac{q_{1}}{s}=\frac{-q_{2}}{s-d}$
$\frac{5 \times 10^{-8}}{s}=-\frac{\left(-3 \times 10^{-8}\right)}{(s-0.16)}$
$1-\frac{0.16}{s}=\frac{3}{5}$
$\frac{0.16}{s}=\frac{2}{5}$
$\therefore s=0.4 \mathrm{~m}=40 \mathrm{~cm}$
Therefore, the potential is zero at a distance of $40 \mathrm{~cm}$ from the positive charge outside the system of charges.
2.2 A regular hexagon of side $10 \mathrm{~cm}$ has a charge $5 \mu \mathrm{C}$ at each of its vertices. Calculate the potential at the centre of the hexagon.
Show Answer
Answer
The given figure shows six equal amount of charges, $q$, at the vertices of a regular hexagon.
Where,
Charge, $q=5 \mu \mathrm{C}=5 \times 10^{-6} \mathrm{C}$
Side of the hexagon, $l=\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FA}=10 \mathrm{~cm}$
Distance of each vertex from centre $\mathrm{O}, d=10 \mathrm{~cm}$
Electric potential at point $\mathrm{O}$,
$$ V=\frac{6 \times q}{4 \pi \epsilon_{0} d} $$
Where,
$$ \in_{0}=\text { Permittivity of free space } $$
$$ \begin{aligned} & \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{C}^{-2} \mathrm{~m}^{-2} \\ & \therefore V=\frac{6 \times 9 \times 10^{9} \times 5 \times 10^{-6}}{0.1} \\ & \quad=2.7 \times 10^{6} \mathrm{~V} \end{aligned} $$
Therefore, the potential at the centre of the hexagon is $2.7 \times 10^{6} \mathrm{~V}$.
2.3 Two charges $2 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ are placed at points $\mathrm{A}$ and $\mathrm{B} 6 \mathrm{~cm}$ apart.
(a) Identify an equipotential surface of the system.
(b) What is the direction of the electric field at every point on this surface?
Show Answer
Answer
The situation is represented in the given figure.
An equipotential surface is the plane on which total potential is zero everywhere. This plane is normal to line $\mathrm{AB}$. The plane is located at the mid-point of line $\mathrm{AB}$ because the magnitude of charges is the same.
The direction of the electric field at every point on this surface is normal to the plane in the direction of $\mathrm{AB}$.
2.4 A spherical conductor of radius $12 \mathrm{~cm}$ has a charge of $1.6 \times 10^{-7} \mathrm{C}$ distributed uniformly on its surface. What is the electric field
(a) inside the sphere
(b) just outside the sphere
(c) at a point $18 \mathrm{~cm}$ from the centre of the sphere?
Show Answer
Answer
Radius of the spherical conductor, $r=12 \mathrm{~cm}=0.12 \mathrm{~m}$
Charge is uniformly distributed over the conductor, $q=1.6 \times 10^{-7} \mathrm{C}$
Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.
Electric field $E$ just outside the conductor is given by the relation,
$$ E=\frac{q}{4 \pi \epsilon_{0} r^{2}} $$
Where,
$$ \epsilon_{0}=\text { Permittivity of free space } $$
$\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
$\therefore E=\frac{1.6 \times 10^{-7} \times 9 \times 10^{-9}}{(0.12)^{2}}$
$=10^{5} \mathrm{~N} \mathrm{C}^{-1}$
Therefore, the electric field just outside the sphere is $10^{5} \mathrm{~N} \mathrm{C}^{-1}$.
Electric field at a point $18 \mathrm{~m}$ from the centre of the sphere $=E_{1}$
Distance of the point from the centre, $d=18 \mathrm{~cm}=0.18 \mathrm{~m}$
$$ \begin{aligned} E_{1} & =\frac{q}{4 \pi \in_{0} d^{2}} \\ & =\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{\left(18 \times 10^{-2}\right)^{2}} \\ & =4.4 \times 10^{4} \mathrm{~N} / \mathrm{C} \end{aligned} $$
Therefore, the electric field at a point $18 \mathrm{~cm}$ from the centre of the sphere is
$4.4 \times 10^{4} \mathrm{~N} / \mathrm{C}$
2.5A parallel plate capacitor with air between the plates has a capacitance of $8 \mathrm{pF}\left(1 \mathrm{pF}=10^{-12} \mathrm{~F}\right)$. What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6 ?
Show Answer
Capacitance between the parallel plates of the capacitor, $\mathrm{C}=8 \mathrm{pF}$
Initially, distance between the parallel plates was $d$ and it was filled with air. Dielectric constant of air, $k=1$
Capacitance, $C$, is given by the formula,
$$ \begin{align*} C & =\frac{k \in_{0} A}{d} \\ & =\frac{\in_{0} A}{d} \tag{i} \end{align*} $$
Where,
$A=$ Area of each plate
$$ \epsilon_{0}=\text { Permittivity of free space } $$
If distance between the plates is reduced to half, then new distance, $d=\frac{d}{2}$
Dielectric constant of the substance filled in between the plates, $k^{\prime}=6$
Hence, capacitance of the capacitor becomes
$$ \begin{equation*} C^{\prime}=\frac{k^{\prime} \in_{0} A}{d^{\prime}}=\frac{6 \in_{0} A}{\frac{d}{2}} \tag{ii} \end{equation*} $$
Taking ratios of equations (i) and (ii), we obtain
$$ \begin{aligned} C^{\prime} & =2 \times 6 C \\ & =12 C \\ & =12 \times 8=96 \mathrm{pF} \end{aligned} $$
Therefore, the capacitance between the plates is $96 \mathrm{pF}$.
2.6 Three capacitors each of capacitance $9 \mathrm{pF}$ are connected in series.
(a) What is the total capacitance of the combination?
(b) What is the potential difference across each capacitor if the combination is connected to a $120 \mathrm{~V}$ supply?
Show Answer
Answer
Capacitance of each of the three capacitors, $C=9 \mathrm{pF}$
Equivalent capacitance $\left(C^{\prime}\right)$ of the combination of the capacitors is given by the relation,
$$ \begin{aligned} \frac{1}{C^{\prime}} & =\frac{1}{C}+\frac{1}{C}+\frac{1}{C} \\ & =\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{3}{9}=\frac{1}{3} \end{aligned} $$
$\therefore C^{\prime}=3 \mu \mathrm{F}$
Therefore, total capacitance of the combination is $3 \mu \mathrm{F}$.
Supply voltage, $V=100 \mathrm{~V}$
Potential difference $\left(V^{\prime}\right)$ across each capacitor is equal to one-third of the supply voltage.
$$ \therefore V^{\prime}=\frac{V}{3}=\frac{120}{3}=40 \mathrm{~V} $$
Therefore, the potential difference across each capacitor is $40 \mathrm{~V}$.
2.7 Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and $4 \mathrm{pF}$ are connected in parallel.
(a) What is the total capacitance of the combination?
(b) Determine the charge on each capacitor if the combination is connected to a $100 \mathrm{~V}$ supply.
Show Answer
Answer
Capacitances of the given capacitors are
$$ \begin{aligned} & C_{1}=2 \mathrm{pF} \\ & C_{2}=3 \mathrm{pF} \\ & C_{3}=4 \mathrm{pF} \end{aligned} $$
For the parallel combination of the capacitors, equivalent capacitor $C^{\prime}$ is given by the algebraic sum,
$$ C^{\prime}=2+3+4=9 \mathrm{pF} $$
Therefore, total capacitance of the combination is $9 \mathrm{pF}$.
Supply voltage, $V=100 \mathrm{~V}$
The voltage through all the three capacitors is same $=V=100 \mathrm{~V}$
Charge on a capacitor of capacitance $C$ and potential difference $V$ is given by the relation,
$q=V C \ldots$ (i)
For $\mathrm{C}=2 \mathrm{pF}$,
Charge $=V C=100 \times 2=200 \mathrm{pC}=2 \times 10^{-10} \mathrm{C}$
For $\mathrm{C}=3 \mathrm{pF}$,
Charge $=V C=100 \times 3=300 \mathrm{pC}=3 \times 10^{-10} \mathrm{C}$
For $\mathrm{C}=4 \mathrm{pF}$,
Charge $=V C=100 \times 4=200 \mathrm{pC}=4 \times 10^{-10} \mathrm{C}$
2.8 In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3} \mathrm{~m}^{2}$ and the distance between the plates is $3 \mathrm{~mm}$. Calculate the capacitance of the capacitor. If this capacitor is connected to a $100 \mathrm{~V}$ supply, what is the charge on each plate of the capacitor?
Show Answer
Answer
Area of each plate of the parallel plate capacitor, $A=6 \times 10^{-3} \mathrm{~m}^{2}$
Distance between the plates, $d=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}$
Supply voltage, $V=100 \mathrm{~V}$
Capacitance $C$ of a parallel plate capacitor is given by,
$C=\frac{\in_{0} A}{d}$
Where,
$$ \epsilon_{0}=\text { Permittivity of free space } $$
$=8.854 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{C}^{-2}$
$$ \begin{aligned} \therefore C & =\frac{8.854 \times 10^{-12} \times 6 \times 10^{-3}}{3 \times 10^{-3}} \\ & =17.71 \times 10^{-12} \mathrm{~F} \\ & =17.71 \mathrm{pF} \end{aligned} $$
Potential $V$ is related with the charge $q$ and capacitance $C$ as
$$ \begin{aligned} & V=\frac{q}{C} \\ & \therefore q=V C \\ & =100 \times 17.71 \times 10^{-12} \\ & =1.771 \times 10^{-9} \mathrm{C} \end{aligned} $$
Therefore, capacitance of the capacitor is $17.71 \mathrm{pF}$ and charge on each plate is $1.771 \times$ $10^{-9} \mathrm{C}$.
2.9 Explain what would happen if in the capacitor given in Exercise 2.8 , a $3 \mathrm{~mm}$ thick mica sheet (of dielectric constant $=6$ ) were inserted between the plates,
(a) while the voltage supply remained connected.
(b) after the supply was disconnected.
Show Answer
Answer
Dielectric constant of the mica sheet, $k=6$
Initial capacitance, $C=1.771 \times 10^{-11} \mathrm{~F}$
New capacitance, $C^{\prime}=k C=6 \times 1.771 \times 10^{-11}=106 \mathrm{pF}$
Supply voltage, $V=100 \mathrm{~V}$
New charge, $q^{\prime}=C^{\prime} V=6 \times 1.771 \times 10^{-9}=1.06 \times 10^{-8} \mathrm{C}$
Potential across the plates remains $100 \mathrm{~V}$.
Dielectric constant, $k=6$
Initial capacitance, $C=1.771 \times 10^{-11} \mathrm{~F}$
New capacitance, $C^{\prime}=k C=6 \times 1.771 \times 10^{-11}=106 \mathrm{pF}$
If supply voltage is removed, then there will be no effect on the amount of charge in the plates.
Charge $=1.771 \times 10^{-9} \mathrm{C}$
Potential across the plates is given by,
$$ \begin{aligned} \therefore V^{\prime} & =\frac{q}{C^{\prime}} \\ & =\frac{1.771 \times 10^{-9}}{106 \times 10^{-12}} \\ & =16.7 \mathrm{~V} \end{aligned} $$
2.10 A $12 \mathrm{pF}$ capacitor is connected to a $50 \mathrm{~V}$ battery. How much electrostatic energy is stored in the capacitor?
Show Answer
Answer
Capacitor of the capacitance, $C=12 \mathrm{pF}=12 \times 10^{-12} \mathrm{~F}$
Potential difference, $V=50 \mathrm{~V}$
Electrostatic energy stored in the capacitor is given by the relation,
$$ \begin{aligned} E & =\frac{1}{2} C V^{2} \\ & =\frac{1}{2} \times 12 \times 10^{-12} \times(50)^{2} \\ & =1.5 \times 10^{-8} \mathrm{~J} \end{aligned} $$
Therefore, the electrostatic energy stored in the capacitor is $1.5 \times 10^{-8} \mathrm{~J}$.
2.11 A $600 \mathrm{pF}$ capacitor is charged by a $200 \mathrm{~V}$ supply. It is then disconnected from the supply and is connected to another uncharged $600 \mathrm{pF}$ capacitor. How much electrostatic energy is lost in the process?
Show Answer
Answer
Capacitance of the capacitor, $C=600 \mathrm{pF}$
Potential difference, $V=200 \mathrm{~V}$
Electrostatic energy stored in the capacitor is given by,
$$ \begin{aligned} E & =\frac{1}{2} C V^{2} \\ & =\frac{1}{2} \times\left(600 \times 10^{-12}\right) \times(200)^{2} \\ & =1.2 \times 10^{-5} \mathrm{~J} \end{aligned} $$
If supply is disconnected from the capacitor and another capacitor of capacitance $C=600$ $\mathrm{pF}$ is connected to it, then equivalent capacitance $(C)$ of the combination is given by,
$$ \begin{aligned} & \frac{1}{C^{\prime}}=\frac{1}{C}+\frac{1}{C} \\ & \quad=\frac{1}{600}+\frac{1}{600}=\frac{2}{600}=\frac{1}{300} \\ & \therefore C^{\prime}=300 \mathrm{pF} \end{aligned} $$
New electrostatic energy can be calculated as
$$ \begin{aligned} E^{\prime} & =\frac{1}{2} \times C^{\prime} \times V^{2} \\ & =\frac{1}{2} \times 300 \times(200)^{2} \\ & =0.6 \times 10^{-5} \mathrm{~J} \end{aligned} $$
Loss in electrostatic energy $=E-E^{\prime}$
$$ \begin{aligned} & =1.2 \times 10^{-5}-0.6 \times 10^{-5} \\ & =0.6 \times 10^{-5} \\ & =6 \times 10^{-6} \mathrm{~J} \end{aligned} $$
Therefore, the electrostatic energy lost in the process is $6 \times 10^{-6} \mathrm{~J}$.
2.1 भूमिका
अध्याय 5 तथा 7 (कक्षा 11) में स्थितिज ऊर्जा की धारणा से आपको परिचित कराया गया था। जब कोई बाह्य बल किसी वस्तु को एक बिंदु से दूसरे बिंदु तक, किसी अन्य बल; जैसे-स्प्रिग बल, गुरुत्वीय बल आदि के विरुद्ध, ले जाता है, तो उस बाह्य बल द्वारा किया गया कार्य उस वस्तु में स्थितिज ऊर्जा के रूप में संचित हो जाता है। जब बाह्य बल हटा लिया जाता है तो वस्तु गति करने लगती है और कुछ गतिज ऊर्जा अर्जित कर लेती है, तथा उस वस्तु की उतनी ही स्थितिज ऊर्जा कम हो जाती है। इस प्रकार वस्तु की स्थितिज ऊर्जा तथा गतिज ऊर्जा का योग संरक्षित रहता है। इस प्रकार के बलों को संरक्षी बल कहते हैं। स्प्रिग बल तथा गुरुत्वाकर्षण बल संरक्षी बल के उदाहरण हैं।
गुरुत्वाकर्षण बल की भाँति दो स्थिर आवेशों के बीच लगने वाला कूलॉम बल भी संरक्षी बल होता है। यह कोई आश्चर्य की बात नहीं है, क्योंकि गणितीय रूप में यह बल गुरुत्वाकर्षण बल के समान है; दोनों में दूरी की व्युत्क्रम वर्ग निर्भरता है और प्रमुख रूप से आनुपातिकता स्थिरांक में भिन्नता है। गुरुत्वाकर्षण नियम की संहतियाँ कूलॉम नियम में आवेशों द्वारा प्रतिस्थापित हो जाती हैं। इस प्रकार, गुरुत्वीय क्षेत्र में संहतियों की स्थितिज ऊर्जा की ही भाँति हम किसी स्थिरवैद्युत क्षेत्र में आवेश की स्थिरवैद्युत स्थितिज ऊर्जा को परिभाषित कर सकते हैं।
आवेश विन्यास के कारण किसी स्थिरवैद्युत क्षेत्र $\mathbf{E}$ पर विचार कीजिए। सरलता की दृष्टि से पहले मूल बिंदु पर स्थित किसी आवेश $Q$ के कारण क्षेत्र $\mathbf{E}$ पर विचार करते हैं। कल्पना कीजिए कि हम कोई परीक्षण आवेश $q$ को आवेश $Q$ के कारण आवेश $q$ पर लगे प्रतिकर्षी बल के विरुद्ध, बिंदु $\mathrm{R}$ से बिंदु $\mathrm{P}$ तक लाते हैं। चित्र 2.1 के संदर्भ में ऐसा तभी होगा जब $Q$ तथा $q$ दोनों धनात्मक हों अथवा दोनों ऋणात्मक हों। सुनिश्चित करने के लिए, हम $Q, q>0$ मानते हैं।
चित्र 2.1 एक परीक्षण आवेश $q(>0)$ मूल बिंदु पर स्थित आवेश $Q(>0)$ के कारण उस पर लगे प्रतिकर्षी बल के विरुद्ध बिंदु $R$ से बिंदु $P$ तक ले जाया जाता है।
यहाँ दो टिप्पणियाँ की जा सकती हैं। पहली, हम यह मानते हैं कि परीक्षण आवेश $q$ इतना छोटा है कि यह मूल विन्यास को विक्षुब्ध नहीं करता, यानी मूल बिंदु पर स्थित आवेश $Q$ को विक्षुब्ध नहीं करता (अन्यथा हम किसी अनिर्दिष्ट बल द्वारा आवेश $Q$ को मूल बिंदु पर दृढ़ करें)। दूसरी, आवेश $q$ को $\mathrm{R}$ से $\mathrm{P}$ तक लाने के लिए हम एक बाह्य बल $\mathbf{F} _{\mathrm{ext}}$ आरोपित करते हैं जो प्रतिकर्षी वैद्युत बल $\mathbf{F} _{\mathrm{E}}$ (अर्थात $\mathbf{F} _{\mathrm{ext}}=-\mathbf{F} _{\mathrm{E}}$ ) को यथातथ्य प्रभावहीन कर देता है। इसका अर्थ यह हुआ कि जब आवेश $q$ को $\mathrm{R}$ से $P$ तक लाते हैं तो उस पर कोई नेट बल अथवा त्वरण कार्य नहीं करता-इसे अत्यंत धीमी नियत चाल से लाया जाता है। इस स्थिति में, बाह्य बल द्वारा आवेश पर किया गया कार्य वैद्युत बल द्वारा किए गए कार्य का ऋणात्मक होता है, तथा पूर्णतः आवेश $q$ की स्थितिज ऊर्जा के रूप में संचित हो जाता है। यदि $\mathrm{P}$ पर पहुँच कर बाह्य बल को हटा दिया जाए तो वैद्युत बल आवेश $q$ को $\mathrm{Q}$ से दूर भेज देगा - $\mathrm{P}$ पर संचित ऊर्जा (स्थितिज ऊर्जा) आवेश $q$ को गतिज ऊर्जा प्रदान करने में खर्च हो जाती है तथा यह इस ढंग से होता है कि गतिज ऊर्जा तथा स्थितिज ऊर्जा का योग संरक्षित रहता है।
इस प्रकार बाह्य बल द्वारा किसी आवेश $q$ को बिंदु $\mathrm{R}$ से $\mathrm{P}$ तक ले जाने में किया गया कार्य
$$ \begin{align*} \mathrm{W} _{\mathrm{RP}} & =\int _{\mathrm{R}}^{\mathrm{P}} \mathbf{F} _{\text {ext }} \cdot \mathrm{d} \mathbf{r} \\ & =-\int _{\mathrm{R}}^{\mathrm{P}} \mathbf{F} _{E} \cdot \mathrm{d} \mathbf{r} \tag{2.1} \end{align*} $$
यह कार्य स्थिरवैद्युत प्रतिकर्षी बल के विरुद्ध किया गया है, तथा यह स्थितिज ऊर्जा के रूप में संचित हो जाता है।
विद्युत क्षेत्र के प्रत्येक बिंदु पर $q$ आवेश के, किसी कण में एक निश्चित स्थिरवैद्युत स्थितिज ऊर्जा होती है तथा कण पर किया गया यह कार्य इसकी स्थितिज ऊर्जा में इतनी वृद्धि कर देता है जो $\mathrm{R}$ तथा $\mathrm{P}$ बिंदुओं के बीच स्थितिज ऊर्जा के अंतर के बराबर है।
इस प्रकार, स्थितिज ऊर्जा अंतर
$$ \begin{equation*} \Delta U=U _{\mathrm{P}}-U _{\mathrm{R}}=W _{\mathrm{RP}} \tag{2.2} \end{equation*} $$
( ध्यान दीजिए, यहाँ पर यह विस्थापन विद्युत बल के विपरीत है, इसलिए विद्युत क्षेत्र द्वारा किया गया कार्य ऋणात्मक है, अर्थात $-W _{\mathrm{RP}}$ )
अतः, दो बिंदुओं के बीच स्थिरवैद्युत स्थितिज ऊर्जा अंतर को हम इस प्रकार परिभाषित करते हैं - किसी यादृच्छिक आवेश विन्यास के विद्युत बल क्षेत्र में यह अंतर आवेश $q$ को एक बिंदु से दूसरे बिंदु तक (बिना त्वरित किए) ले जाने के लिए आवश्यक बाह्य बल द्वारा किए जाने वाले न्यूनतम कार्य के बराबर होता है।
इस घटनाक्रम में दो महत्वपूर्ण टिप्पणियाँ की जा सकती हैं-
(i) समीकरण (2.2) का दायाँ पक्ष केवल आवेश की आरंभिक तथा अंतिम स्थितियों पर निर्भर करता है। इसका अर्थ यह है कि किसी स्थिरवैद्युत क्षेत्र द्वारा किसी आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किया गया कार्य केवल आरंभिक तथा अंतिम स्थितियों (बिंदुओं) पर निर्भर करता है, उस पथ पर निर्भर नहीं करता जिससे होकर वह आवेश एक बिंदु से दूसरे बिंदु तक जाता है (चित्र 2.2)। यह किसी संरक्षी बल का मूल अभिलक्षण है। स्थितिज ऊर्जा की धारणा अर्थपूर्ण नहीं रहेगी, यदि किया गया कार्य पथ पर निर्भर हो जाएगा। किसी स्थिरवैद्युत क्षेत्र द्वारा किए गए कार्य का पथ पर निर्भर न होना कूलॉम के नियम द्वारा सिद्ध किया जा सकता है। इसकी उपपत्ति हम यहाँ छोड़ रहे हैं।
कॉन्ते एलेस्सैंद्रो वोल्टा
(1745 - 1827) इटालियन भौतिकीविद, पविया में प्रोफ़ेसर थे। वोल्टा ने यह स्थापित किया कि लुइगी गैल्वनी 1737-1798, द्वारा, दो असमान धातुओं के संपर्क में लटके मेंढक के मांसपेशीय ऊतकों में देखी गई ‘जैव विद्युत’ जैव ऊतकों का कोई विशिष्ट गुण नहीं है, बल्कि, तब भी गीली वस्तु दो असमान धातुओं के बीच रखी जाती है। इससे उन्होंने प्रथम, वोल्टीय पुंज या बैटरी का विकास किया जिसमें धातु की चकतियों (विद्युदाग्रों) के बीच गत्ते की नम चकतियाँ (विद्युत अपघट्य) रखकर एक बड़ा पुंज बनाया था। उत्पन्न हो जाती है जब कोई
(ii) समीकरण (2.2) स्थितिज ऊर्जा अंतर की परिभाषा भौतिकी के नियमों के अनुसार अर्थपूर्ण राशि कार्य के पदों में करती है। स्पष्टतः, इस प्रकार परिभाषित स्थितिज ऊर्जा किसी योज्यता स्थिरांक के अंतर्गत अनिश्चित होती है। इसका यह अर्थ है कि स्थितिज ऊर्जा का वास्तविक मान भौतिक रूप से महत्वपूर्ण नहीं होता; केवल स्थितिज ऊर्जा के अंतर का ही महत्त्व होता है। हम सदैव ही कोई यादृच्छिक स्थिरांक $\alpha$ हर बिंदु पर स्थितिज ऊर्जा के साथ जोड़ सकते हैं, क्योंकि इससे स्थितिज ऊर्जा अंतर के मान में कोई परिवर्तन नहीं होगा :
$$ \left(U _{\mathrm{P}}+\alpha\right)-\left(U _{\mathrm{R}}+\alpha\right)=U _{\mathrm{P}}-U _{\mathrm{R}} $$
इसे इस प्रकार से भी व्यक्त कर सकते हैं : स्थितिज ऊर्जा को किस बिंदु पर शून्य मानें, इस बिंदु के चयन की स्वतंत्रता होती है। एक सुविधाजनक चयन यह है कि हम अनंत पर स्थिरवैद्युत स्थितिज ऊर्जा को शून्य मानें। इस चयन के अनुसार यदि हम बिंदु $\mathrm{R}$ को अनंत पर लें, तब समीकरण $(2.2)$ से हमें प्राप्त होता है :
$$ \begin{equation*} W _{\infty \mathrm{P}}=U _{\mathrm{P}}-U _{\infty}=U _{\mathrm{P}} \tag{2.3} \end{equation*} $$
चूँकि यहाँ पर बिंदु $\mathrm{P}$ यादृच्छिक है, समीकरण (2.3) से हमें किसी बिंदु पर आवेश $q$ की स्थितिज ऊर्जा की परिभाषा प्राप्त होती है - किसी बिंदु पर आवेश $q$ की स्थितिज ऊर्जा (किसी आवेश विन्यास के कारण क्षेत्र की उपस्थिति में) बाह्य बल (वैद्युत बल के समान तथा विपरीत) द्वारा आवेश $q$ को अनंत से उस बिंदु तक ले जाने में किए गए कार्य के बराबर होती है।
2.2 स्थिरवैद्युत विभव
किसी व्यापक स्थिर आवेश विन्यास पर विचार कीजिए। हमने किसी परीक्षण आवेश $q$ पर स्थितिज ऊर्जा को किए गए कार्य के पदों में परिभाषित किया था। यह कार्य स्पष्ट रूप से $q$ के अनुक्रमानुपाती है, चूँकि आवेश $q$ पर किसी भी बिंदु पर $q \mathbf{E}$ बल कार्य करता है, यहाँ $\mathbf{E}$ आवेश विन्यास के कारण उस बिंदु पर विद्युत क्षेत्र है। अतः किए गए कार्य को आवेश $q$ से विभाजित करना सुविधाजनक होता है, क्योंकि परिणामस्वरूप जो राशि प्राप्त होती है वह $q$ पर निर्भर नहीं करती। दूसरे शब्दों में, प्रति एकांक आवेश पर किया गया कार्य आवेश विन्यास से संबद्ध विद्युत क्षेत्र का अभिलाक्षणिक गुण होता है। इससे हमें दिए गए आवेश विन्यास के कारण स्थिरवैद्युत विभव $V$ की धारणा प्राप्त होती है। समीकरण $(2.1)$ से हमें प्राप्त होता है-
बाह्य बल द्वारा किसी एकांक धनावेश को बिंदु $R$ से $P$ तक लाने में किया गया कार्य
$$ \begin{equation*} =V _{\mathrm{P}}-V _{\mathrm{R}}\left(=\frac{U _{\mathrm{P}}-U _{\mathrm{R}}}{q}\right) \tag{2.4} \end{equation*} $$
यहाँ $V _{\mathrm{P}}$ तथा $V _{\mathrm{R}}$ क्रमशः बिंदु $\mathrm{P}$ तथा $\mathrm{R}$ के स्थिरवैद्युत विभव हैं। ध्यान दीजिए, यहाँ भी पहले की भाँति विभव का वास्तविक मान उतना महत्वपूर्ण नहीं होता जितना कि भौतिक नियमों के अनुसार विभवांतर महत्वपूर्ण होता है। यदि पहले की भाँति, हम अनंत पर विभव को शून्य चुनें (मानें), तब समीकरण (2.4) से यह उपलक्षित होता है कि-
बाह्य बल द्वारा किसी एकांक धनावेश को अनंत से किसी बिंदु तक लाने में किया गया
चित्र 2.2 किसी आवेश विन्यास के कारण स्थिरवैद्युत क्षेत्र द्वारा परीक्षण आवेश $q$ पर किया गया कार्य पथ पर निर्भर नहीं करता, यह केवल अंतिम तथा आरंभिक स्थितियों पर निर्भर करता है।
दूसरे शब्दों में, स्थिरवैद्युत क्षेत्र के प्रदेश के किसी बिंदु पर स्थिरवैद्युत विभव $(V)$ वह न्यूनतम कार्य है जो किसी एकांक धनावेश को अनंत से उस बिंदु तक लाने में किया जाता है।
स्थितिज ऊर्जा के विषय में पहले की गई विशेष टिप्पणी विभव की परिभाषा पर भी लागू होती है। प्रति एकांक परीक्षण आवेश पर किया गया कार्य ज्ञात करने के लिए हमें अत्यल्प परीक्षण आवेश $\delta q$ लेना होता है, इसे अनंत से उस बिंदु तक लाने में किया गया कार्य $\delta W$ ज्ञात करके $\delta W / \delta q$ अनुपात का मान निर्धारित करना होता है। साथ ही पथ के प्रत्येक बिंदु पर बाह्य बल उस बिंदु पर परीक्षण आवेश पर लगने वाले स्थिरवैद्युत बल के बराबर तथा विपरीत होना चाहिए।
2.3 बिंदु आवेश के कारण विभव
मूल बिंदु पर स्थित किसी बिंदु आवेश $Q$ पर विचार कीजिए (चित्र 2.3)। सुस्पष्टता की दृष्टि से $Q$ को धनात्मक लीजिए। हम बिंदु $\mathrm{P}$ पर मूल बिंदु से स्थिति सदिश $\mathbf{r}$ के साथ विभव निर्धारित करना चाहते हैं। इसके लिए हमें एकांक धनावेश को अनंत से उस बिंदु तक लाने में किया गया कार्य परिकलित करना चाहिए। $Q>0$ के लिए, परीक्षण आवेश पर प्रतिकर्षण बल के विरुद्ध किया गया कार्य धनात्मक होता है। चूँकि किया गया कार्य पथ पर निर्भर नहीं करता, हम अनंत से बिंदु $\mathrm{P}$ तक अरीय दिशा के अनुदिश कोई सुगम पथ का चयन करते हैं।
चित्र 2.3 आवेश $Q$ के कारण बिंदु $\mathrm{P}$ पर विभव, किसी एकांक धनात्मक परीक्षण आवेश को, आवेश $Q$ $(Q>0)$ के कारण प्रतिकर्षण बल के विरुद्ध, अनंत से बिंदु $P$ तक लाने में किए गए कार्य के बराबर होता है।
पथ के किसी मध्यवर्ती बिंदु $\mathrm{P}^{\prime}$ पर, किसी एकांक धनावेश पर स्थिरवैद्युत बल $$ \begin{equation*} \frac{Q \times 1}{4 \pi \varepsilon _{o} r^{\prime 2}} \hat{\mathbf{r}}^{\prime} \tag{2.5} \end{equation*} $$
यहाँ $\hat{\mathbf{r}}^{\prime}, \mathrm{OP}^{\prime}$ के अनुदिश कोई एकांक सदिश है। इस बल के विरुद्ध $r^{\prime}$ से $r^{\prime}+\Delta r^{\prime}$ तक एकांक धनावेश को ले जाने में किया गया कार्य-
$$ \begin{equation*} \Delta W=-\frac{Q}{4 \pi \varepsilon _{o} r^{\prime 2}} \Delta r^{\prime} \tag{2.6} \end{equation*} $$
यहाँ ऋणात्मक चिह्न यह दर्शाता है कि $\Delta r^{\prime}<0$, तथा $\Delta W$ धनात्मक है। समीकरण (2.6) को $r^{\prime}=\infty$ से $r^{\prime}=r$ तक समाकलित करने पर बाह्य बल द्वारा किया गया कुल कार्य $(W)$ प्राप्त होगा।
$$ \begin{equation*} W=-\int _{\infty}^{r} \frac{Q}{4 \pi \varepsilon _{o} r^{\prime 2}} d r^{\prime}=\left.\frac{Q}{4 \pi \varepsilon _{o} r^{\prime}}\right| _{\infty} ^{r}=\frac{Q}{4 \pi \varepsilon _{o} r} \tag{2.7} \end{equation*} $$
परिभाषा के अनुसार यह आवेश $Q$ के कारण $\mathrm{P}$ पर विभव है अतः
$$ \begin{equation*} V(r)=\frac{Q}{4 \pi \varepsilon _{0} r} \tag{2.8} \end{equation*} $$
समीकरण (2.8) आवेश $Q$ के किसी भी चिह्न के लिए सत्य है यद्यपि हमने इस संबंध की व्युत्पत्ति के समय $Q>0$ माना था। $Q<0$, $V<0$ के लिए, अर्थात् अनंत से उस बिंदु तक एकांक परीक्षण धनावेश को लाने के लिए किया गया कार्य (बाह्य बल द्वारा) ऋणात्मक है। यह इस कथन के तुल्य है कि एकांक धनावेश को अनंत से बिंदु $\mathrm{P}$ तक लाने में स्थिरवैद्युत बल द्वारा किया गया कार्य धनात्मक है [यह ऐसा ही है जैसा कि होना चाहिए, चूँकि $Q<0$ के लिए, एकांक धनावेश पर बल आकर्षी है, अतः स्थिरवैद्युत बल तथा विस्थापन (अनंत से $\mathrm{P}$ तक) दोनों एक ही दिशा में हैं।। अंत में यदि हम समीकरण (2.8) पर ध्यान दें, तो पाते हैं कि यह समीकरण हमारे उस चयन से मेल खाता है जिसमें हमने अनंत पर विभव को शून्य माना था।
चित्र 2.4 किसी बिंदु आवेश $B$ के लिए दूरी $r$ में परिवर्तन के साथ विभव में परिवर्तन $\left(Q / 4 \pi \varepsilon _{0}\right) \mathrm{m}^{-1}$ के मात्रकों में (नीला वक्र) तथा दूरी $r$ में परिवर्तन के साथ विद्युत क्षेत्र में परिवर्तन $\left(B / 4 \pi \varepsilon _{0}\right) \mathrm{m}^{-2}$ काला वक्र।
चित्र (2.4) में यह दर्शाया गया है कि किस प्रकार स्थिरवैद्युत विभव $(\propto l / r)$ तथा स्थिरवैद्युत क्षेत्र $\left(\propto 1 / r^{2}\right)$ दूरी $r$ के साथ परिवर्तित होते हैं।
उदाहरण 2.1
(a) आवेश $4 \times 10^{-7} \mathrm{C}$ के कारण इससे $9 \mathrm{~cm}$ दूरी पर स्थित किसी बिंदु $\mathrm{P}$ पर विभव परिकलित कीजिए।
(b) अब, आवेश $2 \times 10^{-9} \mathrm{C}$ को अनंत से बिंदु $\mathrm{P}$ तक लाने में किया गया कार्य ज्ञात कीजिए। क्या उत्तर जिस पथ के अनुदिश आवेश को लाया गया है उस पर निर्भर करता है?
हल
(a) $V=\frac{1}{4 \pi \varepsilon _{o}} \frac{Q}{r}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \times \frac{4 \times 10^{-7} \mathrm{C}}{0.09 \mathrm{~m}}$
$$ =4 \times 10^{4} \mathrm{~V} $$
(b) $W=q V=2 \times 10^{-9} \mathrm{C} \times 4 \times 10^{4} \mathrm{~V}$
$$ =8 \times 10^{-5} \mathrm{~J} $$
नहीं, कार्य पथ पर निर्भर नहीं होगा। कोई भी यादृच्छिक अत्यल्प पथ दो लंबवत विस्थापनों में वियोजित किया जा सकता है : एक $\mathbf{r}$ के अनुदिश तथा दूसरा $\mathbf{r}$ के लंबवत। बाद के प्रकरण के तदनुरूपी किया गया कार्य शून्य होगा।
2.4 वैद्युत द्विध्रुव के कारण विभव
जैसा कि हम पिछले अध्याय में जान ही चुके हैं कि वैद्युत द्विध्रुव दो बिंदु आवेशों $q$ तथा $-q$ से मिलकर बनता है तथा इन आवेशों के बीच (लघु) पृथकन $2 a$ होता है। इसका कुल आवेश शून्य होता है तथा यह द्विध्रुव सदिश $\mathbf{p}$ जिसका परिमाण $q \times 2 a$ तथा दिशा $-q$ से $q$ के अनुदिश होती है, के अभिलाक्षणिक गुण द्वारा प्रकट किया जाता है (चित्र 2.5)। हमने यह भी देखा कि किसी बिंदु पर वैद्युत द्विध्रुव का स्थिति सदिश $\mathbf{r}$ सहित विद्युत क्षेत्र मात्र $r$ के परिमाण पर ही निर्भर नहीं करता वरन् $\mathbf{r}$ तथा $\mathbf{p}$ के बीच के कोण पर भी निर्भर करता है। साथ ही, वैद्युत क्षेत्र की तीव्रता, अधिक दूरियों पर, $1 / r^{2}$ के अनुसार नहीं घटती (जो एकल आवेश के कारण विद्युत क्षेत्र के लिए प्ररूपी है) वरन् $1 / r^{3}$ के अनुसार घटती है। यहाँ हम किसी द्विध्रुव के कारण वैद्युत विभव का निर्धारण करेंगे तथा इसकी तुलना एक आवेश के कारण विभव से करेंगे।
पहले की ही भांति, हम द्विध्रुव के केंद्र को मूल बिंदु पर रखते हैं। अब हम यह जानते हैं कि विद्युत क्षेत्र अध्यारोपण सिद्धांत का पालन करते हैं। चूँकि विभव विद्युत क्षेत्र द्वारा किए गए कार्य से संबंधित है, स्थिरवैद्युत विभव भी अध्यारोपण सिद्धांत का पालन करता है। इस प्रकार किसी वैद्युत द्विध्रुव के कारण विभव आवेशों $q$ तथा $-q$ के कारण विभवों का योग होता है।
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q}{r _{1}}-\frac{q}{r _{2}}\right) \tag{2.9} \end{equation*} $$
चित्र 2.5 द्विध्रुव के कारण विभव के परिकलन में सम्मिलित राशियाँ।
यहाँ $r _{1}$ तथा $r _{2}$ बिंदु $\mathrm{P}$ की क्रमशः $q$ तथा $-q$ से दूरियाँ हैं। अब, ज्यामिति द्वारा
$$ \begin{align*} & r_{1}^{2}=r^{2}+a^{2}-2 a r \cos \theta \\ & r_{2}^{2}=r^{2}+a^{2}+2 a r \cos \theta \tag{2.10} \end{align*} $$
हम $r$ को $a$ की तुलना में अत्यधिक बड़ा $(r \gg a)$ मानते हैं तथा केवल $a / r$ के प्रथम कोटि के पदों को ही सम्मिलित करते हैं :
$$ \begin{align*} & r _{1}^{2}=r^{2}\left(1-\frac{2 a \cos \theta}{r}+\frac{a^{2}}{r^{2}}\right) \\ & \cong r^{2}\left(1-\frac{2 a \cos \theta}{r}\right) \tag{2.11} \end{align*} $$
इसी प्रकार,
$$ \begin{equation*} r _{2}^{2} \cong r^{2}\left(1+\frac{2 a \cos \theta}{r}\right) \tag{2.12} \end{equation*} $$
द्विपद समीकरण का उपयोग करके $a / r$ के प्रथम कोटि के पदों को सम्मिलित करने पर
$\frac{1}{r _{1}} \cong \frac{1}{r}\left(1-\frac{2 a \cos \theta}{r}\right)^{-1 / 2} \cong \frac{1}{r}\left(1+\frac{a}{r} \cos \theta\right)$
$\frac{1}{r _{2}} \cong \frac{1}{r}\left(1+\frac{2 a \cos \theta}{r}\right)^{-1 / 2} \cong \frac{1}{r}\left(1-\frac{a}{r} \cos \theta\right)$
समीकरणों (2.9) तथा (2.13) तथा $p=2 q a$ का उपयोग करने पर,
$V=\frac{q}{4 \pi \varepsilon _{o}} \frac{2 a \cos \theta}{r^{2}}=\frac{p \cos \theta}{4 \pi \varepsilon _{o} r^{2}}$
अब, $P \cos \theta=\mathbf{p} \cdot \hat{\mathbf{r}}$ यहाँ $\hat{\mathbf{r}}$ स्थिति सदिश OP के अनुदिश एकांक सदिश है।
तब किसी द्विध्रुव का वैद्युत विभव
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} ; \quad(r»a) \tag{2.15} \end{equation*} $$
जैसा कि संकेत दिया गया है, समीकरण (2.15) केवल उन दूरियों के लिए जो द्विध्रुव के आकार की तुलना में अत्यधिक बड़ी हैं, जिसके कारण $a / r$ के उच्च कोटि के पदों की नगण्य मानकर उपेक्षा कर दी गई है, ही सन्निकटतः सत्य है। परंतु, किसी बिंदु द्विध्रुव $\mathbf{p}$ के लिए मूल बिंदु पर समीकरण (2.15) यथार्थ है।
समीकरण (2.15) से, द्विध्रुव अक्ष $(\theta=0, \pi)$ पर विभव
$$ \begin{equation*} V= \pm \frac{1}{4 \pi \varepsilon _{o}} \frac{p}{r^{2}} \tag{2.16} \end{equation*} $$
(धनात्मक चिह्न $\theta=0$ के लिए तथा ॠणात्मक चिह्न $\theta=\pi$ के लिए है)। निरक्षीय (विषुवत) समतल $(\theta=\pi / 2)$ में विभव शून्य है।
किसी द्विध्रुव के वैद्युत विभव तथा एकल आवेश के वैद्युत विभव के तुलनात्मक महत्वपूर्ण लक्षण समीकरणों $(2.8)$ तथा $(2.15)$ से स्पष्ट हैं :
(i) किसी वैद्युत द्विध्रुव के कारण विभव केवल दूरी $r$ पर ही निर्भर नहीं करता, वरन् स्थिति सदिश $\mathbf{r}$ तथा द्विध्रुव आघूर्ण $\mathbf{p}$ के बीच के कोण पर भी निर्भर करता है। (तथापि यह $\mathbf{p}$ के परित: अक्षतः सममित होता है। अतः यदि आप $\mathbf{p}$ के परितः स्थिति सदिश $\mathbf{r}$ को, कोण $\theta$ को नियत रखते हुए, घूर्णन कराएँ, तो बिंदु $\mathrm{P}$ के सदृश घूर्णन के फलस्वरूप बने शंकु पर बिंदुओं पर वही विभव होगा जो बिंदु $\mathrm{P}$ पर है।)
(ii) अधिक दूरियों पर वैद्युत द्विध्रुव के कारण विभव $1 / r^{2}$ के अनुपात में घटता है, न कि $1 / r$ के अनुपात में, जो कि एकल आवेश के कारण विभव का एक अभिलाक्षणिक गुण है। (इसके लिए आप चित्र 2.4 में दर्शाए $r$ व $1 / r^{2}$ तथा $1 / r$ व $r$ के बीच वक्रों का उल्लेख कर सकते हैं जिन्हें किसी अन्य संदर्भ में खींचा गया है)।
2.5 आवेशों के निकाय के कारण विभव
किसी आवेशों $q _{1}, q _{2}, \ldots, q _{n}$ के ऐसे निकाय पर विचार कीजिए जिनके किसी मूल बिंदु के सापेक्ष स्थिति सदिश क्रमशः $\mathbf{r} _{1}, \mathbf{r} _{2}, \ldots, \mathbf{r} _{n}$ हैं (चित्र 2.6)। बिंदु $\mathrm{P}$ पर आवेश $q _{1}$ के कारण विभव
$$ V _{1}=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1}}{r _{1 \mathrm{P}}} $$
यहाँ $r _{1 \mathrm{P}}$ बिंदु $\mathrm{P}$ तथा आवेश $q _{1}$ के बीच की दूरी है। इसी प्रकार बिंदु $\mathrm{P}$ पर आवेश $q _{2}$ के कारण विभव $V _{2}$ तथा आवेश $q _{3}$ के कारण विभव $V _{3}$ को भी व्यक्त कर सकते हैं
$$ V _{2}=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{2}}{r _{2 \mathrm{P}}}, V _{3}=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{3}}{r _{3 \mathrm{P}}} $$
यहाँ $r _{2 \mathrm{P}}$ तथा $r _{3 \mathrm{P}}$ बिंदु $\mathrm{P}$ की क्रमशः $q _{2}$ तथा $q _{3}$ से दूरियाँ हैं। इसी प्रकार हम अन्य आवेशों के कारण बिंदु $\mathrm{P}$ पर विभव व्यक्त कर सकते हैं। अध्यारोपण सिद्धांत के अनुसार, समस्त आवेश विन्यास के कारण बिंदु $\mathrm{P}$ पर विभव $V$, विन्यास के व्यष्टिगत आवेशों के विभवों के बीजगणितीय योग के बराबर होता है :
$$ \begin{equation*} \stackrel{V}{V}=V_{1}+V_{2}+\ldots+V_{\mathrm{n}} \tag{2.17} \end{equation*} $$
चित्र 2.6 किसी बिंदु पर आवेशों के निकाय के कारण विभव उस बिंदु पर व्यष्टिगत आवेशों के कारण विभवों के योग के बराबर होता है।
$$ =\frac{1}{4 \pi \varepsilon_0}\left(\frac{q_1}{r_{1 \mathrm{P}}}+\frac{q_2}{r_{2 \mathrm{P}}}+\ldots \ldots+\frac{q_n}{r_{n \mathrm{P}}}\right)\tag{18} $$
यदि हमारे पास आवेश घनत्व $\rho$ के अभिलाक्षणिक गुण का कोई संतत आवेश वितरण है तो पहले की भाँति उसे हम $\Delta v$ साइज़ के $\rho \Delta v$ आवेशयुक्त लघु आयतन अवयवों में विभाजित कर सकते हैं। तब हम प्रत्येक आयतन अवयव के कारण विभव निर्धारित करके और समस्त योगदानों का योग करके (सही शब्दों में, समाकलित करके) समस्त आवेश वितरण के कारण विभव ज्ञात कर सकते हैं।
अध्याय 1 में हम अध्ययन कर चुके हैं कि किसी एकसमान आवेशित गोलीय खोल के कारण किसी बाहर स्थित बिंदु के लिए विद्युत क्षेत्र इस प्रकार होता है, मानो खोल का समस्त आवेश उसके केंद्र पर संकेंद्रित हो। अतः खोल के बाहर स्थित किसी बिंदु पर आवेशित कोश के कारण विभव
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon _{o}} \frac{q}{r} \quad(r \geq R) \tag{19a} \end{equation*} $$
यहाँ $q$ गोलीय खोल पर समस्त आवेश तथा $R$ गोलीय कोश की त्रिज्या है। कोश के भीतर विद्युत क्षेत्र शून्य होता है। इससे यह ध्वनित होता है (देखिए अनुभाग 2.6) कि खोल के भीतर विभव नियत रहता है (क्योंकि खोल के भीतर आवेश को गति कराने से कोई कार्य नहीं होता), और, इसीलिए यह खोल के पृष्ठ के विभव के समान होता है।
$$ \begin{equation*} V=\frac{1}{4 \pi \varepsilon _{o}} \frac{q}{R} \tag{19b} \end{equation*} $$
उदाहरण 2.2 $3 \times 10^{-8} \mathrm{C}$ तथा $-2 \times 10^{-8} \mathrm{C}$ के दो आवेश एक-दूसरे से $15 \mathrm{~cm}$ दूरी पर रखे हैं। इन दोनों आवेशों को मिलाने वाली रेखा के किस बिंदु पर वैद्युत विभव शून्य है? अनंत पर वैद्युत विभव शून्य लीजिए।
हल मान लीजिए धनावेश मूल बिंदु $\mathrm{O}$ पर रखा है। दोनों आवेशों को मिलाने वाली रेखा $x$-अक्ष है; तथा ऋणावेश मूल बिंदु के दाईं ओर रखा है (चित्र 2.7 देखिए)।
चित्र 2.7
मान लीजिए $x$-अक्ष पर वह वांछित बिंदु $\mathrm{P}$ है जहाँ वैद्युत विभव शून्य है। यदि बिंदु $\mathrm{P}$ का $x$-निर्देशांक $x$ है, तो स्पष्ट रूप से $x$ धनात्मक होना चाहिए। $(x<0$ के लिए यह संभव नहीं हो सकता कि दो आवेशों के कारण वैद्युत विभव जुड़कर शून्य हो जाए।) यदि $x$ मूल बिंदु $\mathrm{O}$ तथा $\mathrm{A}$ के बीच कहीं स्थित है, तो
$$\frac{1}{4 \pi \varepsilon _{0}}\left[\frac{3 \times 10^{-8}}{x \times 10^{-2}}-\frac{2 \times 10^{-8}}{(15-x) \times 10^{-2}}\right]=0$$
यहाँ $x$ को $\mathrm{cm}$ में लिया गया है। अर्थात
$$ \frac{3}{x}-\frac{2}{15-x}=0 $$
अथवा $x=9 \mathrm{~cm}$
यदि बिंदु $x$ विस्तारित रेखा $\mathrm{OA}$ पर है, तो वांछित शर्त के अनुसार
$\frac{3}{x}-\frac{2}{x-15}=0$ अथवा
$ x=45 \mathrm{~cm} $
इस प्रकार, धनावेश से $9 \mathrm{~cm}$ तथा $45 \mathrm{~cm}$ दूर ऋणावेश की ओर वैद्युत विभव शून्य है। ध्यान दीजिए, यहाँ परिकलनों के लिए वांछित सूत्र को अनंत पर वैद्युत विभव शून्य मानकर ही व्युत्पन्न किया गया था।
उदाहरण 2.3 (a) तथा (b) में क्रमशः एकल धन तथा ऋण आवेशों की क्षेत्र रेखाएँ दर्शायी गई हैं
चित्र 2.8
(a) विभवांतर $V _{\mathrm{P}}-V _{\mathrm{O}} ; V _{\mathrm{B}}-V _{\mathrm{A}}$ के चिह्न बताइए।
(b) बिंदु $\mathrm{O}$ और $\mathrm{P} ; \mathrm{A}$ और $\mathrm{B}$ के बीच एक छोटे से ऋण आवेश की स्थितिज ऊर्जा के अंतर का चिह्न बताइए।
(c) $\mathrm{Q}$ से $\mathrm{P}$ तक एक छोटे धनावेश को ले जाने में क्षेत्र द्वारा किए गए कार्य का चिह्न बताइए।
(d) $\mathrm{B}$ से $\mathrm{A}$ तक एक छोटे से ऋण आवेश को ले जाने के लिए बाह्य साधन द्वारा किए गए कार्य का चिह्न बताइए।
(e) $\mathrm{B}$ से $\mathrm{A}$ तक जाने में क्या एक छोटे से ऋणावेश की गतिज ऊर्जा बढ़ेगी या घटेगी?
हल (a) चूँकि $V \propto \frac{1}{r}, V _{P}>V _{B}$; इस प्रकार, $\left(V _{P}-V _{B}\right)$ धनात्मक है। तथा $V _{A}$ से $V _{B}$ कम ॠणात्मक है। इसलिए, $V _{B}>V _{A}$ अथवा $\left(V _{B}-V _{A}\right)$ धनात्मक है।
(b) कोई लघु ऋणावेश धनावेश की ओर आकर्षित होगा। ऋणावेश स्थितिज उच्च ऊर्जा से निम्न स्थितिज ऊर्जा की ओर गति करते हैं। अतः $\mathrm{Q}$ और $\mathrm{P}$ के बीच किसी लघु ॠणावेश की स्थितिज ऊर्जा के अंतर का चिह्न धनात्मक है। इसी प्रकार, (स्थितिज ऊर्जा $) _{\mathrm{A}}>(\text { स्थितिज ऊर्जा }) _{\mathrm{B}}$ है। अतः स्थितिज ऊर्जा अंतर का चिह्न धनात्मक है।
(c) किसी लघु धनावेश को $\mathrm{Q}$ से $\mathrm{P}$ तक ले जाने में बाह्य एजेंसी को विद्युत क्षेत्र के विरुद्ध कार्य करना होता है। अतः, विद्युत क्षेत्र द्वारा किया गया कार्य ऋणात्मक है।
(d) किसी लघु ऋणावेश को $\mathrm{B}$ से $\mathrm{A}$ तक ले जाने में बाह्य एजेंसी को कार्य करना होता है जो धनात्मक है।
(e) ऋणावेश पर प्रतिकर्षी बल लगने के कारण वेग घटता है अत: $\mathrm{B}$ से $\mathrm{A}$ तक जाने में गतिज ऊर्जा घट जाती है।
2.6 समविभव पृष्ठ
कोई समविभव पृष्ठ ऐसा पृष्ठ होता है जिसके पृष्ठ के हर बिंदु पर विभव नियत रहता है। किसी एकल आवेश $q$ के लिए, समीकरण (2.8) द्वारा वैद्युत विभव-
$$ V=\frac{1}{4 \pi \varepsilon _{o}} \frac{q}{r} $$
इससे यह प्रकट होता है कि यदि $r$ नियत है तो $V$ नियत रहता है। इस प्रकार किसी एकल आवेश के लिए समविभव पृष्ठ संकेंद्री गोले होते हैं जिनके केंद्र पर वह आवेश स्थित होता है।
अब किसी एकल आवेश $q$ के लिए विद्युत क्षेत्र रेखाएँ आवेश से आरंभ होने वाली अथवा उस आवेश पर समाप्त होने वाली (यह निर्भर करता है कि आवेश $q$ धनात्मक है अथवा ॠणात्मक) अरीय रेखाएँ होती हैं। स्पष्ट है, किसी समविभव पृष्ठ के किसी भी बिंदु पर विद्युत क्षेत्र सदैव ही उस बिंदु पर अभिलंबवत होता है। यह व्यापक रूप से सत्य है : किसी भी आवेश विन्यास के लिए किसी भी बिंदु से गुजरने वाला समविभव पृष्ठ उस बिंदु पर विद्युत क्षेत्र के अभिलंबवत होता है। इस प्रकथन की व्युत्पत्ति सरल है।
यदि विद्युत क्षेत्र समविभव पृष्ठ के अभिलंबवत नहीं है; तो इस क्षेत्र का पृष्ठ के अनुदिश कोई शून्येतर घटक होगा। किसी एकांक परीक्षण आवेश का क्षेत्र के इस घटक की विरुद्ध दिशा में गति कराने के लिए कुछ कार्य करना आवश्यक होगा। परंतु यह किसी समविभव पृष्ठ की परिभाषा के विरुद्ध है : समविभव पृष्ठ के किन्हीं भी दो बिंदुओं के बीच कोई विभवांतर नहीं होता, तथा इस पृष्ठ पर किसी परीक्षण आवेश को गति कराने के लिए कोई कार्य करना आवश्यक नहीं होता। अतः किसी समविभव पृष्ठ के सभी बिंदुओं पर विद्युत क्षेत्र पृष्ठ के अभिलंबवत होता है। समविभव पृष्ठ किसी आवेश विन्यास के चारों ओर की विद्युत क्षेत्र रेखाओं के दृश्यों के वैकल्पिक दृश्य प्रस्तुत करते हैं।
चित्र 2.9 किसी एकल आवेश $q$ के लिए (a) समविभव पृष्ट संकेंद्री गोलीय पृष्ठ होते हैं जिनके केंद्र पर आवेश स्थित होता है, तथा (b) यदि $q>0$ है, तो क्षेत्र रेखाएँ आवेश से आरंभ होने वाली अरीय रेखाएँ होती हैं।
चित्र 2.10 किसी एकसमान विद्युत क्षेत्र के लिए समविभव पृष्ठ।
किसी अक्ष के अनुदिश, मान लीजिए $x$-अक्ष के अनुदिश किसी एकसमान विद्युत क्षेत्र $\mathbf{E}$ के लिए, समविभव पृष्ठ $x$-अक्ष के अभिलंबवत, अर्थात $y$ - $z$ तल के समांतर तल होते हैं (चित्र 2.10)। चित्र 2.11 में (a) किसी वैद्युत द्विध्रुव तथा (b) में दो सर्वसम धनावेशों के कारण समविभव पृष्ठ तथा वैद्युत रेखाएँ दर्शाई गई हैं।
चित्र 2.11(a) किसी वैद्युत द्विध्रुव तथा (b) दो सर्वसम धनावेशों के क्षेत्र के लिए कुछ समविभव पृष्ठ।
2.6.1 विद्युत क्षेत्र तथा वैद्युत विभव में संबंध
एक-दूसरे के पास रखे दो समविभव पृष्ठों $\mathrm{A}$ तथा $\mathrm{B}$ (चित्र 2.12) जिनके विभवों के मान क्रमशः $V$ तथा $V+\delta V$ हैं, यहाँ $\delta V$ विद्युत क्षेत्र $\mathbf{E}$ की दिशा में $V$ में परिवर्तन है। मान लीजिए पृष्ठ $\mathrm{B}$ पर कोई बिंदु $\mathrm{P}$ है। मान लीजिए पृष्ठ $\mathrm{A}$ की बिंदु $\mathrm{P}$ से लंबवत दूरी $\delta l$ है। यह भी मानिए कि विद्युत क्षेत्र के विरुद्ध कोई एकांक धनावेश इस लंब के अनुदिश पृष्ठ $\mathrm{B}$ से पृष्ठ $\mathrm{A}$ पर ले जाया जाता है। इस प्रक्रिया में किया गया कार्य $|\mathbf{E}| \delta l$ है।
चित्र 2.12 विभव से क्षेत्र पर।
यह कार्य विभवांतर $V _{A}-V _{B}$ के बराबर है।
इस प्रकार $$ \begin{align*} & |\mathbf{E}| \delta l=V-(V+\delta V)=-\delta V \\ & \text { अर्थात, }|\mathbf{E}|=-\frac{\delta V}{\delta l} \tag{2.20} \end{align*} $$
स्पष्ट है कि $\delta V$ ॠणात्मक है, $\delta V=-|\delta V|$ हम समीकरण (2.20) को दुबारा इस प्रकार लिख सकते हैं :
$$ \begin{equation*} |\mathbf{E}|=-\frac{\delta V}{\delta l}=+\frac{|\delta V|}{\delta l} \tag{2.21} \end{equation*} $$
इस प्रकार हम विद्युत क्षेत्र तथा वैद्युत विभव से संबंधित दो महत्वपूर्ण निष्कर्षों पर पहुँचते हैं-
(i) विद्युत क्षेत्र उस दिशा में होता है जहाँ विभव में सर्वाधिक ह्रास होता है।
(ii) किसी बिंदु पर विद्युत क्षेत्र का परिमाण, उस बिंदु पर समविभव पृष्ठ के अभिलंबवत विभव के परिमाण में प्रति एकांक विस्थापन परिवर्तन द्वारा व्यक्त किया जाता है।
2.7 आवेशों के निकाय की स्थितिज ऊर्जा
पहले हम एक सरल प्रकरण पर विचार करते हैं जिसमें किसी मूल बिंदु के सापेक्ष $\mathbf{r} _{1}$ तथा $\mathbf{r} _{2}$ स्थिति सदिशों वाले दो आवेश $q _{1}$ तथा $q _{2}$ हैं। आइए इस विन्यास के निर्माण में किए गए कार्य (बाह्य) का परिकलन करें। इसका अर्थ यह है कि पहले आरंभ में हम दोनों आवेशों $q _{1}$ तथा $q _{2}$ को अनंत पर माने तथा बाद में बाह्य एजेंसी द्वारा उन्हें इनकी वर्तमान स्थितियों तक लाने में किए गए कार्य का परिकलन करें। मान लीजिए, हम पहले आवेश $q _{1}$ को अनंत से बिंदु $\mathbf{r} _{1}$ तक लाते हैं। चूँकि इस स्थिति में कोई बाह्य क्षेत्र नहीं है, जिसके विरुद्ध कार्य करने की आवश्यकता पड़े, अतः $q _{1}$ को अनंत से $\mathbf{r} _{1}$ तक लाने में किया गया कार्य शून्य है। यह आवेश दिक्स्थान में एक विभव $V _{1}$ उत्पन्न करता है
$$ V _{1}=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1}}{r _{1 \mathrm{P}}} $$
यहाँ $r _{1 \mathrm{P}}$ दिक्स्थान के किसी बिंदु $\mathrm{P}$ की $q _{1}$ की स्थिति से दूरी है। विभव की परिभाषा से, आवेश $q _{2}$ को अनंत से बिंदु $\mathbf{r} _{2}$ तक लाने में किया गया कार्य $\mathbf{r} _{2}$ पर $q _{1}$ द्वारा विभव का $q _{2}$ गुना होता है-
$$ q _{2} \text { पर किया गया कार्य }=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r _{12}} $$
यहाँ $r _{12}$ बिंदु 1 तथा 2 के बीच की दूरी है।
चित्र 2.13 आवेशों $q _{1}$ तथा $q _{2}$ के निकाय की स्थितिज ऊर्जा आवेशों के गुणनफल के अनुक्रमानुपाती तथा उनके बीच की दूरी के व्युत्क्रमानुपाती होती है। व्यंजक, सदैव ही अपरिवर्तित रहता है, चाहे निर्दिष्ट स्थानों पर आवेशों को किसी भी प्रकार से लाया जाए। यह स्थिरवैद्युत बलों के लिए कार्य की पथ-स्वतंत्रता के कारण होता है।
चूँकि स्थिरवैद्युत बल संरक्षी है, यह कार्य निकाय की स्थितिज ऊर्जा के रूप में संचित हो जाता है। अतः दो आवेशों $q _{1}$ तथा $q _{2}$ के निकाय की स्थितिज ऊर्जा
$$ \begin{equation*} U=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r _{12}} \tag{2.22} \end{equation*} $$
स्पष्ट है, कि यदि पहले $q _{2}$ को उसकी वर्तमान स्थिति पर लाया जाता और तत्पश्चात $q _{1}$ को लाया जाता, तो भी स्थितिज ऊर्जा $U$ इतनी ही होती। अधिक व्यापक रूप में, समीकरण (2.22) में दर्शाया गया स्थितिज ऊर्जा के लिए
समीकरण (2.22) $q _{1}$ तथा $q _{2}$ के किसी भी चिह्न के लिए सत्य है। यदि $q _{1} q _{2}>0$ है, तो स्थितिज ऊर्जा धनात्मक होती है। यह अपेक्षित भी है, क्योंकि सजातीय आवेशों $\left(q _{1} q _{2}\right.$ $>0$ ) के लिए, स्थिरवैद्युत बल प्रतिकर्षी होता है तथा आवेशों को अनंत से किसी परिमित दूरी तक इस प्रतिकर्षी बल के विरुद्ध लाने में धनात्मक कार्य करना पड़ता है। इसके विपरीत, विजातीय आवेशों $\left(q _{1} q _{2}<0\right)$ के लिए स्थिरवैद्युत बल आकर्षी होता है। इस प्रकरण में, आवेशों को उनकी दी गई स्थितियों से अनंत तक इस आकर्षी बल के विरुद्ध ले जाने में धनात्मक कार्य करना पड़ता है। दूसरे शब्दों में, उत्क्रमित पथ (अनंत से वर्तमान स्थितियों तक) के लिए कार्य के ॠणात्मक परिमाण की आवश्यकता होती है जिसके कारण स्थितिज ऊर्जा ऋणात्मक होती है।
समीकरण (2.22) को आसानी से आवेशों के कितनी भी संख्या के निकाय के लिए व्यापक बनाया जा सकता है। आइए, अब हम तीन आवेशों $q _{1}, q _{2}$ तथा $q _{3}$ जो क्रमशः $\mathbf{r} _{1}, \mathbf{r} _{2}$ तथा $\mathbf{r} _{3}$ पर स्थित हैं, के निकाय की स्थितिज ऊर्जा परिकलित करें। पहले $q _{1}$ को अनंत से $\mathbf{r} _{1}$ तक लाने में कोई कार्य नहीं होता। तत्पश्चात हम $q _{2}$ को अनंत से $\mathbf{r} _{2}$ तक लाते हैं। पहले की ही भाँति इस चरण में किया गया कार्य
$$ \begin{equation*} q _{2} V _{1}\left(\mathbf{r} _{2}\right)=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r _{12}} \tag{2.23} \end{equation*} $$
आवेश $q _{1}$ तथा $q _{2}$ अपने चारों ओर विभव उत्पन्न करते हैं, किसी बिंदु $\mathrm{P}$ पर यह विभव
$$ \begin{equation*} V _{1,2}=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1}}{r _{1 \mathrm{P}}}+\frac{q _{2}}{r _{2 \mathrm{P}}}\right) \tag{2.24} \end{equation*} $$
आवेश $q _{3}$ को अनंत से बिंदु $\mathbf{r} _{3}$ तक लाने में किया गया कार्य $\mathbf{r} _{3}$ पर $V _{1,2}$ का $q _{3}$ गुना होता है।अत:
चित्र 2.14 चित्र में दिए गए संकेतों सहित समीकरण (2.26) में तीन आवेशों के निकाय की स्थितिज ऊर्जा दी गई है।
$$ q _{3} V _{1,2}\left(\mathbf{r} _{3}\right)=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1} q _{3}}{r _{13}}+\frac{q _{2} q _{3}}{r _{23}}\right)\tag{2.25} $$
आवेशों को उनकी दी गई स्थितियों पर एकत्र करने में किया गया कुल कार्य विभिन्न चरणों [समीकरण (2.23) तथा समीकरण (2.25)] में किए गए कार्यों का योग करने पर प्राप्त होता है।
$$ \begin{equation*} U=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1} q _{2}}{r _{12}}+\frac{q _{1} q _{3}}{r _{13}}+\frac{q _{2} q _{3}}{r _{23}}\right) \tag{2.26} \end{equation*} $$
यहाँ फिर, स्थिरवैद्युत बल की संरक्षी प्रकृति के कारण (अथवा तुल्य रूप में, कार्य की पथ-स्वतंत्रता) स्थितिज ऊर्जा $U$ को अंतिम व्यंजक, समीकरण (2.26), विन्यास को किस प्रकार संयोजित किया गया है, उसके क्रम पर निर्भर नहीं करता। स्थितिज ऊर्जा विन्यास की वर्तमान अवस्था का अभिलाक्षणिक गुण होता है, यह इस बात पर निर्भर नहीं करता कि इस विन्यास को किस प्रकार प्राप्त किया गया है।
उदाहरण 2.4 चित्र 2.15 में दर्शाए अनुसार चार आवेश भुजा $d$ वाले किसी वर्ग $\mathrm{ABCD}$ के शीर्षों पर व्यवस्थित किए गए हैं। (a) इस व्यवस्था को एक साथ बनाने में किया गया कार्य ज्ञात कीजिए। (b) कोई आवेश $q _{0}$ वर्ग के केंद्र $\mathrm{E}$ पर लाया जाता है तथा चारों आवेश अपने शीर्षों पर दृढ़ रहते हैं। ऐसा करने के लिए कितना अतिरिक्त कार्य करना पड़ता है?
हल (a) चूँकि किया गया कार्य आवेशों की अंतिम व्यवस्था पर निर्भर करता है, उन्हें किस प्रकार एक साथ लाया गया है, पर निर्भर नहीं करता, हम आवेशों को $\mathrm{A}, \mathrm{B}, \mathrm{C}$, तथा $\mathrm{D}$ पर रखने के एक ढंग के लिए आवश्यक कार्य का परिकलन करेंगे। मान लीजिए पहले आवेश $+q$ को $\mathrm{A}$ पर लाया जाता है, तत्पश्चात आवेशों $-q,+q$ तथा $-q$ को क्रमश: $\mathrm{B}, \mathrm{C}$ तथा $\mathrm{D}$ पर लाया जाता है। किए गए कुल कार्यों का परिकलन निम्नलिखित चरणों में किया जा सकता है :
(i) आवेश $+q$ को $\mathrm{A}$ पर लाने में किया गया कार्य जब कहीं भी कोई आवेश नहीं है: यह शून्य है।
(ii) आवेश $-q$ को $\mathrm{B}$ पर लाने में किया गया कार्य जब $+q$ शीर्ष $\mathrm{A}$ पर है। यह ( $\mathrm{B}$ पर आवेश) $\times$ ( $\mathrm{A}$ पर आवेश $+q$ के कारण बिंदु $\mathrm{B}$ पर स्थिरवैद्युत विभव)
$$ =-q \times\left(\frac{q}{4 \pi \varepsilon_0 d}\right)=-\frac{q^2}{4 \pi \varepsilon_0 d} $$
(iii) आवेश $+q$ को $\mathrm{C}$ पर लाने में किया गया कार्य जब $+q$ शीर्ष $\mathrm{A}$ पर तथा $-q$ शीर्ष $\mathrm{B}$ पर है। यह ( $\mathrm{C}$ पर आवेश) $\times(\mathrm{A}$ तथा $\mathrm{B}$ पर आवेशों के कारण $\mathrm{C}$ पर विभव)
$$ \begin{aligned} & =+q\left(\frac{+q}{4 \pi \varepsilon_0 d \sqrt{2}}+\frac{-q}{4 \pi \varepsilon_0 d}\right) \ & =\frac{-q^2}{4 \pi \varepsilon_0 d}\left(1-\frac{1}{\sqrt{2}}\right) \end{aligned} $$
(iv) आवेश $-q$ को $\mathrm{D}$ पर लाने में किया गया कार्य जब $+q$ शीर्ष $\mathrm{A}$ पर, $-q$ शीर्ष $\mathrm{B}$ पर तथा $+q$ शीर्ष $\mathrm{C}$ पर हैं। यह ( $\mathrm{D}$ पर आवेश) $\times(\mathrm{A}, \mathrm{B}$ तथा $\mathrm{C}$ पर आवेशों के कारण $\mathrm{D}$ पर विभव)
$$=-q\left(\frac{+q}{4 \pi \varepsilon _{o} d}+\frac{-q}{4 \pi \varepsilon _{o} d \sqrt{2}}+\frac{q}{4 \pi \varepsilon _{o} d}\right)$$
$$=\frac{-q^{2}}{4 \pi \varepsilon _{o} d}\left(2-\frac{1}{\sqrt{2}}\right)$$
चारों चरणों (i), (ii), (iii) एवं (iv) के कार्यों को जोड़ने पर, आवश्यक कुल कार्य
$$ \begin{aligned} & =\frac{-q^{2}}{4 \pi \varepsilon _{o} d}\left\{(0)+(1)+\left(1-\frac{1}{\sqrt{2}}\right)+\left(2-\frac{1}{\sqrt{2}}\right)\right\} \\ & =\frac{-q^{2}}{4 \pi \varepsilon _{o} d}(4-\sqrt{2}) \end{aligned} $$
यह कार्य केवल आवेशों की व्यवस्था पर निर्भर करता है, इस बात पर निर्भर नहीं करता कि इन्हें कैसे व्यवस्थित किया गया है। परिभाषा के अनुसार यह आवेशों की कुल स्थिरवैद्युत ऊर्जा है। (विद्यार्थी अपनी इच्छानुसार आवेशों को किसी भी अन्य क्रम में लेकर इसी कार्य/ऊर्जा को परिकलित करने का प्रयास कर सकते हैं और यह देखकर अपने को संतुष्ट कर सकते हैं कि हर प्रकरण में ऊर्जा समान रहती है।) (b) जबकि चारों आवेश $\mathrm{A}, \mathrm{B}, \mathrm{C}$ तथा $\mathrm{D}$ पर हैं, आवेश $q _{0}$ को बिंदु $\mathrm{E}$ पर लाने में किया गया अतिरिक्त कार्य $q _{0} \times(\mathrm{A}, \mathrm{B}, \mathrm{C}$ तथा $\mathrm{D}$ पर हैं आवेशों के कारण $\mathrm{E}$ पर स्थिरवैद्युत विभव) के बराबर है। स्पष्ट रूप से बिंदु $\mathrm{E}$ पर स्थिरवैद्युत विभव शून्य है, क्योंकि $\mathrm{A}$ तथा $\mathrm{C}$ पर आवेशों के कारण विभव $\mathrm{B}$ तथा $\mathrm{D}$ द्वारा निरस्त हो जाते हैं। अतः बिंदु $\mathrm{E}$ तक किसी भी आवेश को लाने में कोई कार्य करना नहीं पड़ता है।
2.8 बाह्य क्षेत्र में स्थितिज ऊर्जा
2.8.1 एकल आवेश की स्थितिज ऊर्जा
अनुभाग 2.7 में विद्युत क्षेत्र के स्रोत का विशेष उल्लेख किया गया-आवेश तथा उनकी स्थितियाँ-तथा उन आवेशों के निकाय की स्थितिज ऊर्जा निर्धारित की गई। इस अनुभाग में हम इससे संबंधित परंतु भिन्न प्रश्न पूछते हैं। किसी दिए गए क्षेत्र में किसी आवेश $q$ की स्थितिज ऊर्जा क्या होती है? वास्तव में, यह प्रश्न आरंभ बिंदु था जो हमें स्थिरवैद्युत विभव की धारणा की ओर ले गया था (देखिए अनुभाग 2.1 तथा 2.2 )। परंतु यही प्रश्न हम फिर दुबारा यह स्पष्ट करने के लिए पूछ रहे हैं कि किस रूप में यह अनुभाग 2.7 में की गई चर्चा से भिन्न है।
यहाँ प्रमुख अंतर यह है कि अब हम यहाँ पर किसी बाह्य क्षेत्र में आवेश (अथवा आवेशों) की स्थितिज ऊर्जा के विषय में चर्चा कर रहे हैं। इसमें बाह्य क्षेत्र $\mathbf{E}$ उन दिए गए आवेशों द्वारा उत्पन्न नहीं किया जाता जिनकी स्थितिज ऊर्जा का हम परिकलन करना चाहते हैं। विद्युत क्षेत्र $\mathbf{E}$ उस स्रोत द्वारा उत्पन्न किया जाता है जो दिए गए आवेश (आवेशों) की दृष्टि से बाह्य होता है। बाह्य स्रोत ज्ञात हो सकता है परंतु प्रायः ये स्रोत अज्ञात अथवा अनिर्दिष्ट होते हैं, जो कुछ भी यहाँ निर्दिष्ट होता है वह है विद्युत क्षेत्र $\mathbf{E}$ अथवा बाह्य स्रोतों के कारण स्थिरवैद्युत विभव $V$ । हम यह मानते हैं कि आवेश $q$ बाह्य क्षेत्र उत्पन्न करने वाले स्रोतों को सार्थक रूप से प्रभावित नहीं करता। यदि $q$ अत्यधिक छोटा है, तो यह सत्य है अथवा कुछ अनिर्दिष्ट बलों के प्रभाव में बाह्य स्रोतों को दृढ़ रखा जा सकता है। यदि $q$ परिमित है तो भी इसके बाह्य स्रोतों पर प्रभाव की उन परिस्थितियों में उपेक्षा की जा सकती है, जिनमें बहुत दूर अनंत पर स्थित अत्यधिक प्रबल स्रोत हमारी रुचि के क्षेत्र में कोई परिमित क्षेत्र $\mathbf{E}$ उत्पन्न करता है। फिर ध्यान दीजिए, हमारी रुचि किसी बाह्य क्षेत्र में, दिए गए आवेश $q$ (तत्पश्चात आवेशों के किसी निकाय) की स्थितिज ऊर्जा निर्धारित करने में है; हमें बाह्य विद्युत क्षेत्र उत्पन्न करने वाले स्रोत की स्थितिज ऊर्जा में कोई रुचि नहीं है।
बाह्य विद्युत क्षेत्र $\mathbf{E}$ तथा तदनुरूपी बाह्य विभव $V$ का मान एक बिंदु से दूसरे बिंदु पर जाने में परिवर्तित हो सकता है। परिभाषा के अनुसार, किसी बिंदु $\mathrm{P}$ पर विभव $V$ एकांक धनावेश को अनंत से उस बिंदु $\mathrm{P}$ तक लाने में किए गए कार्य के बराबर होता है (हम निरंतर ही अनंत पर विभव
को शून्य मानते रहेंगे)। अतः किसी आवेश $q$ को अनंत से बाह्य क्षेत्र के किसी बिंदु $\mathrm{P}$ तक लाने में किया गया कार्य $q V$ होता है। यह कार्य आवेश $q$ में स्थितिज ऊर्जा के रूप में संचित हो जाता है। यदि बिंदु $\mathrm{P}$ का किसी मूल बिंदु के सापेक्ष कोई स्थिति सदिश $\mathbf{r}$ है, तो हम यह लिख सकते हैं कि:
किसी बाह्य क्षेत्र में आवेश $q$ की $\mathbf{r}$ पर स्थितिज ऊर्जा
$=q V(\mathbf{r}) \tag{2.27}$
यहाँ $V(\mathbf{r})$ बिंदु $\mathbf{r}$ पर बाह्य विभव है।
इस प्रकार, यदि आवेश $q=e=1.6 \times 10^{-19} \mathrm{C}$ का कोई इलेक्ट्रॉन किसी विभवान्तर $\Delta V=1$ वोल्ट द्वारा त्वरित किया जाता है, तो वह ऊर्जा $q \Delta V=1.6 \times 10^{-19} \mathrm{~J}$ अर्जित करेगा। ऊर्जा के इस मात्रक को 1 इलेक्ट्रॉन वोल्ट, अर्थात $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ के रूप में परिभाषित करते हैं। $\mathrm{eV}$ पर आधारित मात्रकों का सर्वाधिक उपयोग आण्विक, नाभिकीय तथा कण भौतिकी में किया जाता है, $\left(1 \mathrm{keV}=10^{3} \mathrm{eV}=1.6 \times 10^{-16} \mathrm{~J}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}=1.6 \times 10^{-13} \mathrm{~J}, 1 \mathrm{GeV}=10^{9} \mathrm{eV}\right.$ $=1.6 \times 10^{-10} \mathrm{~J}$ तथा $1 \mathrm{TeV}=10^{12} \mathrm{eV}=1.6 \times 10^{-7} \mathrm{~J}$ ) [इसे भौतिकी भाग I कक्षा 11 पृष्ठ 119 सारणी 6.1 में पहले ही परिभाषित किया जा चुका है।]
2.8.2 किसी बाह्य क्षेत्र में दो आवेशों के निकाय की स्थितिज ऊर्जा
अब हम यह पूछते हैं : किसी बाह्य क्षेत्र में क्रमशः $\mathbf{r} _{1}$ तथा $\mathbf{r} _{2}$ पर स्थित दो आवेशों $q _{1}$ तथा $q _{2}$ की स्थितिज ऊर्जा क्या होती है? इस विन्यास का निर्माण करने में किए गए कार्य का परिकलन करने के लिए आइए यह कल्पना करें कि पहले हम आवेश $q _{1}$ को अनंत से $\mathbf{r} _{1}$ तक लाते हैं। समीकरण (2.27) के अनुसार, इस चरण में किया गया कार्य $q _{1} V\left(\mathbf{r} _{1}\right)$ है। अब हम आवेश $q _{2}$ को $\mathbf{r} _{2}$ तक लाने में किए जाने वाले कार्य पर विचार करते हैं। इस चरण में केवल बाह्य क्षेत्र $\mathbf{E}$ के विरुद्ध ही कार्य नहीं होता, वरन् $q _{1}$ के कारण क्षेत्र के विरुद्ध भी कार्य करना होता है। अत:$q _{2}$ पर बाह्य क्षेत्र के विरुद्ध किया गया कार्य
$$=q _{2} V\left(\mathbf{r} _{2}\right)$$
$q _{2}$ पर $q _{1}$ के कारण क्षेत्र के विरुद्ध किया गया कार्य
$$=\frac{q _{1} q _{2}}{4 \pi \varepsilon _{o} r _{12}}$$
यहाँ $r _{12}$ आवेशों $q _{1}$ तथा $q _{2}$ के बीच की दूरी है। ऊपर हमने समीकरण (2.27) तथा (2.22) का उपयोग किया है। क्षेत्रों के लिए अध्यारोपण सिद्धांत द्वारा हम $q _{2}$ पर दो क्षेत्रों (E तथा $q _{1}$ के कारण क्षेत्र) के विरुद्ध किए गए कार्यों को जोड़ते हैं। अत:
$q _{2}$ को $\mathbf{r} _{2}$ तक लाने में किया गया कार्य
$$ \begin{equation*} =q_{2} V\left(\mathbf{r_2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}} \tag{2.28} \end{equation*} $$
इस प्रकार, निकाय की स्थितिज ऊर्जा $=$ विन्यास के निर्माण में किया गया कार्य
$$ \begin{equation*} =q_{1} V\left(\mathbf{r_1}\right)+q_{2} V\left(\mathbf{r2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}} \tag{2.29} \end{equation*} $$
उदाहरण 2.5
(a) दो आवेशों $7 \mu \mathrm{C}$ तथा $-2 \mu \mathrm{C}$ जो क्रमशः $(-9 \mathrm{~cm}, 0,0)$ तथा $(9 \mathrm{~cm}, 0,0)$ पर स्थित हैं, के ऐसे निकाय, जिस पर कोई बाह्य क्षेत्र आरोपित नहीं है, की स्थिरवैद्युत स्थितिज की ऊर्जा ज्ञात कीजिए।
(b) दोनों आवेशों को एक-दूसरे से अनंत दूरी तक पृथक करने के लिए कितने कार्य की आवश्यकता होगी?
(c) माना कि अब इस आवेश निकाय को किसी बाह्य विद्युत क्षेत्र $E=A\left(1 / r^{2}\right)$; $A=9 \times 10^{5} \mathrm{Ne}^{-1} \mathrm{~m}^{2}$ में रखा गया है। इस विन्यास की स्थिरवैद्युत ऊर्जा का परिकलन करें।
हल
(a) $U=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r}=9 \times 10^{9} \times \frac{7 \times(-2) \times 10^{-12}}{0.18}=-0.7 \mathrm{~J}$
(b) $W=U _{2}-U _{1}=0-U=0-(-0.7)=0.7 \mathrm{~J}$
(c) दो आवेशों की पारस्परिक अन्योन्य ऊर्जा अपरिवर्तित रहती है। साथ ही यहाँ पर दो आवेशों की बाह्य विद्युत क्षेत्र के साथ अन्योन्य क्रिया की ऊर्जा भी है। अतः हम यह पाते हैं कि
$$ q _{1} V\left(\mathbf{r} _{1}\right)+q _{2} V\left(\mathbf{r} _{2}\right)=A \frac{7 \mu \mathrm{C}}{0.09 \mathrm{~m}}+A \frac{-2 \mu \mathrm{C}}{0.09 \mathrm{~m}} $$
तथा नेट स्थिरवैद्युत ऊर्जा का मान है
$$ \begin{array}{r} q _{1} V\left(\mathbf{r} _{1}\right)+q _{2} V\left(\mathbf{r} _{2}\right)+\frac{q _{1} q _{2}}{4 \pi \varepsilon _{0} r _{12}}=A \frac{7 \mu \mathrm{C}}{0.09 \mathrm{~m}}+A \frac{-2 \mu \mathrm{C}}{0.09 \mathrm{~m}}-0.7 \mathrm{~J} \\ =70-20-0.7=49.3 \mathrm{~J} \end{array} $$
2.8.3 बाह्य क्षेत्र में द्विध्रुव की स्थितिज ऊर्जा
चित्र 2.16 में दर्शाए अनुसार किसी एकसमान विद्युत क्षेत्र $\mathbf{E}$ में रखे आवेशों $q _{1}=+q$ तथा $q _{2}=-q$ के द्विध्रुव पर विचार कीजिए।
चित्र 2.16 किसी विद्युत द्विध्रुव की एकसमान बाह्य क्षेत्र में स्थितिज ऊर्जा
जैसाकि हमने पिछले अध्याय में देखा, एकसमान विद्युत क्षेत्र में द्विध्रुव किसी नेट बल का अनुभव नहीं करता; परंतु एक बल आघूर्ण का अनुभव करता है जो इस प्रकार है :
$$ \begin{equation*} \tau=\mathrm{p} \times \mathbf{E} \tag{2.30} \end{equation*} $$
यह इसमें घूर्णन की प्रवृत्ति उत्पन्न करेगा (जब तक $\mathbf{p}$ तथा $\mathbf{E}$ एक-दूसरे के समांतर अथवा प्रतिसमांतर नहीं हैं)। मान लीजिए कोई बाह्य बल आघूर्ण $\tau_{\text {बान }}$ इस प्रकार लगाया जाता है कि वह इस बल आघूर्ण को ठीक-ठीक उदासीन कर देता है और इसे कागज़ के तल बिना किसी कोणीय त्वरण के अत्यंत सूक्ष्म कोणीय चाल से कोण $\theta_0$ से कोण $\theta_1$ पर घूर्णित कर देता है। इस बाह्य बल आघूर्ण द्वारा किया गया कार्य
$$ \begin{align*} & W=\int_{\theta_{0}}^{\theta_{1}} t_{\mathrm{ext}}(\theta) d \theta=\int_{\theta_{0}}^{\theta_{1}} p E \sin \theta d \theta \\ & =p E\left(\cos \theta_{0}-\cos \theta_{1}\right) \tag{2.31} \end{align*} $$
यह कार्य निकाय में स्थितिज ऊर्जा के रूप में संचित हो जाता है। तब हम स्थितिज ऊर्जा $U(\theta)$ को द्विध्रुव के किसी झुकाव $\theta$ से संबद्ध कर सकते हैं। अन्य स्थितिज ऊर्जाओं की भाँति यहाँ हमें उस कोण के चयन की स्वतंत्रता है जिस पर विभव स्थितिज ऊर्जा $U$ शून्य माना जाए। प्राकृतिक चयन के अनुसार $\theta _{0}=\pi / 2$ लिया जाना चाहिए। (इसका स्पष्टीकरण चर्चा के अंत में दिया गया है।) तब हम यह लिख सकते हैं,
$$ \begin{equation*} U(\theta)=p E\left(\cos \frac{\pi}{2}-\cos \theta\right)=-p E \cos \theta=-\mathbf{p} \cdot \mathbf{E} \tag{2.32} \end{equation*} $$
वैकल्पिक रूप से इस व्यंजक को समीकरण (2.29) से भी समझा जा सकता है। हम समीकरण (2.29) का प्रयोग दो आवेशों $+q$ तथा $-q$ के वर्तमान निकाय के लिए करते हैं। तब स्थितिज ऊर्जा के व्यंजक को इस प्रकार व्यक्त किया जा सकता है :
$$ \begin{equation*} U^{\prime}(\theta)=q\left[V\left(\mathbf{r} _{1}\right)-V\left(\mathbf{r} _{2}\right)\right]-\frac{q^{2}}{4 \pi \varepsilon _{0} \times 2 a} \tag{2.33} \end{equation*} $$
यहाँ $\mathbf{r} _{1}$ तथा $\mathbf{r} _{2}$ दो आवेशों $+q$ तथा $-q$ के स्थिति सदिशों को दर्शाते हैं। अब $\mathbf{r} _{1}$ तथा $\mathbf{r} _{2}$ के बीच विभवांतर एकांक धनावेश को क्षेत्र के विरुद्ध $\mathbf{r} _{2}$ से $\mathbf{r} _{1}$ तक लाने में किए गए कार्य के बराबर है। बल के समांतर विस्थापन $2 a \cos \theta$ है। इस प्रकार $\left[V\left(\mathbf{r} _{1}\right)-\mathrm{V}\left(\mathbf{r} _{2}\right)\right]=-E \times 2 a \cos \theta$, इस प्रकार, हमें प्राप्त होता है। चूँकि एक नियतांक स्थितिज ऊर्जा के लिए नगण्य है, हम समीकरण (2.34) में दूसरे पद को छोड़ सकते हैं। तब यह समीकरण (2.32) बन जाता है।
$$ \begin{equation*} U^{\prime}(\theta)=-p E \cos \theta-\frac{q^{2}}{4 \pi \varepsilon _{0} \times 2 a}=-\mathbf{p} \mathbf{E}-\frac{q^{2}}{4 \pi \varepsilon _{0} \times 2 a} \tag{2.34} \end{equation*} $$
ध्यान दीजिए कि $U^{\prime}(\theta)$ तथा $U(\theta)$ में एक राशि का अंतर है जो किसी दिए गए द्विध्रुव के लिए मात्र एक नियतांक है। स्थितिज ऊर्जा के लिए नियतांक महत्वपूर्ण नहीं है, अतः समीकरण (2.34) से हम द्वितीय पद को छोड़ सकते हैं। इस प्रकार से यह समीकरण $(2.32)$ के रूप में आ जाता है।
अब हम यह समझ सकते हैं कि हमने $\theta _{0}=\pi / 2$ क्यों लिया था। इस प्रकरण में $+q$ तथा $-q$ को बाह्य क्षेत्र $\mathbf{E}$ के विरुद्ध लाने में किए जाने वाले कार्य समान तथा विपरीत हैं और निरासित हो जाते हैं, अर्थात $q\left[V\left(\mathbf{r} _{1}\right)-V\left(\mathbf{r} _{2}\right)\right]=0$
उदाहरण 2.6 एक पदार्थ के अणु में $10^{-29} \mathrm{~cm}$ का स्थायी वैद्युत द्विध्रुव आघूर्ण है। $10^{6} \mathrm{~V} \mathrm{~m}^{-1}$ परिमाण के एक शक्तिशाली स्थिरवैद्युत क्षेत्र को लगाकर इस पदार्थ के एक मोल (निम्न ताप पर) को ध्रुवित किया गया है। अचानक क्षेत्र की दिशा $60^{\circ}$ कोण से बदल दी जाती है। क्षेत्र की नयी दिशा में द्विध्रुवों को पंक्तिबद्ध करने में उन्मुक्त ऊष्मा ऊर्जा का आकलन कीजिए। सुविधा के लिए नमूने का ध्रुवण $100 %$ माना जा सकता है।
हल यहाँ प्रत्येक अणु का द्विध्रुव आघूर्ण $=10^{-29} \mathrm{C} \mathrm{m}$
चूँकि किसी पदार्थ के एक मोल में $6 \times 10^{23}$ अणु होते हैं, अतः सारे अणुओं का कुल द्विध्रुव आघूर्ण, $p=6 \times 10^{23} \times 10^{-29} \mathrm{C} \mathrm{m}=6 \times 10^{-6} \mathrm{C} \mathrm{m}$ आरंभिक स्थितिज ऊर्जा $U _{i}=-p E \cos \theta=-6 \times 10^{-6} \times 10^{6} \cos 0^{\circ}=-6 \mathrm{~J}$ अंतिम स्थितिज ऊर्जा (जब $\theta=60^{\circ}$ ), $U _{f}=-6 \times 10^{-6} \times 10^{6} \cos 60^{\circ}=-3 \mathrm{~J}$ स्थितिज ऊर्जा में अंतर $=-3 \mathrm{~J}-(-6 \mathrm{~J})=3 \mathrm{~J}$
अतः, यहाँ ऊर्जा की हानि होती है। पदार्थ द्वारा द्विध्रुवों को पंक्तिबद्ध करने में ऊष्मा के रूप में यह ऊर्जा मुक्त होनी चाहिए।
2.9 चालक-स्थिरवैद्युतिकी
अध्याय 1 में चालकों तथा विद्युतरोधी पदार्थों का संक्षेप में वर्णन किया गया था। चालकों में गतिशील आवेश वाहक होते हैं। धात्विक चालकों में ये वाहक इलेक्ट्रॉन होते हैं। धातुओं में, बाह्य (संयोजी) इलेक्ट्रॉन अपने परमाणु से अलग होकर गति करने के लिए मुक्त होते हैं। ये इलेक्ट्रॉन धातु के अंदर गति करने के लिए मुक्त होते हैं परंतु धातु से मुक्त नहीं हो सकते। ये मुक्त इलेक्ट्रॉन एक प्रकार की ‘गैस’ की भाँति आपस में परस्पर तथा आयनों से टकराते हैं तथा विभिन्न दिशाओं में यादृच्छिक गति करते हैं। किसी बाह्य विद्युत क्षेत्र में, ये क्षेत्र की दिशा के विपरीत बहते हैं। नाभिकों के इस प्रकार धन आयन तथा परिबद्ध इलेक्ट्रॉन अपनी नियत स्थितियों पर ही दृढ़ रहते हैं। अपघटनी चालकों में धनायन तथा ॠणायन दोनों ही आवेश वाहक होते हैं; परंतु इस प्रकरण में स्थिति अधिक जटिल होती है-आवेश वाहकों की गति बाह्य विद्युत क्षेत्र के साथ-साथ रासायनिक बलों (अध्याय 3 देखिए) द्वारा भी प्रभावित होती है। यहाँ हम अपनी चर्चा ठोस धात्विक चालकों तक ही सीमित रखेंगे। आइए चालक-स्थिरवैद्युतिकी से संबंधित कुछ महत्वपूर्ण परिणामों पर ध्यान दें।
1. चालक के भीतर स्थिरवैद्युत क्षेत्र शून्य होता है
किसी उदासीन अथवा आवेशित चालक पर विचार कीजिए। यहाँ कोई बाह्य स्थिरवैद्युत क्षेत्र भी हो सकता है। स्थैतिक स्थिति में, जब चालक के भीतर अथवा उसके पृष्ठ पर कोई विद्युत धारा नहीं होती, तब चालक के भीतर हर स्थान पर स्थिरवैद्युत क्षेत्र शून्य होता है। इस तथ्य को किसी चालक को परिभाषित करने के गुण के रूप में माना जा सकता है। चालक में मुक्त इलेक्ट्रॉन होते हैं। जब तक विद्युत क्षेत्र शून्य नहीं है, मुक्त आवेश वाहक एक बल का अनुभव करेंगे और उनमें बहाव होगा। स्थैतिक स्थिति में मुक्त इलेक्ट्रॉन स्वयं को इस प्रकार वितरित कर लेते हैं कि चालक के भीतर हर स्थान पर विद्युत क्षेत्र शून्य होता है। किसी चालक के भीतर स्थिरवैद्युत क्षेत्र शून्य होता है।
2. आवेशित चालक के पृष्ठ पर, पृष्ठ के प्रत्येक बिंदु पर स्थिरवैद्युत क्षेत्र अभिलंबवत होना चाहिए
यदि $\mathbf{E}$ पृष्ठ के अभिलंबवत नहीं है तो उसका पृष्ठ के अनुदिश कोई शून्येतर घटक होगा। तब पृष्ठ के मुक्त इलेक्ट्रॉन पृष्ठ पर किसी बल का अनुभव करेंगे और गति करेंगे। अतः, स्थैतिक स्थिति में $\mathbf{E}$ का कोई स्पर्श रेखीय घटक नहीं होना चाहिए। इस प्रकार, किसी आवेशित चालक के पृष्ठ पर स्थिरवैद्युत क्षेत्र पृष्ठ के हर बिंदु पर पृष्ठ के अभिलंबवत होना चाहिए। (किसी चालक के लिए जिस पर कोई पृष्ठीय आवेश घनत्व नहीं है, उसके पृष्ठ तक पर भी क्षेत्र शून्य होता है।) परिणाम 5 देखिए।
3. स्थैतिक स्थिति में किसी चालक के अभ्यंतर में कोई अतिरिक्त आवेश नहीं हो सकता
किसी उदासीन चालक के प्रत्येक लघु आयतन अथवा पृष्ठीय अवयव में धनात्मक तथा ॠणात्मक आवेश समान मात्रा में होते हैं। जब किसी चालक को आवेशित किया जाता है, तो स्थैतिक स्थिति में अतिरिक्त आवेश केवल उसके पृष्ठ पर विद्यमान रहता है। यह गाउस नियम से स्पष्ट है। किसी चालक के भीतर किसी यादृच्छिक आयतन अवयव $v$ पर विचार कीजिए। आयतन अवयव $v$ को परिबद्ध करने वाले किसी बंद पृष्ठ $S$ पर स्थिरवैद्युत क्षेत्र शून्य होता है। इस प्रकार, $S$ से गुजरने वाला कुल फ्लक्स शून्य है। अतः गाउस नियम के अनुसार $S$ पर परिबद्ध कोई नेट आवेश नहीं है। परंतु पृष्ठ $S$ को आप जितना छोटा चाहें, उतना छोटा बना सकते हैं, अर्थात आयतन $v$ को अत्यल्प ( लोपी बिंदु तक छोटा) बनाया जा सकता है। इसका अभिप्राय यह हुआ कि चालक के भीतर कोई नेट आवेश नहीं है तथा यदि कोई अतिरिक्त आवेश है तो उसे पृष्ठ पर विद्यमान होना चाहिए।
4. चालक के समस्त आयतन में स्थिरवैद्युत विभव नियत रहता है तथा इसका मान इसके पृष्ठ पर भी समान ( भीतर के बराबर) होता है
यह उपरोक्त परिणाम 1 तथा 2 का अनुवर्ती है। चूँकि किसी चालक के भीतर $\mathbf{E}=0$ तथा इसका पृष्ठ पर कोई स्पर्श रेखीय घटक नहीं होता अतः इसके भीतर अथवा पृष्ठ पर किसी छोटे परीक्षण आवेश को गति कराने में कोई कार्य नहीं होता। अर्थात, चालक के भीतर अथवा उसके पृष्ठ पर दो बिंदुओं के बीच कोई विभवांतर नहीं होता। यही वांछित परिणाम है। यदि चालक आवेशित है तो चालक के पृष्ठ के अभिलंबवत विद्युत क्षेत्र होता है; इसका यह अभिप्राय है कि चालक के पृष्ठ के किसी बिंदु का विभव चालक से तुरंत बाहर के बिंदु के विभव से भिन्न होगा।
किसी यादृच्छिक आकार, आकृति तथा आवेश विन्यास के चालकों के निकाय में प्रत्येक चालक का अपना एक नियत मान का अभिलाक्षणिक विभव होगा, परंतु यह नियत मान एक चालक से दूसरे चालक का भिन्न हो सकता है।
5. आवेशित चालक के पृष्ठ पर विद्युत क्षेत्र
$$ \begin{equation*} \mathbf{E}=\frac{\sigma}{\varepsilon _{0}} \hat{\mathbf{n}} \tag{2.35} \end{equation*} $$
यहाँ $\sigma$ पृष्ठीय आवेश घनत्व तथा $\hat{\mathbf{n}}$ पृष्ठ के अभिलंबवत बहिर्मुखी दिशा में एकांक सदिश है।
इस परिणाम को व्युत्पन्न करने के लिए, कोई डिबिया (एक छोटा बेलनाकार खोखला बर्तन) चित्र 2.17 में दर्शाए अनुसार, पृष्ठ के किसी बिंदु $P$ के परितः गाउसीय पृष्ठ के रूप में चुनिए। इस डिबिया का कुछ भाग चालक के पृष्ठ के बाहर तथा कुछ भाग चालक के पृष्ठ के भीतर है। इसकी अनुप्रस्थ काट का क्षेत्रफल $\delta S$ बहुत छोटा तथा इसकी ऊँचाई नगण्य है।
पृष्ठ के तुरंत भीतर स्थिरवैद्युत क्षेत्र शून्य है; पृष्ठ के तुरंत बाहर विद्युत क्षेत्र पृष्ठ के अभिलंबवत है। अतः डिबिया से गुज़रने वाला कुल फ्लक्स केवल डिबिया की बाहरी (वृत्तीय) अनुप्रस्थ काट से आता है। यह $\pm E \delta S$ ( $\sigma>0$ के लिए धनात्मक, $\sigma<0$ के लिए ॠणात्मक) के बराबर है, चूँकि चालक के छोटे क्षेत्र $\delta S$ पर विद्युत क्षेत्र $\mathbf{E}$ को नियत माना जा सकता है तथा $\mathbf{E}$ और $\delta S$ समांतर अथवा प्रतिसमांतर
$$$ \begin{align*} & E \delta S=\frac{|\sigma| \delta S}{\varepsilon_{0}} \end{align*} $$
$$ \begin{align*} & E=\frac{|\sigma|}{\varepsilon_{0}} \tag{2.36} \end{align*} $$
इस तथ्य को सम्मिलित करते हुए कि विद्युत क्षेत्र पृष्ठ के अभिलंबवत है, हम समीकरण (2.35) के रूप में सदिश संबंध पाते हैं। ध्यान दीजिए, समीकरण (2.35) आवेश घनत्व $\sigma$ के दोनों चिह्नों के लिए सत्य है। $\sigma>0$ के लिए, विद्युत क्षेत्र पृष्ठ के बहिर्मुखी अभिलंबवत है; तथा $\sigma<0$ के लिए, विद्युत क्षेत्र पृष्ठ के अंतर्मुखी अभिलंबवत है।
चित्र 2.17 किसी आवेशित चालक के पृष्ठ पर विद्युत क्षेत्र के लिए समीकरण (2.35) व्युत्पन्न करने के लिए, चुना गया गाउसीय पृष्ठ (कोई डिबिया)। हैं। डिबिया द्वारा परिबद्ध, आवेश $\sigma \delta S$ है। गाउस नियम के अनुसार
2.9.1 स्थिरवैद्युत परिरक्षण
किसी ऐसे चालक के विषय में विचार कीजिए जिसमें कोई कोटर (गुहा) हो तथा उस कोटर के भीतर कोई आवेश न हो। एक विशिष्ट परिणाम यह देखने को मिलेगा कि चाहे कोटर की कोई भी आकृति एवं आकार क्यों न हो, तथा चाहे उस चालक पर कितने भी परिमाण का आवेश हो और कितनी भी तीव्रता के बाह्य क्षेत्र में उसे क्यों न रखा गया हो, कोटर के भीतर विद्युत क्षेत्र शून्य होता है। इसी परिणाम के एक सरल प्रकरण को हम पहले भी सिद्ध कर चुके हैं : किसी गोलीय कोश के भीतर विद्युत क्षेत्र शून्य होता है। कोश के लिए परिणाम की व्युत्पत्ति में हमने कोश की गोलीय सममिति का उपयोग किया था (अध्याय 1 देखिए)। परंतु किसी चालक का (आवेश मुक्त) कोटर में विद्युत क्षेत्र का विलोपन, जैसा कि पहले वर्णन किया जा चुका है, एक अत्यधिक व्यापक परिणाम है। इससे संबंधित एक परिणाम यह भी है कि यदि चालक आवेशित भी है, अथवा किसी बाह्य विद्युत क्षेत्र द्वारा उदासीन चालक पर आवेश प्रेरित क्यों न किए गए हों, समस्त आवेश केवल चालक पर कोटर सहित उसके बाह्य पृष्ठ पर विद्यमान रहता है।
चित्र 2.18 किसी भी चालक की कोटर (गुहा) के भीतर विद्युत क्षेत्र शून्य होता है। चालक का समस्त आवेश कोटर सहित उस चालक के केवल बाह्य पृष्ठ पर ही विद्यमान रहता है (कोटर के भीतर कोई आवेश नहीं रखे गए हैं)।
चित्र 2.18 में दिए गए परिणामों की व्युत्पत्ति को यहाँ हम छोड़ रहे हैं, परंतु हमें इनकी महत्वपूर्ण उलझनों का ध्यान है। बाहर चाहे कितना भी आवेश तथा कैसा भी विद्युत क्षेत्र विन्यास क्यों न हो, उस चालक में कोई भी कोटर बाह्य विद्युत क्षेत्रों के प्रभाव से सदैव परिरक्षित रहती है; कोटर के भीतर विद्युत क्षेत्र सदैव ही शून्य होता है। इसे स्थिरवैद्युत परिरक्षण कहते हैं। इस प्रभाव का उपयोग संवेदनशील उपकरणों को बाह्य विद्युत प्रभावों से बचाने में किया जाता है। चित्र 2.19 में किसी चालक के महत्वपूर्ण स्थिरवैद्युत गुणधर्मों का सारांश दिया गया है।
चित्र 2.19 किसी चालक के कुछ महत्वपूर्ण स्थिरवैद्युत गुणधर्म।
उदाहरण 2.7
(a) सूखे बालों में कंघा घुमाने के बाद वह कागज़ के टुकड़ों को आकर्षित कर लेता है, क्यों? यदि बाल भीगे हों या वर्षा का दिन हो तो क्या होता है? [ध्यान रहे कि कागज़ विद्युत चालक नहीं है।]
(b) साधारण रबर विद्युतरोधी है। परंतु वायुयान के विशेष रबर के पहिए हलके चालक बनाए जाते हैं। यह क्यों आवश्यक है?
(c) जो वाहन ज्वलनशील पदार्थ ले जाते हैं उनकी धातु की रस्सियाँ (ज़ंजीरें) वाहन के गतिमय होने पर धरती को छूती रहती हैं, क्यों?
(d) एक चिड़िया एक उच्च शक्ति के खुले (अरक्षित) बिजली के तार पर बैठी है, और उसको कुछ नहीं होता। धरती पर खड़ा एक व्यक्ति उसी तार को छूता है और उसे सांघातिक (घातक) धक्का लगता है, क्यों?
हल
(a) इसका कारण यह है कि कंघा घर्षण द्वारा आवेशित होता है। आवेशित कंघे द्वारा कागज़ के अणु ध्रुवित हो जाते हैं, परिणामस्वरूप एक नेट आकर्षी बल प्राप्त होता है। यदि बालों में नमी है अथवा वर्षा का दिन है तो कंघे और बालों के बीच घर्षण कम हो जाता है तथा कंघा आवेशित नहीं होता। अतः वह कागज़ के छोटे टुकड़ों को आकर्षित नहीं करता।
(b) जिससे घर्षण द्वारा उत्पन्न आवेश का भूमि में चालन हो सके। चूँकि स्थिरवैद्युत आवेश अत्यधिक मात्रा में टायरों के पृष्ठ पर संचित होकर चिनगारी (स्पार्क) पैदा करता है जिससे आग लग सकती है।
(c) कारण (b) के समान ही।
(d) विद्युत धारा केवल तब ही प्रवाहित होती है जब विभवांतर होता है।
2.10 परावैद्युत तथा ध्रुवण
परावैद्युत अचालक पदार्थ होते हैं। चालकों की तुलना में इनमें कोई आवेश वाहक नहीं (अथवा नगण्य) होता। अनुभाग (2.9) को याद कीजिए, क्या होता है जब किसी चालक को किसी बाह्य विद्युत क्षेत्र में रखा जाता है? चालक में मुक्त आवेश वाहक गति करके अपने को इस प्रकार समायोजित कर लेते हैं कि प्रेरित आवेशों के कारण विद्युत क्षेत्र बाह्य क्षेत्र का विरोध करता है। यह उस समय तक होता रहता है जब तक कि स्थिर स्थिति में दोनों क्षेत्र एक-दूसरे का निरसन कर देते हैं तथा चालक के भीतर नेट स्थिरवैद्युत क्षेत्र शून्य होता है। किसी परावैद्युत में आवेश की यह मुक्त गति संभव नहीं होती। फिर भी यह पाया जाता है कि बाह्य क्षेत्र परावैद्युत के पृष्ठ पर कुछ आवेश प्रेरित कर देता है जो एक ऐसा क्षेत्र उत्पन्न करता है जो बाह्य क्षेत्र का विरोध करता है। परंतु चालक से भिन्न, इस प्रकार का प्रेरित विद्युत क्षेत्र बाह्य क्षेत्र को यथार्थ रूप में निरक्षित नहीं करता। यह केवल क्षेत्र को घटा देता है। इस प्रभाव की सीमा परावैद्युत की प्रकृति पर निर्भर करती है। इस प्रभाव को समझने के लिए हमें किसी परावैद्युत पदार्थ में आण्विक स्तर पर आवेश वितरण के अध्ययन की आवश्यकता होगी।
चित्र 2.20 किसी बाह्य विद्युत क्षेत्र में किसी चालक तथा परावैद्युत के व्यवहार में अंतर।
चित्र 2.21 ध्रुवी तथा अध्रुवी अणुओं के कुछ उदाहरण।
किसी पदार्थ के अणु ध्रुवी अथवा अध्रुवी हो सकते हैं। किसी अध्रुवी अणु में धनावेश तथा ऋणावेश के केंद्र संपाती होते हैं। तब अणु का कोई स्थायी (अथवा आंतरिक) द्विध्रुव आघूर्ण नहीं होता। ऑक्सीजन $\left(\mathrm{O} _{2}\right)$ तथा हाइड्रोजन $\left(\mathrm{H} _{2}\right)$ अणु अध्रुवी अणुओं के उदाहरण हैं जिनमें सममिति के कारण कोई द्विध्रुव आघूर्ण नहीं होता। इसके विपरीत कोई ध्रुवी अणु वह होता है जिसमें धनावेशों तथा ऋणावेशों के केंद्र पृथक-पृथक (उस स्थिति में भी जब कोई बाह्य क्षेत्र नहीं है) होते हैं। ऐसे अणुओं में स्थायी द्विध्रुव आघूर्ण होता है। $\mathrm{HCl}$ जैसा आयनी अणु अथवा जल $\left(\mathrm{H} _{2} \mathrm{O}\right)$ का कोई अणु ध्रुवी अणुओं के उदाहरण हैं।
चित्र 2.22 किसी बाह्य विद्युत क्षेत्र में कोई परावैद्युत किस प्रकार एक नेट द्विध्रुव आघूर्ण विकसित करता है। (a) अध्रुवी अणु, (b) ध्रुवी अणु।
किसी बाह्य विद्युत क्षेत्र में अध्रुवी अणु के धनावेश तथा ॠणावेश विपरीत दिशाओं में विस्थापित हो जाते हैं। यह विस्थापन तब रुकता है जब अणु के अवयवी आवेशों पर बाह्य बल प्रत्यानयन बल (अणु में आंतरिक क्षेत्रों के कारण) द्वारा संतुलित हो जाता है। अतः अध्रुवी अणु एक प्रेरित द्विध्रुव आघूर्ण विकसित कर लेता है। उस स्थिति में परावैद्युत को बाह्य क्षेत्र द्वारा ध्रुवित कहा जाता है। हम केवल उस सरल स्थिति पर ही विचार करेंगे जिसमें प्रेरित द्विध्रुव आघूर्ण क्षेत्र की दिशा में होता है तथा क्षेत्र की तीव्रता के अनुक्रमानुपाती होता है। (पदार्थ जिनके लिए यह अभिधारणा सत्य है उन्हें रैखिक समदैशिक परावैद्युत कहते हैं) विभिन्न अणुओं के प्रेरित द्विध्रुव आघूर्ण एक-दूसरे से जुड़कर बाह्य क्षेत्र की उपस्थिति में परावैद्युत का नेट द्विध्रुव आघूर्ण प्रदान करते हैं।
ध्रुवी अणुओं का कोई परावैद्युत किसी बाह्य क्षेत्र में एक नेट द्विध्रुव आघूर्ण भी विकसित कर लेता है, परंतु इसका कारण भिन्न होता है। किसी बाह्य क्षेत्र की अनुपस्थिति में, विभिन्न स्थायी द्विध्रुव तापीय विक्षोभ के कारण यादृच्छिक अभिविन्यासित होते हैं; अतः कुल द्विध्रुव आघूर्ण शून्य होता है। जब कोई बाह्य क्षेत्र अनुप्रयुक्त किया जाता है तो व्यष्टिगत द्विध्रुव आघूर्ण क्षेत्र के साथ संरेखित होने लगते हैं। जब सब अणुओं पर इसका योग किया जाता है, तो बाह्य क्षेत्र की दिशा में एक नेट द्विध्रुव आघूर्ण पाया जाता है, अर्थात, परावैद्युत ध्रुवित हो जाता है। ध्रुवण की सीमा दो परस्पर विरोधी कारकों की आपेक्षिक तीव्रता पर निर्भर करती है, जो इस प्रकार हैं : विद्युत क्षेत्र में द्विध्रुव स्थितिज ऊर्जा जो द्विध्रुव को क्षेत्र के साथ संरेखित करने का प्रयास करती है, तथा तापीय ऊर्जा जो संरेखण को बिगाड़ने का प्रयास करती है। इसके अतिरिक्त अध्रुवी अणुओं की भाँति यहाँ भी प्रेरित द्विध्रुव आघूर्ण प्रभाव हो सकता है, परंतु व्यापक रूप में संरेखण प्रभाव ध्रुवी अणुओं के लिए अधिक महत्वपूर्ण होता है।
इस प्रकार दोनों ही प्रकरणों में, चाहे ध्रुवी हो अथवा अध्रुवी, परावैद्युत किसी बाह्य क्षेत्र की उपस्थिति में एक नेट द्विध्रुव आघूर्ण विकसित कर लेते हैं। किसी पदार्थ का प्रति एकांक आयतन द्विध्रुव आघूर्ण उसका ध्रुवण कहलाता है तथा इसे $\mathbf{P}$ द्वारा निर्दिष्ट किया जाता है। रैखिक समदैशिक परावैद्युतों के लिए
$$ \begin{equation*} \mathbf{P}=\varepsilon_{0} \chi_{e} \mathbf{E} \tag{2.37} \end{equation*} $$
यहाँ $\chi _{\mathrm{e}}$ परावैद्युत का स्थिर अभिलक्षण है जिसे परावैद्युत माध्यम की वैद्युत प्रवृत्ति (electric susceptibility) कहते हैं।
इसको ( $\chi _{\mathrm{e}}$ को) पदार्थ के आण्विक गुण से संबंधित करना संभव है, परंतु हम यहाँ इस पर चर्चा नहीं करेंगे।
अब प्रश्न यह है कि कोई ध्रुवित परावैद्युत अपने भीतर किसी मूल बाह्य क्षेत्र को रूपांतरित कैसे करता है? सरलता की दृष्टि से हम किसी ऐसे आयताकार परावैद्युत गुटके पर विचार करते हैं जो किसी ऐसे एकसमान बाह्य क्षेत्र $\mathbf{E} _{\mathrm{o}}$ में रखा है, जो गुटके के दो फलकों के समांतर है। क्षेत्र के कारण परावैद्युत में एकसमान ध्रुवण $\mathbf{P}$ होता है। इस प्रकार गुटके के प्रत्येक आयतन अल्पांश $\Delta v$ का क्षेत्र की दिशा में एक द्विध्रुव आघूर्ण $\mathbf{P} \Delta v$ होता है। स्थूल रूप से आयतन अल्पांश $\Delta v$ छोटा होता है, परंतु इसमें अत्यधिक संख्या में आण्विक द्विध्रुव होते हैं। परावैद्युत के भीतर किसी भी स्थान पर आयतन अल्पांश $\Delta v$ पर कोई नेट आवेश नहीं होता (यद्यपि इसका नेट द्विध्रुव आघूर्ण होता है)। इसका कारण यह है कि एक द्विध्रुव के धनावेश अपने से संलग्न द्विध्रुव के ऋणावेश के निकट होते हैं। परंतु, परावैद्युत के पृष्ठ पर विद्युत क्षेत्र के अभिलंबवत स्पष्ट रूप से एक नेट आवेश घनत्व होता है। जैसा कि चित्र 2.23 में दर्शाया गया है, दाएँ पृष्ठ पर द्विध्रुवों के धनात्मक सिरे तथा बाएँ पृष्ठ पर द्विध्रुवों के ऋणात्मक सिरे अनुदासित रह जाते हैं। असंतुलित आवेश बाह्य क्षेत्र के कारण प्रेरित आवेश होते हैं।
चित्र 2.23 कोई एकसमान ध्रुवित परावैद्युत पृष्ठीय आवेश घनत्व के समान होता है, परंतु किसी आयतनी आवेश घनत्व के नहीं।
अतः ध्रुवित परावैद्युत दो आवेशित पृष्ठों के तुल्य होता है, जिनके प्रेरित पृष्ठीय आवेश घनत्व, $\sigma _{\mathrm{p}}$ तथा $-\sigma _{\mathrm{p}}$ हैं। स्पष्ट है कि इन पृष्ठीय आवेशों द्वारा उत्पन्न विद्युत क्षेत्र बाह्य क्षेत्र का विरोध करते हैं। इस प्रकार परावैद्युत में कुल क्षेत्र, उस प्रकरण की तुलना में जिसमें कोई परावैद्युत नहीं है, कम हो जाता है। यहाँ ध्यान देने योग्य बात यह है कि, पृष्ठीय आवेश घनत्व $\pm \sigma _{\mathrm{p}}$ परावैद्युत में मुक्त आवेशों के कारण नहीं वरन् परिबद्ध आवेशों से उत्पन्न होता है।
2.11 संधारित्र तथा धारिता
कोई संधारित्र विद्युतरोधी द्वारा पृथक दो चालकों का एक निकाय होता है (चित्र 2.24)। चालकों पर आवेश $Q _{1}$ तथा $Q _{2}$ तथा उनके विभव क्रमशः $V _{1}$ तथा $V _{2}$ हैं। प्राय: व्यवहार में, दो चालकों पर आवेश $Q$ तथा -3 होते हैं तथा उनमें विभवांतर $V=V _{1}-V _{2}$ होता है। हम केवल इसी प्रकार के विन्यास के संधारित्र पर विचार करेंगे। (एक सरल चालक को भी संधारित्र की भाँति प्रयोग किया जा सकता है, यदि दूसरे को अनंत पर माने ) दोनों चालकों को किसी बैटरी के दो टर्मिनलों से संयोजित करके आवेशित कराया जा सकता है। $Q$ को संधारित्र का आवेश कहते हैं, यद्यपि, वास्तव में यह संधारित्र के एक चालक पर आवेश होता है-संधारित्र का कुल आवेश शून्य होता है।
चालकों के बीच के क्षेत्र में विद्युत क्षेत्र आवेश $Q$ के अनुक्रमानुपाती होता है। अर्थात, यदि संधारित्र पर आवेश दोगुना कर दिया जाए तो हर बिंदु पर विद्युत क्षेत्र दोगुना हो जाएगा। (यह कूलॉम के नियम तथा अध्यारोपण सिद्धांत द्वारा अंतर्निहित विद्युत क्षेत्र तथा आवेश के बीच अनुक्रमानुपात का अनुगामी है।) अब, विभवांतर $V$ किसी लघु परीक्षण आवेश को क्षेत्र के विरुद्ध चालक 2 से 1 तक ले जाने में प्रति एकांक धनावेश द्वारा किए गए कार्य के बराबर होता है। इसके फलस्वरूप, $V$ भी $Q$ के अनुक्रमानुपाती है, तथा अनुपात $Q / V$ एक नियतांक है - चालक 1
चित्र 2.24 विद्युतरोधी से पृथक दो चालकों का कोई निकाय
$$ \begin{equation*} C=\frac{Q}{V} \tag{2.38} \end{equation*} $$
यहाँ $C$ एक नियतांक है जिसे संधारित्र की धारिता कहते हैं। जैसा कि पहले वर्णन किया जा चुका है धारिता $C$ आवेश $Q$ अथवा विभवांतर $V$ पर निर्भर नहीं करती। धारिता $C$ केवल दो चालकों के निकाय के ज्यामितीय विन्यास (आकार, आकृति, पृथकन) पर निर्भर करती है। [जैसा कि हम आगे देखेंगे, यह दोनों चालकों को पृथक करने वाले माध्यम अर्थात विद्युतरोधी (परावैद्युत) की प्रकृति पर निर्भर करती है]। धारिता का SI एकांक 1 फैरड $=1$ कूलॉम प्रति वोल्ट अथवा $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}$ है। नियत धारिता के संधारित्र का प्रतीक $-\vdash \vdash$, जबकि परिवर्ती धारिता के संधारित्र का प्रतीक $⿰ 丬$ है।
समीकरण (2.38) यह दर्शाती है कि बड़े $C$ के लिए यदि $Q$ नियत है तो $V$ लघु होता है। इसका अर्थ यह है कि बड़ा संधारित्र लघु विभव $V$ पर अपेक्षाकृत आवेश $Q$ के बड़े परिमाण को परिबद्ध कर सकता है। इसकी व्यावहारिक उपयोगिता है। उच्च विभवांतर में चालक के चारों ओर प्रबल विद्युत क्षेत्र की उपस्थिति अंतर्निहित है। कोई प्रबल विद्युत क्षेत्र चारों ओर की वायु को आयनीकृत करके उत्पन्न आवेशों को त्वरित कर सकता है जो विजातीय आवेशित पट्टिकाओं पर पहुँचकर उन्हें आंशिक उदासीन कर सकते हैं। दूसरे शब्दों में, संधारित्र का आवेश दोनों पट्टिकाओं के बीच के माध्यम की विद्युतरोधी क्षमता में ह्रास के कारण क्षरित हो सकता है।
वह अधिकतम विद्युत क्षेत्र जिसे कोई परावैद्युत माध्यम बिना भंजन (उसके विद्युतरोधी गुणधर्म) के सहन कर सकता है, उस माध्यम की परावैद्युत सामर्थ्य कहलाती है। वायु के लिए यह लगभग $3 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1}$ है। दो चालकों के बीच $1 \mathrm{~cm}$ कोटि के पृथकन के लिए यह क्षेत्र चालकों के बीच $3 \times 10^{4} \mathrm{~V}$ विभवांतर के तदनुरूपी होता है। अतः किसी संधारित्र के लिए बिना किसी क्षरण के अत्यधिक मात्रा में आवेश को संचित करने के लिए उसकी धारिता को इतना अधिक उच्च अवश्य होना चाहिए कि उनके बीच विभवांतर अथवा विद्युत क्षेत्र उसकी भंजन सीमा से अधिक न हो। इसे भिन्न शब्दों में इस प्रकार भी कह सकते हैं कि किसी दिए गए संधारित्र की बिना किसी सार्थक क्षरण के आवेश को संचित करने की एक सीमा होती है। व्यवहार में, 1 फैरड, धारिता का बहुत बड़ा मात्रक है, धारिता के अधिक सामान्य मात्रक, इस मात्रक (अर्थात फैरड) के अपवर्तक हैं: $1 \mu \mathrm{F}=$ $10^{-6} \mathrm{~F}, 1 \mathrm{nF}=10^{-9} \mathrm{~F}, 1 \mathrm{pF}=10^{-12} \mathrm{~F}$ आदि। आवेशों को संचित करने के अतिरिक्त संधारित्र अधिकांश प्रत्यावर्ती धारा परिपथों ( $\mathrm{ac}$ परिपथों) में प्रमुख अवयवों के रूप में उपयोग होते हैं। अध्याय 7 में $\mathrm{ac}$ परिपथों में संधारित्रों के महत्वपूर्ण प्रकार्यों का वर्णन किया गया है।
2.12 समांतर पट्टिका संधारित्र
किसी समांतर पट्टिका संधारित्र में दो बड़ी समतल एक-दूसरे के समांतर चालक पट्टिकाएँ होती हैं, जिनके बीच पृथकन कम होता है (चित्र 2.25)। हम सर्वप्रथम दो पट्टिकाओं के बीच माध्यम के रूप में निर्वात को लेते हैं। अगले अनुभाग में पट्टिकाओं के बीच परावैद्युत माध्यम के प्रभाव का वर्णन किया गया है। मान लीजिए प्रत्येक पट्टिका का क्षेत्रफल $A$ तथा उनके बीच पृथकन $d$ है। दोनों पट्टिकाओं पर आवेश $Q$ तथा $-Q$ है। चूँकि पट्टिकाओं की रैखिक विमाओं की तुलना में $d$ बहुत छोटा है ( $\left.d^{2}«A\right)$, हम एकसमान आवेशित पृष्ठीय घनत्व $\sigma$ की अनंत समतल चादर के विद्युत क्षेत्र के परिणाम का उपयोग कर सकते हैं (देखिए अनुभाग 1.15)। पट्टिका 1 का पृष्ठीय आवेश घनत्व $\sigma=\frac{Q}{A}$ तथा पट्टिका 2 का पृष्ठीय आवेश घनत्व $-\sigma$ है। विभिन्न क्षेत्रों में समीकरण (1.33) का उपयोग करने पर विद्युत क्षेत्र-
चित्र 2.25 समांतर पट्टिका संधारित्र।
बाह्य क्षेत्र I (पट्टिका 1 के ऊपर का क्षेत्र)
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon _{0}}-\frac{\sigma}{2 \varepsilon _{0}}=0 \tag{2.39} \end{equation*} $$
बाह्य क्षेत्र II (पट्टिका 2 के नीचे का क्षेत्र)
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon _{0}}-\frac{\sigma}{2 \varepsilon _{0}}=0 \tag{2.40} \end{equation*} $$
पट्टिकाओं 1 तथा 2 के भीतरी क्षेत्र में, दो आवेशित पट्टिकाओं के कारण विद्युत क्षेत्र जुड़ जाते हैं और हमें प्राप्त होता है-
$$ \begin{equation*} E=\frac{\sigma}{2 \varepsilon _{0}}+\frac{\sigma}{2 \varepsilon _{0}}=\frac{\sigma}{\varepsilon _{0}}=\frac{Q}{\varepsilon _{0} A} \tag{2.41} \end{equation*} $$
विद्युत क्षेत्र की दिशा धनावेशित पट्टिका से ऋणावेशित पट्टिका की ओर है।
इस प्रकार, दो पट्टिकाओं के बीच विद्युत क्षेत्र स्थानीकृत हो जाता है तथा यह एक सिरे से दूसरे सिरे तक एकसमान होता है। परिमित क्षेत्रफल की पट्टिकाओं के लिए पट्टिकाओं की बाहरी सीमा के निकट यह लागू नहीं होता। पट्टिकाओं के किनारों पर क्षेत्र रेखाएँ बाहर की ओर मुड़ जाती हैं-इस प्रभाव को ‘क्षेत्र का उपांत प्रभाव’ कहते हैं। इससे यह संकेत मिलता है कि समस्त पट्टिका पर पृष्ठीय आवेश घनत्व $\sigma$ यथार्थ रूप से एकसमान नहीं होता $[E$ तथा $\sigma$ समीकरण (2.35) द्वारा संबंधित हैं]। तथापि, $d^{2}«A$ के लिए ये प्रभाव किनारों से काफी दूर के क्षेत्रों के लिए उपेक्षणीय हैं; तथा वहाँ क्षेत्र समीकरण (2.41) के अनुसार होता है। अब एकसमान विद्युत क्षेत्रों के लिए विभवांतर, विद्युत क्षेत्र तथा पट्टिकाओं के बीच की दूरी के गुणनफल के बराबर होता है। अर्थात
$$ \begin{equation*} V=E d=\frac{1}{\varepsilon _{0}} \frac{Q d}{A} \tag{2.42} \end{equation*} $$
तब समांतर पट्टिका संधारित्र $C$ की धारिता
$$ \begin{equation*} C=\frac{Q}{V}==\frac{\varepsilon _{0} A}{d} \tag{2.43} \end{equation*} $$
जो कि, अपेक्षानुसार, निकाय की ज्यामिति पर निर्भर करता है। प्रारूपी मानों, जैसे $A=1 \mathrm{~m}^{2}$, $d=1 \mathrm{~mm}$ के लिए
$$ \begin{equation*} C=\frac{8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \times 1 \mathrm{~m}^{2}}{10^{-3} \mathrm{~m}}=8.85 \times 10^{-9} \mathrm{~F} \tag{2.44} \end{equation*} $$
[आप यह जाँच कर सकते हैं कि $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}=1 \mathrm{C} \quad\left(\mathrm{N} \mathrm{C}^{-1} \mathrm{~m}\right)^{-1}=1 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-1}$ ]। इससे प्रकट होता है कि जैसा पहले वर्णन किया जा चुका है कि $1 \mathrm{~F}$ व्यवहार में धारिता का एक बहुत बड़ा एकांक है। $1 \mathrm{~F}$ की ‘विशालता’ को देखने का एक ढंग और भी है कि हम यह ज्ञात करें कि $1 \mathrm{~F}$ धारिता के समांतर पट्टिका संधारित्र की पट्टिकाओं का क्षेत्रफल, यदि उनके बीच दूरी $1 \mathrm{~cm}$ है, कितना होना चाहिए। अब चूँकि
$$ \begin{equation*} A=\frac{C d}{\varepsilon _{0}}=\frac{1 \mathrm{~F} \times 10^{-2} \mathrm{~m}}{8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}}=10^{9} \mathrm{~m}^{2} \tag{2.45} \end{equation*} $$
अर्थात पट्टिका की लंबाई व चौड़ाई लगभग $30 \mathrm{~km}$ होनी चाहिए!
2.13 धारिता पर परावैद्युत का प्रभाव
किसी बाह्य क्षेत्र में परावैद्युतों के व्यवहार के बारे में जानकारी के पश्चात आइए अब हम यह देखें कि किसी समांतर पट्टिका संधारित्र की धारिता किसी परावैद्युत की उपस्थिति द्वारा किस प्रकार रूपांतरित होती है। पहले की ही भाँति यहाँ भी हमारे पास दो बड़ी पट्टिकाएँ, जिनमें प्रत्येक का क्षेत्रफल $A$ है, एक-दूसरे से $d$ दूरी द्वारा पृथक हैं। पट्टिकाओं पर आवेश $\pm Q$ है, जो कि आवेश घनत्व $\pm \sigma$ (जहाँ $\sigma=Q / A$ ) के तदनुरूपी है। जब दोनों पट्टिकाओं के बीच निर्वात है, तब
$$ E _{0}=\frac{\sigma}{\varepsilon _{0}} $$
तथा विभवांतर $V _{0}$ है,
$$ V _{0}=E _{0} d $$
इस प्रकरण में धारिता $C _{0}$ है,
$$ \begin{equation*} C _{0}=\frac{Q}{V _{0}}=\varepsilon _{0} \frac{A}{d} \tag{2.46} \end{equation*} $$
इसके पश्चात हम उस प्रकरण पर विचार करते हैं जिसमें दोनों पट्टिकाओं के बीच के समस्त क्षेत्र को किसी परावैद्युत द्वारा भर दिया गया है। क्षेत्र द्वारा समस्त परावैद्युत ध्रुवित हो जाता है, तथा जैसा कि ऊपर स्पष्ट किया जा चुका है, यह प्रभाव दो आवेशित चादरों ( परावैद्युत के पृष्ठों पर क्षेत्र के अभिलंबवत) के समतुल्य है जिनके पृष्ठीय आवेश घनत्व $\sigma _{\mathrm{p}}$ तथा $-\sigma _{\mathrm{p}}$ हैं। इस स्थिति में परावैद्युत में विद्युत क्षेत्र उस प्रकरण के तदनुरूपी होता है जिसमें पट्टिकाओं पर नेट आवेश घनत्व $\pm\left(\sigma-\sigma _{\mathrm{p}}\right)$ होता है। अर्थात
$$ \begin{equation*} E=\frac{\sigma-\sigma _{\mathrm{P}}}{\varepsilon _{0}} \tag{2.47} \end{equation*} $$
अतः पट्टिकाओं के सिरों पर विभवांतर
$$ \begin{equation*} V=E d=\frac{\sigma-\sigma _{\mathrm{P}}}{\varepsilon _{0}} d \tag{2.48} \end{equation*} $$
रैखिक परावैद्युतों के लिए, हम अपेक्षा करते हैं कि $\sigma, E _{0}$ अर्थात $\sigma$ के अनुक्रमानुपाती हो। इस प्रकार $\left(\sigma-\sigma _{\mathrm{p}}\right), \sigma$ के अनुक्रमानुपाती है तथा हम लिख सकते हैं कि-
$$ \begin{equation*} \sigma-\sigma _{\mathrm{P}}=\frac{\sigma}{K} \tag{2.49} \end{equation*} $$
यहाँ $K$ परावैद्युत का एक स्थिर अभिलक्षण है। स्पष्ट है कि $K>1$, तब
$$ \begin{equation*} V=\frac{\sigma d}{\varepsilon _{0} K}=\frac{Q d}{A \varepsilon _{0} K} \tag{2.50} \end{equation*} $$
पट्टिकाओं के बीच परावैद्युत होने पर, धारिता $C$
$$ \begin{equation*} C=\frac{Q}{V}=\frac{\varepsilon_{0} K A}{d} \tag{2.51} \end{equation*} $$
गुणनफल $\varepsilon _{0} K$ को माध्यम का परावैद्युतांक कहते हैं तथा इसे $\varepsilon$ के द्वारा निर्दिष्ट किया जाता है।
$$ \varepsilon=\varepsilon_{0} K \tag{2.52} $$
निर्वात के लिए $K=1$, तथा $\varepsilon=\varepsilon _{0} ; \varepsilon _{0}$ को निर्वात का परावैद्युतांक कहते हैं। विमाहीन अनुपात
$$ \begin{equation*} K=\frac{\varepsilon}{\varepsilon _{0}} \tag{2.53} \end{equation*} $$
को पदार्थ का परावैद्युतांक कहते हैं। जैसी कि पहले टिप्पणी की जा चुकी है, समीकरण (2.49) से, यह स्पष्ट है कि $K>1$ अर्थात $K$ का मान 1 से अधिक है। समीकरणों (2.46) तथा (2.51) से
$$ \begin{equation*} K=\frac{C}{C _{0}} \tag{2.54} \end{equation*} $$
इस प्रकार किसी पदार्थ का परावैद्युतांक एक कारक (>1) है जिसके द्वारा जब किसी संधारित्र की पट्टिकाओं के बीच कोई परावैद्युत पदार्थ पूर्णतः भर दिया जाता है, तो उसके धारिता के मान में निर्वात के मान से वृद्धि हो जाती है। यद्यपि हम समांतर पट्टिका संधारित्र के प्रकरण के लिए समीकरण (2.54) पर पहुँचे हैं, तथापि यह हर प्रकार के संधारित्रों पर लागू होता है तथा वास्तव में इसे व्यापक रूप में किसी पदार्थ के परावैद्युतांक की परिभाषा के रूप में देखा जा सकता है।
उदाहरण 2.8 $\mathrm{~K}$ परावैद्युतांक के पदार्थ के किसी गुटके का क्षेत्रफल समांतर पट्टिका संधारित्र की पट्टिकाओं के क्षेत्रफल के समान है परंतु गुटके की मोटाई $(3 / 4) d$ है, यहाँ $d$ पट्टिकाओं के बीच पृथकन है। पट्टिकाओं के बीच गुटके को रखने पर संधारित्र की धारिता में क्या परिवर्तन हो जाएगा?
हल मान लीजिए जब पट्टिकाओं के बीच कोई परावैद्युत नहीं है तो पट्टिकाओं के बीच विद्युत क्षेत्र $E _{0}=V _{0} / d$ है तथा विभवांतर $V _{0}$ है। यदि अब कोई परावैद्युत पदार्थ रख दिया जाता है तो परावैद्युत में विद्युत क्षेत्र $E=E _{0} / K$ होगा। तब विभवांतर होगा
$$V=E_{0}\left(\frac{1}{4} d\right)+\frac{E_{0}}{K}\left(\frac{3}{4} d\right)$$
$$=E_{0} d\left(\frac{1}{4}+\frac{3}{4 K}\right)=V_{0} \frac{K+3}{4 K}$$
विभवांतर $(K+3) / 4 K$ के गुणज द्वारा कम हो जाता है जबकि पट्टिकाओं पर आवेश $\Theta _{0}$ अपरिवर्तित रहता है। इस प्रकार संधारित्र की धारिता में वृद्धि हो जाती है
$$ C=\frac{Q _{0}}{V}=\frac{4 K}{K+3} \frac{Q _{0}}{V _{0}}=\frac{4 K}{K+3} C _{0} $$
2.14 संधारित्रों का संयोजन
हम कई संधारित्रों जिनकी धारिताएँ $C _{1}, C _{2}, \ldots, C _{\mathrm{n}}$ हैं, के संयोजन द्वारा एक प्रभावी धारिता $C$ का निकाय प्राप्त कर सकते हैं। यह प्रभावी धारिता व्यष्टिगत संधारित्रों को संयोजित करने के ढंग पर निर्भर करती है। दो संभावित सरल संयोजन इस प्रकार हैं :
2.14.1 संधारित्रों का श्रेणीक्रम संयोजन
चित्र 2.26 दो संधारित्रों का श्रेणीक्रम संयोजन।
चित्र $2.27 n$ संधारित्रों का श्रेणीक्रम संयोजन।
चित्र 2.26 में दो संधारित्र $C _{1}$ तथा $C _{2}$ श्रेणीक्रम में संयोजित दर्शाए गए हैं। $C _{1}$ की बाईं तथा $C _{2}$ की दाईं पट्टिका बैटरी के दो टर्मिनलों से संयोजित हैं तथा उन पर क्रमशः $Q$ तथा $-Q$ आवेश है। इसका अर्थ यह है कि $C _{1}$ की दाईं पट्टिका पर $-Q$ तथा $C _{2}$ की बाईं पट्टिका पर आवेश $+Q$ है। यदि ऐसा नहीं है, तो संधारित्र की दोनों पट्टिकाओं पर नेट आवेश शून्य नहीं होगा। इसके परिणामस्वरूप $C _{1}$ तथा $C _{2}$ को संयोजित करने वाले चालक में कोई विद्युत क्षेत्र होगा तथा $C _{1}$ एवं $C _{2}$ में आवेश उस समय तक प्रवाहित होता रहेगा, जब तक कि प्रत्येक संधारित्र $C _{1}$ तथा $C _{2}$ पर नेट आवेश शून्य नहीं हो जाता तथा $C _{1}$ एवं $C _{2}$ को संयोजित करने वाले चालक में विद्युत क्षेत्र शून्य नहीं होता। अतः श्रेणीक्रम संयोजन में प्रत्येक संधारित्र की दोनों पट्टिकाओं पर आवेश $( \pm Q)$ समान होता है। संयोजन के सिरों पर विभवपात $V$ संधारित्रों $C _{1}$ तथा $C _{2}$ के सिरों पर क्रमशः विभवपातों $V _{1}$ तथा $V _{2}$ का योग होता है-
$$ \begin{align*} & V=V _{1}+V _{2}=\frac{Q}{C _{1}}+\frac{Q}{C _{2}} \tag{2.55} \\ & \text { अर्थात, } \frac{V}{Q}=\frac{1}{C _{1}}+\frac{1}{C _{2}}, \tag{2.56} \end{align*} $$
हम इस संयोजन को एक ऐसा प्रभावी संधारित्र मान सकते हैं जिस पर आवेश $Q$ तथा जिसके सिरों के बीच विभवांतर $V$ हो। तब संयोजन की प्रभावी धारिता-
$$ \begin{equation*} C=\frac{Q}{V} \tag{2.57} \end{equation*} $$
समीकरण (2.57) की समीकरण (2.56) से तुलना करने पर हमें निम्नलिखित संबंध प्राप्त होता है-
$$ \begin{equation*} \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \tag{2.58} \end{equation*} $$
स्पष्ट है कि इस व्युत्पत्ति को हम कितने भी संधारित्र लेकर, उन्हें इसी प्रकार संयोजित करके $n$ संधारित्रों के लिए समीकरण (2.55) का व्यापकीकरण कर सकते हैं-
$$ \begin{equation*} V=V _{1}+V _{2}+\ldots+V _{n}=\frac{Q}{C _{1}}+\frac{Q}{C _{2}}+\ldots+\frac{Q}{C _{n}} \tag{2.59} \end{equation*} $$
जिन चरणों का हमने दो संधारित्रों के प्रकरण में उपयोग किया था, उन्हीं चरणों का उपयोग $n$ संधारित्रों के संयोजन के लिए करके, हम $n$ संधारित्रों के श्रेणीक्रम संयोजन के लिए प्रभावी धारिता का व्यापक सूत्र प्राप्त कर सकते हैं :
$$ \begin{equation*} \frac{1}{C}=\frac{1}{C _{1}}+\frac{1}{C _{2}}+\frac{1}{C _{3}}+\ldots+\frac{1}{C _{n}} \tag{2.60} \end{equation*} $$
2.14 .2 संधारित्रों का पार्श्वक्रम संयोजन
चित्र 2.28(a) में दो संधारित्र पार्श्वक्रम में संयोजित दर्शाए गए हैं। इस प्रकरण में दोनों संधारित्रों पर समान विभवांतर अनुप्रयुक्त किया गया है। परंतु संधारित्र 1 की पट्टिकाओं पर आवेश $\left( \pm Q _{1}\right)$ का परिमाण संधारित्र 2 की पट्टिकाओं पर आवेश $\left( \pm Q _{2}\right)$ के समान होना आवश्यक नहीं है :
$Q _{1}=C _{1} V, Q _{2}=C _{2} V$
यदि इस संयोजन के तुल्य किसी संधारित्र पर आवेश
चित्र 2.28 (a) दो संधारित्रों, (b) $n$ संधारित्रों का पार्श्वक्रम संयोजन। $Q=Q _{1}+Q _{2}$
तथा विभवांतर $V$ है : $Q=C V=C _{1} V+C _{2} V$ $C=C _{1}+C _{2}$ $n$ संधारित्रों के पार्श्वक्रम संयोजन के लिए प्रभावी धारिता $C$ के लिए व्यापक सूत्र, इसी प्रकार प्राप्त किया जा सकता है [चित्र 2.28(b)] :
$Q=Q _{1}+Q _{2}+\ldots+Q _{n}$ अर्थात, $C V=C _{1} V+C _{2} V+\ldots C _{n} V$ इससे प्राप्त होता है $C=C _{1}+C _{2}+\ldots C _{n}$
उदाहरण 2.9 चित्र 2.29 में दर्शाए अनुसार $10 \mu \mathrm{F}$ के चार संधारित्रों के किसी नेटवर्क को $500 \mathrm{~V}$ के स्रोत से संयोजित किया गया है। (a) नेटवर्क की तुल्य धारिता, तथा (b) प्रत्येक संधारित्र पर आवेश ज्ञात कीजिए। (नोटः किसी संधारित्र पर आवेश उसकी उच्च विभव की पट्टिका पर आवेश के बराबर होता है तथा वह आवेश निम्न विभव की पट्टिका पर आवेश के परिमाण में समान, परंतु विजातीय होता है)।
चित्र 2.29
हल
(a) दिए गए नेटवर्क में तीन संधारित्र $C _{1}, C _{2}$ तथा $C _{3}$ श्रेणीक्रम में संयोजित हैं। इन तीनों संधारित्रों की प्रभावी धारिता $C^{\prime}$ इस प्रकार व्यक्त की जाती है :
$\frac{1}{C^{\prime}}=\frac{1}{C _{1}}+\frac{1}{C _{2}}+\frac{1}{C _{3}}$
$C _{1}=C _{2}=C _{3}=10 \mu \mathrm{F}, C^{\prime}=(10 / 3) \mu \mathrm{F}$ नेटवर्क में $C _{4}$ को $C^{\prime}$ के पार्श्वक्रम में संयोजित किया गया है। अतः, समस्त नेटवर्क की तुल्य धारिता
$C=C^{\prime}+C _{4}=\left(\frac{10}{3}+10\right) \mu \mathrm{F}=13.3 \mu \mathrm{F}$
(b) चित्र से स्पष्ट है कि $C _{1}, C _{2}$ तथा $C _{3}$ प्रत्येक पर आवेश समान है, मान लीजिए यह आवेश $Q$ है। मान लीजिए $C _{4}$ पर आवेश $Q^{\prime}$ है। अब चूँकि $\mathrm{AB}$ के सिरों के बीच विभवांतर $Q / C _{1}, \mathrm{BC}$ के सिरों पर $Q / C _{2}$ तथा $\mathrm{CD}$ के सिरों पर $Q / C _{3}$ है, अतः
$\frac{Q}{C _{1}}+\frac{Q}{C _{2}}+\frac{Q}{C _{3}}=500 \mathrm{~V}$
तथा $Q^{\prime} / C _{4}=500 \mathrm{~V}$
इससे हमें संधारित्रों की विभिन्न धारिताओं के दिए गए मानों के लिए
$Q=500 \mathrm{~V} \times \frac{10}{3} \mu \mathrm{F}=1.7 \times 10^{-3} \mathrm{C}$ तथा
$Q^{\prime}=500 \mathrm{~V} \times 10 \mu \mathrm{F}=5.0 \times 10^{-3} \mathrm{C}$
2.15 संधारित्र में संचित ऊर्जा
जैसा कि हमने ऊपर चर्चा में अध्ययन किया, संधारित्र दो चालकों का एक ऐसा निकाय होता है जिस पर आवेश $Q$ तथा $-Q$ होते हैं तथा जिनमें कुछ पृथकन होता है। इस विन्यास में संचित ऊर्जा ज्ञात करने के लिए आरंभ में दो अनावेशित चालकों 1 तथा 2 पर विचार कीजिए। अब चालक 2 से चालक 1 पर आवेश को छोटे-छोटे टुकड़ों में स्थानांतरित करने की किसी प्रक्रिया की कल्पना कीजिए, ताकि अंत में चालक 1 पर $Q$ आवेश आ जाए। आवेश संरक्षण नियम के अनुसार अंत में चालक 2 पर -3 आवेश होता है (चित्र 2.30)।
चित्र 2.30 (a) चालक 1 पर $Q^{\prime}$ से $Q^{\prime}+\delta Q^{\prime}$ तक लघु चरणों में आवेश निर्भित करने में किया गया कार्य। (b) संधारित्र की आवेशित करने में किया गया कुल कार्य का अवलोकन दोनों पट्टिकाओं के बीच विद्युत क्षेत्र में संचित ऊर्जा के रूप में किया जा सकता है।
आवेश को 2 से 1 पर स्थानांतरित करने में बाह्य कार्य करना होता है, चूँकि हर चरण में चालक 2 की तुलना में चालक 1 अधिक विभव पर होता है। किए गए कुल कार्य का परिकलन करने के लिए पहले हम छोटे-छोटे चरणों में आवेश की अत्यल्प (अर्थात लोप बिंदु तक छोटी) मात्रा को स्थानांतरित करने में किया गया कार्य परिकलित करते हैं। उस माध्य स्थिति पर विचार कीजिए जिसमें चालकों 1 तथा 2 पर क्रमशः आवेश $Q^{\prime}$ तथा $-Q^{\prime}$ हैं। इस स्थिति में, चालकों 1 तथा 2 के बीच विभवांतर $V^{\prime}=Q^{\prime} / C$ होता है, यहाँ $C$ निकाय की धारिता है। अब यह कल्पना कीजिए कि लघु आवेश $\delta Q^{\prime}$ चालक 2 से 1 में स्थानांतरित किया जाता है। इस चरण में किया गया कार्य $(\delta w)$, जिसके परिणामस्वरूप चालक 1 पर आवेश $Q^{\prime}$ से बढ़कर $Q^{\prime}+\delta Q^{\prime}$ हो जाता है, इस प्रकार व्यक्त किया जाता है :
$$ \begin{equation*} \delta W=V^{\prime} \delta Q^{\prime}=\frac{Q^{\prime}}{C} \delta Q^{\prime} \tag{2.68} \end{equation*} $$
समीकरण (2.68) के समाकलन द्वारा
$$ W=\int _{0}^{Q} \frac{Q^{\prime}}{C} \delta Q^{\prime}=\left.\frac{1}{C} \frac{Q^{\prime 2}}{2}\right| _{0} ^{Q}=\frac{Q^{2}}{2 C} $$
इस परिणाम, को हम भिन्न-भिन्न प्रकार से व्यक्त कर सकते हैं :
$$ \begin{equation*} W=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V \tag{2.69} \end{equation*} $$
चूँकि स्थिरवैद्युत बल संरक्षी बल है, यह कार्य निकाय में स्थितिज ऊर्जा के रूप में संचित हो जाता है। यही कारण है कि स्थितिज ऊर्जा का अंतिम परिणाम, समीकरण (2.69), जिस ढंग से संध रित्र का आवेश विन्यास निर्मित किया गया है, उस ढंग पर निर्भर नहीं करता। जब कोई संधारित्र निरावेशित होता है तो उसमें संचित ऊर्जा मुक्त हो जाती है। संधारित्र की पट्टिकाओं के बीच विद्युत क्षेत्र में ‘संचित’ हुई स्थितिज ऊर्जा के रूप में समझना संभव है। इसे देखने के लिए, सरलता की दृष्टि से, किसी समांतर पट्टिका (प्रत्येक का क्षेत्रफल $A$ ) संधारित्र जिसकी पट्टिकाओं के बीच पृथकन $d$ है, पर विचार कीजिए।
संधारित्र में संचित ऊर्जा $$ \begin{equation*} =\frac{1}{2} \frac{Q^{2}}{C}=\frac{(A \sigma)^{2}}{2} \times \frac{d}{\varepsilon_{0} A} \tag{2.70} \end{equation*} $$
पृष्ठीय आवेश घनत्व $\sigma$ पट्टिकाओं के बीच विद्युत क्षेत्र $E$ से संबंधित है-
$$ \begin{equation*} E=\frac{\sigma}{\varepsilon _{0}} \tag{2.71} \end{equation*} $$
समीकरणों (2.70) तथा (2.71) से प्राप्त होता है- संधारित्र में संचित ऊर्जा
$$ \begin{equation*} U=(1 / 2) \varepsilon_{0} E^{2} \times A d \tag{2.72} \end{equation*} $$
ध्यान दीजिए, $A d$ दोनों पट्टिकाओं के बीच के क्षेत्र का आयतन है (इसी क्षेत्र में केवल विद्युत क्षेत्र होता है)। यदि हम ऊर्जा घनत्व को दिक्स्थान के प्रति एकांक आयतन में संचित ऊर्जा के रूप में परिभाषित करें तो, समीकरण (2.72) के अनुसार विद्युत क्षेत्र का ऊर्जा घनत्व $u=(1 / 2) \varepsilon _{0} E^{2}$
यद्यपि हमने समीकरण (2.73) समांतर पट्टिका संधारित्र के प्रकरण में व्युत्पन्न की है, किसी विद्युत क्षेत्र का ऊर्जा घनत्व से संबंधित परिणाम वास्तव में, अत्यंत व्यापक है तथा यह किसी भी आवेश विन्यास के कारण विद्युत क्षेत्र पर लागू होता है।
उदाहरण 2.10 (a) $900 \mathrm{pF}$ के किसी संधारित्र को $100 \mathrm{~V}$ बैटरी से आवेशित किया गया [चित्र 2.31(a)]। संधारित्र में संचित कुल स्थिरवैद्युत ऊर्जा कितनी है? (b) इस संधारित्र को बैटरी से वियोजित करके किसी अन्य $900 \mathrm{pF}$ के संधारित्र से संयोजित किया गया। निकाय द्वारा संचित स्थिरवैद्युत ऊर्जा कितनी है?
चित्र 2.31
हल
(a) संधारित्र पर आवेश
$$ Q=C V=900 \times 10^{-12} \mathrm{~F} \times 100 \mathrm{~V}=9 \times 10^{-8} \mathrm{C}$$
संधारित्र द्वारा संचित ऊर्जा
$$ \begin{aligned} & =(1 / 2) C V^{2}=(1 / 2) Q V \\ = & (1 / 2) \times 9 \times 10^{-8} \mathrm{C} \times 100 \mathrm{~V}=4.5 \times 10^{-6} \mathrm{~J} \end{aligned} $$
(b) स्थायी स्थिति में, दोनों संधारित्रों की धनात्मक पट्टिकाएँ समान विभव पर हैं, तथा उनकी ॠणात्मक पट्टिकाएँ उसी समान विभव पर हैं। मान लीजिए उभयनिष्ठ विभवांतर $V^{\prime}$ है। तब, प्रत्येक संधारित्र पर आवेश $Q^{\prime}=C V^{\prime}$ । आवेश संरक्षण द्वारा, $Q^{\prime}=Q /$ 2 , इसमें यह अंतर्निहित है कि, $V^{\prime}=\mathrm{V} / 2$ । तब निकाय की कुल ऊर्जा
$=2 \times \frac{1}{2} Q^{\prime} V^{\prime}=\frac{1}{4} Q V=2.25 \times 10^{-6} \mathrm{~J}$
अत: (a) से (b) में जाने पर यद्यपि आवेश की कोई हानि नहीं होती, तथापि अंतिम ऊर्जा आरंभिक ऊर्जा की केवल आधी होती है। तब शेष ऊर्जा कहाँ चली जाती है?
निकाय को स्थिति (b) तक व्यवस्थित होने में कुछ समय लगता है। इस अवधि में पहले संधारित्र से दूसरे संधारित्र में एक अस्थायी विद्युत धारा प्रवाहित होती है। इस अवधि में ऊष्मा तथा विद्युत चुंबकीय विकिरणों के रूप में कुछ ऊर्जा-क्षय हो जाती है।
सारांश
1. स्थिरवैद्युत बल एक संरक्षी बल है। किसी बाह्य बल (स्थिरवैद्युत बल के समान एवं विपरीत) द्वारा आवेश $q$ को बिंदु $\mathrm{R}$ से बिंदु $\mathrm{P}$ तक लाने में किया गया कार्य $q\left(V _{\mathrm{P}}-V _{\mathrm{R}}\right)$ होता है, जो कि अंतिम बिंदु तथा प्रारंभिक बिंदु के बीच आवेश की स्थितिज ऊर्जाओं का अंतर होता है।
2. किसी बिंदु पर विभव (किसी बाह्य एजेंसी) प्रति एकांक धनावेश पर किया गया वह कार्य होता है जो उस आवेश को अनंत से उस बिंदु तक लाने में किया जाता है। किसी बिंदु पर विभव किसी योज्यता स्थिरांक के अंतर्गत यादृच्छिक होता है, चूँकि जो राशि भौतिक रूप से महत्वपूर्ण है वह दो बिंदुओं के बीच विभवांतर है। यदि अनंत पर किसी आवेश के कारण विभव को शून्य चुनें (अथवा मानें) तो मूल बिंदु पर रखे किसी आवेश $Q$ के कारण स्थिति सदिश $\mathbf{r}$ वाले बिंदु पर वैद्युत विभव
$$ V(\mathbf{r})=\frac{1}{4 \pi \varepsilon _{o}} \frac{Q}{r} $$
3. मूल बिंदु पर स्थित $\mathbf{p}$ द्विध्रुव आघूर्ण के बिंदु द्विध्रुव के कारण स्थिति सदिश $\mathbf{r}$ के किसी बिंदु पर स्थिरवैद्युत विभव
$$ V(\mathbf{r})=\frac{1}{4 \pi \varepsilon _{o}} \frac{\mathbf{p} \hat{\mathbf{r}}}{r^{2}} $$
यह परिणाम किसी द्विध्रुव (जिस पर आवेश $-q$ तथा $q$ एक-दूसरे से $2 a$ दूरी पर हों) के लिए $r»a$ शर्त के साथ लागू होता है।
4. स्थिति सदिश $\mathbf{r} _{1}, \mathbf{r} _{2}, \ldots, \mathbf{r} _{\mathrm{n}}$ के आवेशों $q _{1}, q _{2}, \ldots, q _{n}$ के आवेश विन्यास का अध्यारोपण सिद्धांत द्वारा किसी बिंदु $\mathrm{P}$ पर विभव
$$ V=\frac{1}{4 \pi \varepsilon _{o}}\left(\frac{q _{1}}{r _{1 \mathrm{P}}}+\frac{q _{2}}{r _{2 \mathrm{P}}}+\ldots+\frac{q _{n}}{r _{n \mathrm{P}}}\right) $$
यहाँ पर $r _{1 \mathrm{P}}$ आवेश $q _{1}$ तथा $\mathrm{P}$ के बीच, $r _{2 \mathrm{P}}$ आवेश $q _{2}$ तथा $\mathrm{P}$ के बीच की दूरी है, तथा अन्य दूरियाँ इसी प्रकार हैं।
5. समविभव पृष्ठ एक ऐसा पृष्ठ होता है जिसके सभी बिंदुओं पर विभव का समान मान होता है। किसी बिंदु आवेश के लिए, उस आवेश को केंद्र मानकर खींचे गए संकेंद्री गोले समविभव पृष्ठ होते हैं। समविभव पृष्ठ के किसी बिंदु पर विद्युत क्षेत्र $\mathbf{E}$ उस बिंदु से गुज़रने वाले अभिलंब के अनुदिश होता है। $\mathbf{E}$ की दिशा वही होती है जिस दिशा में वैद्युत विभव तीव्रता से घटता है।
6. किसी आवेशों के निकाय में संचित स्थितिज ऊर्जा (किसी बाह्य बल द्वारा) आवेशों को उनकी स्थितियों पर लाकर एकत्र करने में किए जाने वाले कार्य के बराबर होती है। दो आवेशों $q _{1}$ तथा $q _{2}$ की $\mathbf{r} _{1}$ तथा $\mathbf{r} _{2}$ पर स्थितिज ऊर्जा
$$ U=\frac{1}{4 \pi \varepsilon _{o}} \frac{q _{1} q _{2}}{r _{12}} $$
यहाँ $r _{12}$ दो आवेशों $q _{1}$ तथा $q _{2}$ के बीच की दूरी है।
7. किसी बाह्य विभव $V(\mathbf{r})$ में आवेश $q$ की स्थितिज ऊर्जा $q V(\mathbf{r})$ होती है। एकसमान विद्युत क्षेत्र $\mathbf{E}$ में किसी द्विध्रुव $\mathrm{p}$ की स्थितिज ऊर्जा $-\mathbf{p} . \mathbf{E}$ होती है।
8. किसी चालक के अभ्यंतर में स्थिरवैद्युत क्षेत्र $\mathbf{E}$ शून्य होता है। किसी आवेशित चालक के पृष्ठ के तुरंत बाहर $\mathbf{E}$ पृष्ठ के अभिलंबवत् होता है। $\mathbf{E}=\frac{\sigma}{\varepsilon _{0}} \hat{\mathbf{n}}$, यहाँ $\hat{\mathbf{n}}$ बहिर्मुखी अभिलंब के अनुदिश एकांक सदिश तथा $\sigma$ पृष्ठीय आवेश घनत्व है। किसी चालक के आवेश केवल उसके पृष्ठ पर ही विद्यमान रह सकते हैं। किसी चालक के अंतर्गत ( भीतर) तथा उसके पृष्ठ पर विभव हर बिंदु पर नियत रहता है। चालक के भीतर किसी आवेशविहीन कोटर (गुहा) में विद्युत क्षेत्र शून्य होता है।
9. संधारित्र दो ऐसे चालकों का निकाय होता है जो किसी विद्युतरोधी द्वारा एक-दूसरे से पृथक रहते हैं। इसकी धारिता $C$ को $C=Q / V$ द्वारा परिभाषित किया जाता है, यहाँ $Q$ तथा $-Q$ इसके दो चालकों के आवेश हैं तथा $V$ इन दोनों के बीच विभवांतर है। $C$ का निर्धारण पूर्णतया संधारित्र की ज्यामितीय आकृति, आकार, दो चालकों की आपेक्षिक स्थितियों द्वारा किया जाता है। धारिता का एकांक फैरड है: $1 \mathrm{~F}=1 \mathrm{C} \mathrm{V}^{-1}$ किसी समांतर पट्टिका संधारित्र (पट्टिकाओं के बीच निर्वात) के लिए
$$ C=\varepsilon _{0} A / d $$
यहाँ $A$ प्रत्येक पट्टिका का क्षेत्रफल तथा $d$ इनके बीच का पृथकन है।
10. यदि किसी संधारित्र की दो पट्टिकाओं के बीच कोई विद्युतरोधी पदार्थ (परावैद्युत) भरा है, तो आवेशित पट्टिकाओं के विद्युत क्षेत्र के कारण परावैद्युत में नेट द्विध्रुव आघूर्ण प्रेरित हो जाता है। इस प्रभाव, जिसे ध्रुवण कहते हैं, के कारण विपरीत दिशा में एक विद्युत क्षेत्र उत्पन्न होता है। इससे परावैद्युत के भीतर नेट विद्युत क्षेत्र, तथा इसीलिए पट्टिकाओं के बीच विभवांतर घट जाता है। परिणामस्वरूप संधारित्र की धारिता $C, C _{0}$ (जबकि पट्टिकाओं के बीच कोई माध्यम नहीं अर्थात निर्वात है) से बढ़ जाती है। $C=K C _{0}$
जहाँ $K$ विद्युतरोधी पदार्थ का परावैद्युतांक है।
11. संधारित्रों के श्रेणीक्रम संयोजन के लिए, कुल धारिता $C$ निम्नलिखित संबंध द्वारा दर्शाई जाती है
$$ \frac{1}{C}=\frac{1}{C _{1}}+\frac{1}{C _{2}}+\frac{1}{C _{3}}+\ldots \ldots \ldots $$
पार्श्वक्रम संयोजन के लिए कुल धारिता $C$ होती है-
$$ C=C _{1}+C _{2}+C _{3}+\ldots $$
जहाँ $C _{1}, C _{2}, C _{3} \ldots .$. व्यष्टिगत धारिताएँ हैं।
12. आवेश $Q$, वोल्टता $V$ तथा धारिता $C$ के किसी संधारित्र में संचित ऊर्जा $E$ निम्नलिखित संबंधों द्वारा व्यक्त की जाती है-
$$ U=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C} $$
किसी विद्युत क्षेत्र के स्थान पर वैद्युत आवेश घनत्व (प्रति एकांक आयतन ऊर्जा) $(1 / 2) \varepsilon _{0} \mathrm{E}^{2}$ होता है।
भौतिक राशि | प्रतीक | विमाएँ | मात्रक | टिप्पणी |
---|---|---|---|---|
विभव | $\phi$ अथवा $V$ | $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$ | V | विभवांतर भौतिक दृष्टि से महत्वपूर्ण होता है। |
धारिता | $C$ | $\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{-4} \mathrm{~A}^{2}\right]$ | $\mathrm{F}$ | |
ध्रुवण | $\mathbf{P}$ | $\left[\mathrm{L}^{-2} \mathrm{AT}\right]$ | $\mathrm{C} \mathrm{m}^{-2}$ | द्विध्रुव आघूर्ण प्रति एकांक आयतन |
परावैद्युतांक | K | [ विमाहीन] |
विचारणीय विषय
1. स्थिरवैद्युतिकी में स्थिर आवेशों के बीच लगने वाले बलों का अध्ययन किया जाता है। परंतु जब किसी आवेश पर बल आरोपित है तो वह विराम में कैसे हो सकता है? अतः जब दो आवेशों के बीच लगने वाले स्थिरवैद्युत बल के विषय में चर्चा करते हैं, तो यह समझा जाना चाहिए कि प्रत्येक आवेश कुछ अनिर्दिष्ट बलों, जो उस आवेश पर लगे नेट कूलॉम बल का विरोध करते हैं, के प्रभाव से विराम में है।
2. कोई संधारित्र इस प्रकार विन्यासित होता है कि वह विद्युत क्षेत्र रेखाओं को एक छोटे क्षेत्र तक ही सीमित किए रखता है। इस प्रकार, यद्यपि विद्युत क्षेत्र काफी प्रबल हो सकता है परंतु संधारित्र की दो पट्टिकाओं के बीच विभवांतर कम होता है।
3. किसी गोलीय आवेशित कोश के पृष्ठ के आर-पार विद्युत क्षेत्र संतत नहीं होता। गोले के भीतर यह शून्य तथा बाहर यह $\frac{\sigma}{\varepsilon _{0}} \hat{\mathbf{n}}$ होता है। परंतु वैद्युत विभव पृष्ठ के आर-पार संतत होता है, इसका मान पृष्ठ पर $q / 4 \pi \varepsilon _{0} R$ होता है।
4. किसी द्विध्रुव पर लगा बल आघूर्ण $\mathbf{p} \times \mathbf{E}$ इसमें $\mathbf{E}$ के परितः दोलन उत्पन्न करता है। केवल तभी जब प्रक्रिया क्षयकारी है तो दोलन अवमंदित होते हैं तथा द्विध्रुव अंततः $\mathbf{E}$ के संरेखित हो जाता है।
5. किसी आवेश $q$ के कारण अपनी स्थिति पर विभव अपरिभाषित है-यह अनंत होता है।
6. किसी आवेश $q$ की स्थितिज ऊर्जा के व्यंजक $q V(\mathbf{r})$ में, $V(\mathbf{r})$ बाह्य आवेशों के कारण विभव है तथा $q$ के कारण विभव नहीं है। जैसा कि बिंदु 5 में देखा, यह व्यंजक उस स्थिति में, जबकि स्वयं आवेश $q$ के कारण विभव को $V(\mathbf{r})$ में सम्मिलित कर लें, सही रूप में परिभाषित नहीं होगा।
7. किसी चालक के भीतर कोटर (गुहा) बाह्य वैद्युत प्रभावों से परिरक्षित रहता है। यहाँ यह बात ध्यान देने योग्य है कि स्थिरवैद्युत परिरक्षण उस परिस्थिति में प्रभावी नहीं रहता जिसमें आप कोटर में भीतर आवेश रख देते हैं, तब तो चालक का बहिर्भाग भीतर के आवेशों के विद्युत क्षेत्रों से परिरक्षित नहीं रहता।
अभ्यास
2.1 $5 \times 10^{-8} \mathrm{C}$ तथा $-3 \times 10^{-8} \mathrm{C}$ के दो आवेश $16 \mathrm{~cm}$ दूरी पर स्थित हैं। दोनों आवेशों को मिलाने वाली रेखा के किस बिंदु पर वैद्युत विभव शून्य होगा? अनंत पर विभव शून्य लीजिए।
Show Answer
# Content Missing2.2 $10 \mathrm{~cm}$ भुजा वाले एक सम-षट्भुज के प्रत्येक शीर्ष पर $5 \mu \mathrm{C}$ का आवेश है। षट्भुज के केंद्र पर विभव परिकलित कीजिए।
Show Answer
# Content Missing2.3 $6 \mathrm{~cm}$ की दूरी पर अवस्थित दो बिंदुओं $\mathrm{A}$ एवं $\mathrm{B}$ पर दो आवेश $2 \mu \mathrm{C}$ तथा $2 \mu \mathrm{C}$ रखे हैं।
(a) निकाय के सम विभव पृष्ठ की पहचान कीजिए।
(b) इस पृष्ठ के प्रत्येक बिंदु पर विद्युत क्षेत्र की दिशा क्या है?
Show Answer
# Content Missing2.4 $12 \mathrm{~cm}$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \mathrm{C}$ का आवेश एकसमान रूप से वितरित है।
(a) गोले के अंदर
(b) गोले के ठीक बाहर
(c) गोले के केंद्र से $18 \mathrm{~cm}$ पर अवस्थित, किसी बिंदु पर विद्युत क्षेत्र क्या होगा?
Show Answer
# Content Missing2.5 एक समांतर पट्टिका संधारित्र, जिसकी पट्टिकाओं के बीच वायु है, की धारिता $8 \mathrm{pF}$ $\left(1 \mathrm{pF}=10^{-12} \mathrm{~F}\right)$ है। यदि पट्टिकाओं के बीच की दूरी को आधा कर दिया जाए और इनके बीच के स्थान में 6 परावैद्युतांक का एक पदार्थ भर दिया जाए तो इसकी धारिता क्या होगी?
Show Answer
# Content Missing2.6 $9 \mathrm{pF}$ धारिता वाले तीन संधारित्रों को श्रेणीक्रम में जोड़ा गया है।
(a) संयोजन की कुल धारिता क्या है?
(b) यदि संयोजन को $120 \mathrm{~V}$ के संभरण (सप्लाई) से जोड़ दिया जाए, तो प्रत्येक संधारित्र पर क्या विभवांतर होगा?
Show Answer
# Content Missing2.7 $2 \mathrm{pF}, 3 \mathrm{pF}$ और $4 \mathrm{pF}$ धारिता वाले तीन संधारित्र पार्श्वक्रम में जोड़े गए हैं।
(a) संयोजन की कुल धारिता क्या है?
(b) यदि संयोजन को $100 \mathrm{~V}$ के संभरण से जोड़ दें तो प्रत्येक संधारित्र पर आवेश ज्ञात कीजिए।
Show Answer
# Content Missing2.8 पट्टिकाओं के बीच वायु वाले एक समांतर पट्टिका संधारित्र की प्रत्येक पट्टिका का क्षेत्रफल $6 \times 10^{-3} \mathrm{~m}^{2}$ तथा उनके बीच की दूरी $3 \mathrm{~mm}$ है। संधारित्र की धारिता को परिकलित कीजिए। यदि इस संधारित्र को $100 \mathrm{~V}$ के संभरण से जोड़ दिया जाए तो संधारित्र की प्रत्येक पट्टिका पर कितना आवेश होगा?
Show Answer
# Content Missing2.9 अभ्यास 2.8 में दिए गए संधारित्र की पट्टिकाओं के बीच यदि $3 \mathrm{~mm}$ मोटी अभ्रक की एक शीट (पत्तर) (परावैद्युतांक $=6$ ) रख दी जाती है तो स्पष्ट कीजिए कि क्या होगा जब
(a) विभव (वोल्टेज) संभरण जुड़ा ही रहेगा।
(b) संभरण को हटा लिया जाएगा?
Show Answer
# Content Missing2.10 $12 \mathrm{pF}$ का एक संधारित्र $50 \mathrm{~V}$ की बैटरी से जुड़ा है। संधारित्र में कितनी स्थिरवैद्युत ऊर्जा संचित होगी?
Show Answer
# Content Missing2.11 $200 \mathrm{~V}$ संभरण (सप्लाई) से एक $600 \mathrm{pF}$ के संधारित्र को आवेशित किया जाता है। फिर इसको संभरण से वियोजित कर देते हैं तथा एक अन्य $600 \mathrm{pF}$ वाले अनावेशित संधारित्र से जोड़ देते हैं। इस प्रक्रिया में कितनी ऊर्जा का ह्रास होता है?